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Significant reductions in the incidence of cardiac arrhythmia (CA) and sudden cardiac
death (SCD), along with amelioration of heart failure, have been reported for treatment
with Sacubitril/valsartan (SV). However, its anti-arrhythmic mechanism remains unclear.
The current study aims to explore the anti-arrhythmic molecular mechanism of SV.
The direct protein targets (DPT) of SV were extracted from DrugBank. The protein-
protein interaction (PPI) network of SV DPTs was constructed using STRING, and the
indirect protein targets (IPTs) were also identified. A search for arrhythmia-related genes
was conducted using GeneCards and the Comparative Toxicogenomics Database
(CTD). The DTPs, ITPs, and arrhythmia-related genes from the two datasets were
combined in a Venn diagram, and the overlapping genes were identified as core target
genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses identified the top 20 biological processes and signaling
pathways related to disease and the therapeutic effects of SV. The renin-angiotensin
system, adrenergic signaling in cardiomyocytes, and gap junction pathways are strongly
implicated in the effects of SV on CA. In conclusion, our bioinformatics analyses
provided evidence pertaining to the possible antiarrhythmic mechanisms of SV and may
contribute to the development of novel drugs for CA.
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INTRODUCTION

Cardiac arrhythmia (CA) is a group of heterogeneous diseases that often leads to abnormal pulse
formation and conduction due to the mutation of potassium and sodium channels (1). Almost all
antiarrhythmic drugs that are used to treat CA have arrhythmogenic effects. Amiodarone, a broad-
spectrum antiarrhythmic drug, has limited long-term suitability in patients with heart failure (HF)
due to its extracardiac toxicity (2). Ideal antiarrhythmic drugs can prevent serious arrhythmias,
effectively control the ectopic rhythm, restore or maintain sinus rhythm, and have no toxic effects
on hemodynamics and vital organs (3). The search continues for better antiarrhythmic drugs.
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Sacubitril/valsartan (SV), as an angiotensin receptor-
neprilysin inhibitor (ARNI), positively improves the imbalance
between the rein-angiotensin-aldosterone-system (RAAS) and
natriuretic peptide systems (4), and decreases rehospitalization
rates and cardiovascular mortality of patients with HF compared
with enalapril (5). More surprisingly, SV decreases the incidence
of ventricular tachycardia, ventricular fibrillation, implantable
cardioverter-defibrillator discharge, and SCD in patients with HF
(6–8). Recent studies have shown that inflammation, fibrosis, and
autoimmune mechanisms may also lead to electrical remodeling
or ion channel dysfunction and promote arrhythmia (9–11).
Drugs that inhibit myocardial remodeling (12), such as ARNI,
may play antiarrhythmic roles by reducing the formation of
ectopic impulses and reentry from the upstream mechanism
(13). However, the controversy around SV remains: it increases
the incidence of ventricular arrhythmias, especially in patients
with ischemic heart disease (14, 15), although after adjusting
the outcomes, the cardiovascular death caused by etiologies
of HF such as ischemic, non-ischemic, and hypertensive
cardiomyopathies are similar (16, 17). But, in men with ejection
fraction of <35%, patients who recently took SV may be more
prone to ventricular arrhythmias (18). The data between the
antiarrhythmic effect of SV and the etiology, gender differences,
and age categories of HF are still limited (4). Therefore, the
relationship between SV and CA deserves further study. The
question of whether SV has a direct or indirect antiarrhythmic
effect or has a pro-arrhythmic effect, as with other antiarrhythmic
drugs, remains to be answered.

Network pharmacology is a vital tool to indicate interactions
between drugs and organisms. Drug pleiotropy may be
considered in the context of interactions between the regulatory
network of the drug target and the disease’ gene product. Thus,
network analyses give insights into multiple actions of drugs and
their mechanisms (19). This approach has been used successfully
to clarify the multi-targeted regulation of Traditional Chinese
Medicine for treating disease (20).

The current study investigates the molecular mechanisms
by which SV ameliorates CA using the approach of network
pharmacology. The resulting bioinformatics data may assist with
basic research and enable the development of new drugs for CA.

MATERIALS AND METHODS

Recognition of Direct Protein Targets of
Sacubitril/Valsartan
Drugbank is a network database containing comprehensive
molecular information about drugs, their mechanisms,
interactions, and targets. Since it was first released in 2006,
Drugbank has been widely used to promote drug target discovery,
design, docking, and screening and to predict metabolism and
interactions in addition to general pharmaceutical education.
A large number of new data have been added to DrugBank
5.0, including information on pharmacometabolomics,
pharmacotranscriptomics, and pharmacoprotoemics, as well
as hundreds of new drug clinical trials (21). The direct protein
targets (DPTs) of SV were derived from DrugBank 5.0.

Protein-Protein Interaction Network and
Signaling Pathways for the Direct Protein
Targets of Sacubitril/Valsartan
Search Tool for the Retrieval of Interacting Genes (STRING)1

is an online database for searching known protein-protein
interaction (PPI) networks. Cytoscape is an open-source software
project, which integrates biomolecular interaction networks
with high-throughput expression data and other molecular
states, producing a unified conceptual framework (22). The
PPI network of the DPTs of SV was constructed using
STRING. No more than 50 interactors on the first and
second shells were set as the cut-off criteria with the highest
confidence (score = 0.9). Highly relevant genes obtained were
used as IPTs, and then, IPTs and DPTs were visualized by
Cytoscape (v.3.8.2).

Human Cardiac Arrhythmia-Related
Genomic Data Sources
GeneCards2 is a searchable database that provides comprehensive
and user-friendly information on all annotated and predicted
human genes. Arrhythmia-related genes were searched within
GeneCards and 4,317 results were obtained. The top 400 genes
were selected as the research object according to the “correlation
score” ranking. The Comparative Toxicogenomics Database
(CTD)3 is a powerful and open database designed to promote
an understanding of how environmental exposure affects human
health. It provides artificially curated information on chemical–
gene/protein interactions, chemical–disease, and gene-disease
relationships. A total of 383,061 results were obtained by
searching “disease and arrhythmia” within the CTD database.
Repeated genes were removed according to the descending order
of “inference score” and the top 400 genes were selected as
research objects.

Obtaining Potential Therapeutic Target
Genes for Sacubitril/Valsartan
Concerning Human Arrhythmia
The DPTs and IPTs of SV and CA-related genes from
the GeneCards and CTD databases were introduced into a
Venn diagram.4 Through integration and intersection, potential
therapeutic target genes of SV for arrhythmia were obtained.

Establishing Protein-Protein Interaction
Network, Gene Ontology, and Kyoto
Encyclopedia of Genes and Genomes
Enrichment Analyses of Target Genes
and Network Construction for
Drug-Target Genes-Disease
Overlapping genes for the drug and disease were imported into
the STRING database and a PPI network was constructed. The
1https://string-db.org/cgi/input.pl
2https://www.genecards.org/
3http://ctdbase.org/
4https://bioinfogp.cnb.csic.es/tools/venny/
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screening conditions were the species, “Homo sapiens” and a
combined score of >0.4. A PPI diagram was constructed in which
each node represented a gene and the nodes were connected
by lines. The GO and KEGG were used to enrich and analyze
overlapping genes using Omicshare tools,5 a free online data
analysis platform.

Network relationships of core target-related GO/KEGG
enrichment of SV against CA were generated via
Cytoscape software (v.3.8.2). The study design is shown in
Figure 1.

RESULTS

Identification of Direct Protein Targets of
Sacubitril/Valsartan
The SV was described as a neprilysin inhibitor and anti-
hypertensive agent in output DB09292 and DB00177 from
DrugBank5.0. We identified 6 DPTs of SV (Table 1). These
were MME (Neprilysin), SLCO1B3 (Solute carrier organic anion
transporter family member 1B3), SLCO1B1 (Solute carrier
organic anion transporter family member 1B1), AGTR1 (Type-
1 angiotensin II receptor), CYP2C9 (Cytochrome P450 family 2
subfamily C member 9), and ABCC2 (Canalicular multispecific
organic anion transporter 1).

5www.omicshare.com/tools

TABLE 1 | Direct protein targets of sacubitril/valsartan in DrugBank.

Drugs Gene Name Uniprot ID Functions Actions

Valsartan AGTR1 P30556 Target Inhibitor

CYP2C9 P11712 Enzyme Substrate

ABCC2 Q92887 Transporter Substrate

SLCO1B3 Q9NPD5 Transporter Inhibitor

SLCO1B1 Q9Y6L6 Transporter Inhibitor

Sacubitril MME P08473 Target Inhibitor

DrugBank Accession Number Valsartan: DB00177, Sacubitril: DB09292.

Construction of a Protein-Protein
Interaction Network for the Direct
Protein Targets of Sacubitril/Valsartan
and Further Searches for Closely Related
Indirect Target Proteins
Six target genes for SV were input into the STRING database.
A PPI network was obtained after selecting “Homo sapiens” and
a medium confidence of >0.4, as shown in Figure 2. There
were 6 nodes and 6 edges in this network with a local clustering
coefficient of 0.889. Conditions of not more than 50 interactors
at 1st and 2nd shell, with the highest confidence of >0.9, were
imposed and 105 DPTs and IPTs identified with 105 nodes and
493 edges (local clustering coefficient: 0.65; PPI enrichment p< 1
e-16) was entered into Cytoscape (3.8.2) to rebuild a PPI network
of SV’s target genes, as shown in Figure 3.

FIGURE 1 | A schematic diagram showing the network pharmacological method for identifying targets, PPI network, biological processes, and key pathways of SV
acting on cardiac arrhythmia (CA). All known targets of Sacubitril/valsartan (SV) and CA were obtained through online databases. Anti-arrhythmia targets of SV were
identified. After constructing a protein-protein interaction (PPI) network and determining the potential targets of SV concerning CA, gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out. Finally, the SV-GO-KEGG-CA network was generated. CTD: comparative
toxicology genomics database.
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FIGURE 2 | PPI network of the DPTs of SV constructed by STRING.

Identification of Target Genes Related to
Cardiac Arrhythmia and Identification of
Potential Therapeutic Target Genes for
Sacubitril/Valsartan in Human
Arrhythmia
GeneCards were searched for CA-related genes and 4,317 results
were obtained. The top 400 genes were selected as the research
object according to the “correlation score” ranking. A search
of “disease and arrhythmia” within the CTD database yielded

383,061 results. Repeated genes were removed according to the
descending order of “inference score” and the top 400 genes were
selected as the research object and analyzed using an online Venn
diagram along with 105 DPTs and IPTs for SV. Seven core targets,
ACE (Angiotensin I converting enzyme), CAV1 (Caveolin1),
AGT (Angiotensinogen), REN (Renin), ADRB2 (Adrenoreceptor
β2), TP53 (Tumor Protein P53), and ALB (Albumin) were
identified from the intersections (Figure 4A).

Establishing a Protein-Protein
Interaction Network, Gene Ontology, and
Kyoto Encyclopedia of Genes and
Genomes Enrichment Analyses of Core
Target Genes and Network of
Drug-Target Genes-Disease
The seven core target genes identified by the above method
were imported into the STRING database and a PPI network
was constructed (medium confidence: 0.400; Figure 4B).
Overlapping genes were enriched and analyzed using GO
and KEGG via OmicShare tools. Enriched molecular functions
included signaling receptor binding, potassium channel regulator
activity, copper ion binding, β2-adrenergic receptor activity,
type 2 angiotensin receptor binding, and inward rectifier
potassium channel inhibitor activity, among others (Figure 5A);
Enriched biological processes included tissue remodeling,
regulation of blood volume by renin-angiotensin, regulation
of systemic arterial blood pressure mediated by a chemical

FIGURE 3 | The PPI network for the DPTs and indirect protein targets (IPTs) of SV was constructed using STRING and no more than 50 interactors on the first and
second shell were set as the cut-off criteria with the highest confidence (score = 0.9). The IPTs and DPTs were visualized by Cytoscape (v.3.8.2). The red to yellow
rectangles represent scores from high to low.
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FIGURE 4 | Acquisition of core target proteins and protein-protein interaction network. (A) SV-related drug target proteins [DTPs and indirect target proteins (ITPs)]
were obtained from Drugbank Data and STRING. The top 400 CA-related genes were selected from GeneCards and CTD. The intersection of drug target protein
genes (DTPs and ITPs) and the top two CA-related genes were selected by the Venn diagram. There were seven core target proteins (Red Pentagram). (B) A PPI
network of the antiarrhythmic targets of SV was generated by the STRING database with medium confidence (0.400).

signal, gap junction assembly, regulation of gap junction
assembly, and regulation of systemic arterial blood pressure,
among others (Figures 5B,C). The enriched molecular signaling
pathways of the core targets were involved in renin secretion,
renin-angiotensin system, hypertrophic cardiomyopathy,
fluid shear stress, and atherosclerosis adrenergic signaling in
cardiomyocytes, in addition to others (Figure 6). The network
of the core targets for SV with therapeutic potential for CA and
interaction diagrams of the core target related pathways were
constructed (Figure 7).

DISCUSSION

The question addressed by the present study was whether SV
has an antiarrhythmic or proarrhythmic effect in patients with
HF. Using a network pharmacology approach, the current study
reveals that SV, acting on core target genes (ACE, CAV1, AGT,
REN, TP53, ADRB2, and ALB), has both direct and indirect
effects during the treatment of CA.

The occurrence and maintenance of CA are usually mediated
by ectopic activity and re-entry. The prolongation of the
action potential/shortening of the effective refractory period
and structural remodeling leads to slow and heterogeneous
conduction, which provides the basis for reentrant arrhythmia. It
was found that inhibiting the over-activation of RAAS reversed
myocardial remodeling (23), reduced myocardial fibrosis and
myocardial heterogeneous conduction. The formation of reentry
and the occurrence of arrhythmia were both reduced (6, 7, 24),
indicating an antiarrhythmic role. The current study showed that
SV regulates ACE, CAV1, AGT, REN, and ADRB2 expression,
inhibits tissue remodeling, and regulates vascular tension and
volume by inhibiting the pathway of RAAS. In addition to

myocardial remodeling, the remodeling of gap junctions is
central to the generation and maintenance of arrhythmias. Gap
junction remodeling leads to uncoupling of the myocardium,
affects the conduction of the myocardial current, and generates
arrhythmia. The SV may reduce the ventricular arrhythmias
induced by myocardial hypertrophy by acting on the gap junction
pathway (25, 26). Therefore, SV plays an indirect antiarrhythmic
role by reversing myocardial and gap junction remodeling.
Interestingly, angiotensin-converting enzyme inhibitor (ACEI)
also reversed myocardial and gap remodeling, but did not reduce
the incidence of SCD (27), suggesting that the antiarrhythmic
effect of SV maybe also be related to neprilysin inhibition.

A decompensated state of HF is also represented by the over-
activation of the SNS and is associated with poor prognosis,
contributing to increased mortality risk. Neprilysin inhibition
has been shown to activate the neuropeptide system, including
that of atrial natriuretic peptide and brain natriuretic peptide,
and synergistically inhibit SNS activity with valsartan (28). One
pilot study showed that after taking SV for 2 months, the burst
frequency and income of muscle sympathetic nerve activity
decreased significantly, while heart rate and blood pressure did
not change (29). It is by this strong antagonistic effect on the SNS
that SV can reduce the incidence of SCD in patients with HF
with reduced ejection fraction, an action that ACEI are unable
to achieve (8). The β-adrenergic receptor antagonists are effective
in reducing the damaging effects of increased SNS activity and
produce significant mortality benefits for patients with HF. The
ADRB2 gene encodes the β2-adrenergic receptor. Researchers
have found that ADRB2 strongly increases localized RyR2-related
cAMP levels during the over-activation of the SNS associated
with cardiac hypertrophy or HF and increases ventricular
arrhythmias (30). The ADRB2 also increases infiltration by pro-
inflammatory macrophages, induces the production of IL-18,
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FIGURE 5 | GO enrichment analysis of seven target genes (ACE, CAV1, AGT, REN, ADRB2, TP53, and ALB) for anti-arrhythmias with SV. (A) Biological process,
cellular component and molecular function of Go enrichment of the target genes. (B,C) The bubble diagram shows the top 20 enriched molecular function and
biological process respectively.

and sequentially stimulates the expression of connexin43 (Cx43)
in fibroblasts in a paracrine manner, resulting in gap junction
remodeling, myocardial fibrosis, and deterioration of cardiac
function (31). The current findings that SV regulates ADRB2
expression suggest that the drug plays a direct antiarrhythmic
role through pathways of hypertrophic cardiology and adrenergic
signaling in cardiomyocytes.

Furthermore, the current study also found that SV regulates
the levels of cav1 and TP53 and plays an antiarrhythmic role
through the fluid shear stress and atherosclerosis pathway. Atrial

fibrillation was associated with decreased CAV1 in right and
left atria (p = 0.03); Loss of CAV1 leads to cSrc tyrosine
kinase activation, gap junction remodeling, and ventricular
arrhythmia, slowing left ventricular conduction velocity, and
increasing ventricular arrhythmia inducibility (32). Further
studies have shown that, when cardiac RAAS activity is enhanced,
the dissociation of CAV1 from cSrc leads to cSrc activation,
impaired gap junction function, and increased tendency toward
ventricular arrhythmia and sudden cardiac death (33). These
findings indicate that SV targets the regulation of CAV1 and
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FIGURE 6 | Pathway enrichment analyses of seven target genes (ACE, CAV1, AGT, REN, ADRB2, TP53, and ALB) for the treatment of CA with SV. (A) The bubble
chart shows the top 20 enriched KEGG pathways. The x-axis indicates the Enrichment Factor and the intensity of different colors indicates the adjusted p-value.
(B) The histogram shows the top 20 enriched KEGG pathways. The x-axis represents the enriched Gene Percentage (%) and the intensity of different colors
indicates the adjusted p-value.

FIGURE 7 | The integrated SV-GO-KEGG-Anti-arrhythmia network was visualized by Cytoscape.
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reduces arrhythmia risk in heart disease associated with the
activation of RAAS. Increased fibrosis and activated TP53
signaling were demonstrated in heart tissue from patients with
dilated cardiomyopathy disease with ventricular tachycardia (34).

Any molecular mechanisms, where SV promotes arrhythmia,
were not found in the current study. Clinical reports have
indicated that SV can increase the incidence of ventricular
arrhythmias in patients with HF (8, 14), but with short follow-
up times and small sample sizes. Etiology, gender differences,
and inclusion of high-risk patients may also affect the results (4).
Further basic and clinical research into SV is needed to clarify
whether the drug has proarrhythmic effects.

CONCLUSION

In summary, a network pharmacological approach was used
to demonstrate that SV acted on seven core target genes
(ACE, CAV1, AGT, REN, TP53, ADRB2, and ALB) and
reversed myocardial and gap junction remodeling improved
the imbalance of RAAS, SNS, and neuropeptide system and
had an indirect and direct antiarrhythmic effect. The most
enriched pathways were renin secretion, renin-angiotensin
system, hypertrophic cardiomyopathy, fluid shear stress and
atherosclerosis, and adrenergic signaling in cardiomyocytes.
The current study may further guide the basic and clinical
investigations on the antiarrhythmic or proarrhythmic effects
of SV on CA and contribute to the discovery of ideal
antiarrhythmic drugs.

LIMITATIONS

We acknowledge some limitations of the current study. Firstly,
SV was decomposed into two separate components, Sacubitril

and Valsartan, and the combination was not studied leading
to some potential experimental deviations by comparison with
the clinically administered formula. Secondly, targets for SV
with potential antiarrhythmic effects were collected using public
databases, which may lead to some inaccuracies. Thirdly, the core
targets identified in this study require further validation via both
basic scientific and clinical studies.
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