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Abstract: Can a replicase be found in the vast sequence space by random drift? We partially answer
this question through a proof-of-concept study of the times of occurrence (hitting times) of some
critical events in the origins of life for low-dimensional RNA sequences using a mathematical model
and stochastic simulation studies from Python software. We parameterize fitness and similarity
landscapes for polymerases and study a replicating population of sequences (randomly) participating
in template-directed polymerization. Under the ansatz of localization where sequence proximity
correlates with spatial proximity of sequences, we find that, for a replicating population of sequences,
the hitting and establishment of a high-fidelity replicator depends critically on the polymerase fitness
and sequence (spatial) similarity landscapes and on sequence dimension. Probability of hitting
is dominated by landscape curvature, whereas hitting time is dominated by sequence dimension.
Surface chemistries, compartmentalization, and decay increase hitting times. Compartmentalization
by vesicles reveals a trade-off between vesicle formation rate and replicative mass, suggesting that
compartmentalization is necessary to ensure sufficient concentration of precursors. Metabolism
is thought to be necessary to replication by supplying precursors of nucleobase synthesis. We
suggest that the dynamics of the search for a high-fidelity replicase evolved mostly during the
final period and, upon hitting, would have been followed by genomic adaptation of genes and to
compartmentalization and metabolism, effecting degree-of-freedom gains of replication channel
control over domain and state to ensure the fidelity and safe operations of the primordial genetic
communication system of life.

Keywords: RNA world; stochastic simulation algorithm; random counting measure; measure-kernel-
function; ordinary differential equation; high dimensional model representation; global sensitivity
analysis; fitness and similarity sequence landscapes; hitting times; survival analysis

1. Introduction

The origins of life, abiogenesis, is a matter of high importance, for it gives insight into
the distribution of life in the universe. We focus on the RNA world hypothesis, where life
began with self-replicating RNA molecules that can evolve under Darwinian evolution,
following necessary conditions of compartmentalization and metabolism, for geometry
and synthesis of nucleobases from metabolic precursors, respectively. Self-replicating
sets of RNA were proposed first by Tibor Ganti [1,2] and have been studied by many
others [3–6]. This is an information-centric perspective on abiogenesis, representing the
putative beginning of genomic Darwinian evolution. Information centrism interprets a
living organism as an operating genetic communication system in some connected domain
that encodes and decodes genomic state relative to a replication channel.

While genomics, epigenomics, and transcriptomics of modern-day organisms are
based on DNA, RNA, and epigenetic marks such as DNA methylation, RNA origins in
their purest form concern the dual-function of RNA as an informational polymer and
ribozyme. This article is similar in spirit to works in the 1970s through the 1990s, including
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Manfred Eigen’s works on replicating sets of RNA [7,8]. Clues to the RNA world, among
others, are found in the nucleotide moieties in acetyl coenzyme A and vitamin B12, the
structure of the ribosome as a ribozyme [9] and moreover the centrality of RNA to the
translation system, and the existence of viroids [10]. A putative canonical RNA origins
sequence involves RNA dependent RNA polymerase (RdRp) ribozyme, whose first gene
is perhaps the Hammerhead (HH) ribozyme, enabling rolling-circle amplification of the
sequence [11]. This setup is unnecessary, as the first role of RNA may not have been
template-assisted polymerization but instead based on mechanisms of RNA recombination
and networking [12]. If we assume the RdRp sequence is size 200 nucleotides, then there
are 4200 ≈ 10120 sequences. Starting from some population of interacting RNA molecules,
we are interested in the times of first occurrence of critical events. Evolution seems to
have concluded this search for a high-fidelity replicator in a fairly short period of time, i.e.,
within 400 million years of the Earth having a stable hydrosphere [5]. RdRp’s are known to
be very ancient enzymes, are necessary to all viruses with RNA genomes, and have been
proposed to have originated from junctions of proto-tRNAs relative to the context of a
primitive translation system [13]. Recent work has shown that replicative RNA and DNA
polymerases have a common ancestor of a RdRp [14]. Directed evolution, selecting on
polymerization, is a potential way of identifying such a ribozyme. Directed compartmen-
talized self-replicating systems (RNA or DNA polymerases) mimicking prebiotic evolution
have been demonstrated whereby polymerases are selected on their ability to replicate
their own encoding gene [15]. Directed evolution has identified a RdRp that can replicate
its evolutionary ancestor, an RNA ligase ribozyme; however, at increased activity, it has
reduced fidelity and cannot maintain the integrity of its information [16].

A subtlety to the RNA origins argument is that template-directed polymerization by
its nature requires two copies of the RdRp sequence, one for the polymerase and another
for the template. This makes the RNA origins search extend until two copies are discovered.
Cross reactions with other species also may influence the search time for the high-fidelity
replicators. The clay mineral montmorillonite, which is common on Earth, can catalyze
RNA oligomerization [17]; however, the utility of montmorillonite in these activities is not
thought to be sufficient for origins, having been extensively studied [18,19]. Interestingly,
it has been proposed that clay not only promotes origins, but constitutes it, which then
later gave rise to RNA-based replication [20]; such mineral life as a genetic communication
system has a high mutation rate and is degenerate.

Theories of abiogenesis study metabolism [21], cellular compartmentalization [22–24],
hydrothermal vent chemical gradient energy [25], or hot springs [26–28], and so on, to
define geochemical settings suitable for origins. These settings are compatible with RNA
origins. Compartmentalization leading to selection on random sequences has been ex-
plored by studying environment forcing in hot springs and their effects on sequence
identification [26–28], where the hypothesis is that fluctuations in environment forcing
through cycling of wet, dry, and moist phases of lipid-encapsulated sequences subject
sequences to combinatorial selection and identify structural and catalytic functions from
the initial system state of random sequences. These functions include metabolic activity,
pore formation, and structural stabilization. We assume the prebiotic molecular inventories
of RNA and its precursors are provided by meteorites [29] and/or by Miller–Urey pro-
cesses [30], such as from formamide [31] or many phase synthesis [32,33]. For energy and
environmental factors, we consider a variant of Darwin’s “warm little pond”, where the
putative environment for RNA origins of life is an icy pond with geothermal activity, a hot
spring, or perhaps a hydrothermal vent: ice and cold temperature facilitate complexing of
single strands into double strands and polymerization [34], and heat (energy) facilitates
dissociation of double strands into single strands. More information on abiotic sources
of organic compounds, mechanisms of synthesis and function of macromolecules, energy
sources, and environmental factors can be found in the literature [35].

RNA origins have attracted many modeling efforts and analyses [36,37]. The concept
of a self-replicating set of RNA molecules was initially studied by Manfred Eigen [7],
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wherein he studied the error-threshold of the critical fidelity to the main information.
Two-dimensional spatial modeling has been applied in which reactions occur locally with
finite diffusion, suggesting a spatially localized stochastic transition [38], simulated using
Gillespie’s stochastic simulation algorithm (SSA) [39]. Another model is of autocatalytic
sets of collectively reproducing molecules, which has been developed in reflexively au-
tocatalytic food-generated (RAF) theory [40]. Various physics-based analyses have been
conducted, such as in light of Bayesian probability, thermodynamics, and critical phenom-
ena [41]. Systems of quasi-species based on the principle of natural self-organization called
hypercycles employ non-equilibrium auto-catalytic reactions [8]. Nonlinear kinetic models
for polymerization have been used to study the emergence of self-sustaining sets of RNA
molecules from monomeric nucleotides [42]. Theoretical analysis has been conducted into
RNA origins. Attention has been drawn to an evolving population of dynamical systems
and how dynamics affect the error threshold of early replicators and possibly towards
compartmentalization conveying hypercycles [43]. String-replicator dynamics have been
studied and properties suggested to be necessary to RNA origins, including the ability to
operate a functional genetic communication system and ecological and evolutionary stabil-
ity [44–46]. A variety of pre-RNA worlds have been suggested, with RNA being preceded
or augmented by alternative informational polymers, such as other nucleic acids [47], beta
amyloid [48], polycyclic aromatic hydrocarbons [49], lipids [24], peptides [50], and so on.
It seems that pre-RNA worlds existed independent of the RNA world in the sense that
they are not ancestral to the RNA world, and that these worlds may have had non-trivial
interactions with the RNA world.

A key concept of stochastic systems is that of a hitting time: the time of the first
occurrence of some event. We develop a simple mathematical model at the sequence level
to represent the synthesis and function of RNA molecules in order to gain insight into
the hitting times of various critical events of RNA origins of life. The idea is to study the
surface of hitting times in terms of the structure of the system. The model lacks many
features of realism, such as sequence size variability, finite sources of “food” (activated
nucleotides in our context), limited diffusion rates, poor system mixing, and so on, in order
to concentrate on the process as a search problem. The notion of fitness landscapes has been
studied extensively in evolutionary biology [51]. Landscape topology has been considered
in an Opti-Evo theory, which assumes sufficient environmental resources and argues that
fitness landscapes do not contain “traps” and globally optimal sequences form a connected
level-set [52].

We describe the model in Section 2, where we define a replicating reaction network,
whose random realizations are constructed using SSA. We describe hitting times as key
random variables of interest and characterize polymerization as a transition kernel. In
Section 3, we conduct and discuss simulation studies based on SSA, where we analyze the
structure of the polymerase measures and the input–output and survival behaviors of the
hitting times given the parameters of the system. In Section 4, we end with conclusions.

2. Materials and Methods

We define M = {Adenine, Uracil, Guanine, Cytosine}, abbreviated as M = {A, U, G, C},
corresponding to the RNA bases. We study the space of sequences having length n, that
is, E = Mn with space of possibilities (a σ-algebra) E = 2E, so that the pair (E, E) is the
measurable space of all RNA sequences of length n with |E| = 4n. We let ν be a probability
measure (distribution) on (E, E), giving the probability space triple (E, E , ν). Appendix A
gives an overview of (E, E , ν). A related space, though not utilized in this article, is the space
of all RNA sequences up to length n, E∗ = ∪n

i=1Hi with E∗ = 2E∗ and size |E∗| = 4
3 (|E| − 1).

We denote the collection of non-negative E-measurable functions by E≥0.
We build a simplified mathematical model for the time-evolution of a population of

interacting RNA molecules in solution. Let Xt be the population at time t ∈ R≥0 with
initial population X0. Xt is a multiset, that is, it is a set containing elements possibly with
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repeats. We assume that the system is well mixed and has access to an infinite source of
activated nucleotides.

The complement of x ∈ E is denoted xc ∈ E, attained using the base-pairing A with U
and C with G. Let

h(x, y) ∈ {0, 1, . . . , n} for x, y ∈ E (1)

be the Hamming distance between x, y ∈ E as the number of positions in x and y where
the nucleotides differ. We have h(x, x) = 0 and h(x, xc) = n.

2.1. Core Model

We describe the reaction network of the system below. We simulate trajectories of the
system using the stochastic simulation algorithm (SSA) [39], to simulate exact trajectories
for the evolution of stochastic reaction networks here. SSA forms a Markovian process,
where the arrival of reactions follows a Poisson (point) process, and assumes that the
reaction volume is well mixed and homogeneous, with all parts of the system accessible for
reactions. Reactions across various disjoint volume elements of the system are dependent.
We do not consider the effects of finite diffusion, which effects a length scale above which
disjoint volume elements are effectively independent [38].

2.1.1. System

We model the population of sequences which can form double-stranded helices, dis-
sociate, and replicate with mutation with replicator fitness and sequence specificity. We
interpret each system element as a set, either containing one element—a single-stranded
sequence—indicated as {x}—or two elements, single and complementary stranded se-
quences, indicated as {x} ∪ {xc} = {x, xc}, where x, xc ∈ E (double bracket notation
indicates a collection, or set, of sets, i.e., {{x}, {y}, {z}, · · · }). We define system elements
as sets

Ē ≡ {{x} : x ∈ E}
F̄ ≡ {{x, xc} : x ∈ E}
Ḡ ≡ Ē ∪ F̄

with respective σ-algebras, Ē = 2Ē, F̄ = 2F̄ and Ḡ = 2Ḡ. The sizes are |Ē| = 4n and
|F̄| = 4n/2, and |Ḡ| = 3× 4n/2. The set Ē contains single-stranded sequences, whereas
the set F̄ contains double-stranded sequences; the set Ḡ is the union of Ē and F̄, containing
both single and double stranded sequences. These sets are necessary to track the various
sequences (single and double stranded). The reaction network of the system is given by

x + xc kds−→ x ∪ xc (2)

x ∪ xc kss−→ x + xc (3)

x + y
krep(x,y)
−−−−→ x + y + yc

∗. (4)

and expressed in terms of sets

{x}, {xc} kds−→ {x, xc}

{x, xc} kss−→ {x}, {xc}

{x}, {y}
krep(x,y)
−−−−→ {x}, {y}, {yc

∗}.

Reaction (2) is double-strand formation from complementary single-strands with reac-
tion rate kds. Reaction (3) is the dissociation of double-strands into single-strands, caused
by a heat source, with reaction rate kss. Reaction (4) is template-directed polymerization
of a single-strand (the template) by another single-strand (the polymerase), producing a
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single-strand complementary to the template with some fidelity, with reaction rate krep
(which functionally depends on the polymerase and template sequences).

The polymerization reaction rate is defined by

krep(x, y) = a f (x)s(x, y) ∈ (0, a] for x, y ∈ E (5)

where a > 0 is a positive constant, f : E 7→ (0, 1] is the replicative fitness of x (as a
polymerase) and s : E× E 7→ (0, 1] is the similarity between x and y, a symmetric function.
Finally, x replicates y, outputting a version yc

∗ with mutations, where each nucleotide
position has fidelity probability p : E 7→ (0, 1]. Note that the similarity function can be
either trivial/constant, i.e., s(x, y) = 1, or non-trivial. For example, if we assume sequence
similarity to correlate to spatial proximity of sequences, as assumed below, then s(x, y)
is non-trivial.

2.1.2. High-Fidelity Set

To define a high-fidelity set, pick an arbitrary subset of sequences R ⊂ E as high-
fidelity replicators of size r = |R|. We define R two ways.

We define R using a product of non-empty random nucleotide subsets {Ai ⊆ M : i =
1, . . . , n} for each nucleotide position

R = A1 × · · · × An

so that r = ∏n
i=1 |Ai| = 1r12r23r34r4 where r2 = |{Ai : |Ai| = 2}|, etc. and r1 + r2 + r3 +

r4 = n. For simplicity, we assume |Ai| ∈ {1, 4} with fraction 4 being q ∈ (0, 1). Thus, R is
a subset of E defined as a product space.

For another construction of R, we define a finite union of m random sequences
R = {x1, . . . , xm}.

2.1.3. Distance

We define the Hamming distance H between sequence x and high-fidelity sequence
set R as

H(x,R) = min{h(x, y) : y ∈ R} ∈ {0, 1, . . . , n} for x ∈ E. (6)

2.1.4. Fitness

We define “tent-pole” fitness fk of sequence x ∈ E and high-fidelity sequence set R
for curvature parameter k ∈ R≥0 as

fk(x,R) = exp[−kH(x,R)] ∈ (0, 1] for x ∈ E. (7)

The maximums are the sequences of the high-fidelity sequence set R, which are
the “points” or “poles” of the surface, with exponential decay into the remainder of the
space in string distance. The strength of the decay is governed by parameter k, called the
curvature parameter, which can be specified through the value of fitness at H(x,R) = n
(sequence dimension),

k = − log( fk(x,R))

n
(8)

Appendix B describes other fitness functions.

2.1.5. Similarity

We define two cases for the similarity function appearing in the reaction rate of
template-directed polymerization. The first case is the trivial (constant) case where the

sb(x, y) = b ∈ (0, 1] for (x, y) ∈ E× E.

This assumes that there is no mechanism by which sequence specificity is selected for,
such as in the case that polymerases should evolve to generically well replicate sequences,
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including their own. This means that they will spend much of their time replicating
other sequences.

For the second case of a non-trivial similarity function, we note that RNA origins
of life are thought to be a spatially localized stochastic transition, where high-fidelity
replicators are found concentrated in foci, following from the increased replicative mass
of the replicators. Hence, we implicitly encode spatial information through a non-trivial
similarity function, based on a distance function, which increases the replicative system
mass for similar (and here nearby) high-fidelity replicators, that is, if they’re similar,
then they’re likely proximal. In the following definition, we use the notation ∧ for the
minimum of two numbers, x∧ y = min{x, y}. Distance S is defined between two sequences
x, y ∈ E as

S(x, y) = h(x, y) ∧ h(x, yc) ∧ h(xc, y) ∧ h(xc, yc) ∈ {0, 1, . . . , n} for x, y ∈ E. (9)

Similarity sk of sequences x, y ∈ E for curvature parameter k ∈ R≥0 is defined in terms
of exponential decay as

sk(x, y) = exp[−k S(x, y))] ∈ (0, 1] for x, y ∈ E. (10)

Presently, replicators can replicate other sequences well but not their own [34]. There
may exist RdRps that are excellent polymerases and, in conjunction with RNA hammerhead
ribozyme, engage in rolling circle amplification of the polymerase-hammerhead sequence
(genome) so that the amplification process is self-cleaving. This results in a large increase in
replicative mass due to the super-exponential growth in the population of the high-fidelity
replicators within a small volume. In the context of SSA, the similarity function here is an
ansatz for spatial locality.

2.1.6. Fidelity

Finally, polymerization fidelity probability for curvature k ∈ R≥0 is defined as

pk(x, R) = fk(x, R) ∈ (0, 1] for x ∈ E. (11)

Note that fk(x, R) = pk(x, R) = 1 for high-fidelity sequences x ∈ R.
Note that fitness, similarity, and fidelity are defined for single-stranded sequences (E, E).

2.1.7. Counting Representation

The process X = (Xt)t∈R≥0 is the time-evolution of the system. Recall that Xt is a
multiset. Xt contains the individual single stranded molecules in the set Ē, i.e., sequences
{x} ∈ Ē and double stranded molecules in the set {x, xc} ∈ F̄, with overall set Ḡ = Ē ∪ F̄
having size m = |Ḡ| = 3|Ē|/2. Note that, in the set representation, there is symmetry
{x, xc} = {xc, x}, so that the size of the double-stranded set is equal to |F̄| = |Ē|/2. The
system evolution Xt induces a random counting measure Nt on the overall space of single
and double stranded sequences (Ḡ, Ḡ) as

Nt(A) = ∑
x∈Xt

IA(x) for A ∈ Ḡ (12)

The total count, that is, the total number of molecules, is Kt ≡ |Xt| = Nt(Ḡ). We
assume that the counter Nt is maintained for all times t ∈ R≥0.

2.1.8. Reaction Rates

The total reaction rate is given by the sum of the individual reaction rates

k̆(t) = k̆ds(t) + k̆ss(t) + k̆rep(t) for t ∈ R≥0
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where the reaction rate of double-strand formation from complementary single-strands is
given by

k̆ds(t) =
1
2 ∑
{x}∈Ē

kdsNt({x})Nt({xc}),

the reaction rate of dissociation of double-strands into single-strands is given by

k̆ss(t) = ∑
{x,xc}∈F̄

kssNt({x, xc}),

and the reaction rate for template-directed polymerization of a single-strand by another
single-strand (the polymerase) is given by

k̆rep(t) = ∑
({x},{y})∈Ē2

krep(x, y)Nt({x})(Nt({y})− I(x = y))

The first reaction rate is a sum over the single-strands of Ē with size 4n. The second
is a sum over double-strands F̄ with size 4n/2. The third reaction is a sum over the
product space of single stranded sequences, Ē2, with 42n = 16n number of elements.
Therefore, k̆(t) requires 4n( 3

2 + 4n) elements to be evaluated for every reaction. Clearly,
direct representation on the full space is very expensive and impractical for even modest n.
One obvious way to improve efficiency is not summing over the zero elements. We define
sets

X1 = {x ∈ set(Xt) : |x| = 1} (13)

and
X2 = {x ∈ set(Xt) : |x| = 2} (14)

as the unique single and double stranded sequences of the system. Then, direct calculations
of the reaction rates are

k̆ds(t) =
1
2 ∑
{x}∈X1

kdsNt({x})Nt({xc})

and
k̆ss(t) = ∑

{x,xc}∈X2

kssNt({x, xc})

and
k̆rep(t) = ∑

({x},{y})∈X 2
1

krep(x, y)Nt({x})(Nt({y})− I(x = y)).

For this approach, the replication rate has quadratic dependence on |X1|. Using the
reaction rates, the system may be exactly simulated using SSA. The reaction at time t with
rate k̆(t) occurs over time interval 4t ∼ Exponential(1/k̆(t)). As the reaction rate k̆(t)
increases with increasing number of molecules Kt = Nt(Ḡ), the reaction rate increases and
reaction duration4t decreases over time. The natural consequence of increasing process
intensity is that the system speeds up.

The quadratic dependence may still be too expensive for large simulations. Appendix E
describes Monte Carlo approximation of the reaction rates.

2.2. Hitting Times

We define some hitting times. The initial population consists of I single-stranded
sequences X0, i.e., |X0| = I. We define the hitting time τ for the time of the first replica-
tion event

τrep = inf{t ∈ R≥0 : Kt > I}. (15)
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We define the hitting time τ for the appearance of sequences in the high-fidelity
sequence set R,

τR = inf{t ∈ R≥0 : I{1,2,··· }(|R∩ Xt|) = 1}. (16)

Put XR = R ∪ {{x, xc} : x ∈ R} and define the volume fraction of high-fidelity
sequences R at time t as

V(t) =
Nt(XR)

Kt
. (17)

We define the hitting time τ where high-fidelity sequences of R emerge and reach a
minimum volume fraction,

τmin = inf{t ∈ R≥0 : t ≥ τR, V(t) ≤ V(s) for τR ≤ s ≤ t}. (18)

This hitting time reflects that period wherein a high-fidelity replicator has been identi-
fied yet there exists no complementary high-fidelity sequence for amplification, hence the
system diversity continues to increase, decreasing the concentrations of all extant sequences
as more sequences are discovered. The minimum hitting time captures the duration of
time the high-fidelity replicator exists by itself. We define the hitting time τ for the time
high-fidelity sequences in R constitutes some volume fraction v ∈ (0, 1] of the population,

τv = inf{t ∈ R≥0 : V(t) ≥ v}. (19)

In practice for simulations, τv is censored based on some total number of reactions,
that is, if the volume fraction is not achieved by n reactions, τv = ∞ because there is no
arrival time.

For SSA, we specify a maximum number of reactions N to simulate. We have parame-
ters θ ∈ Θ for τ, such as landscape curvature k, sequence dimension n, etc. Therefore, τ(θ)
is right-censored with value ∞ at simulation time a, as some simulations will stop at time a
with no arrival time. These are censoring events. For fixed θ, the τ(θ) is a random variable,
due to the stochastic nature of SSA. Hence, for each parameter vector θ, we attain a set of
M realizations of hitting time τ as

T (θ) = {τi(θ) : i = 1, . . . , M}. (20)

For convenience, we assume that the realizations T (θ) are ordered by non-censored
followed by censored.

2.2.1. Functional Structure

For each parameter vector θ, we record two values: the number of hitting events in
the hitting time set T

g(θ) = |{x ∈ T (θ) : x < ∞}| ∈ {0, 1, . . . , M} (21)

and the average of the hitting time τ

f (θ) =

{
1

g(θ) ∑
g(θ)
i=1 τi(θ) if g(θ) > 0

0 if g(θ) = 0
∈ R≥0 (22)

To describe the functional structure of the average hitting time f (θ), we require a
classifier which determines whether or not there are zero hittings g(θ) = 0 and a regressor
for the value of f (θ) for hittings g(θ) > 0. We assume that the parameters θ = (θ1, · · · , θn)
are randomly sampled according to distribution ν = ∏i νi and the hitting times recorded.
High dimensional model representation (HDMR) may be attained for the classifier (as a
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probabilistic discriminative model) and the regressor of f (θ). For the regressor, we have
HDMR expansion

f (θ1, . . . , θn) = f0 + ∑
i

fi(θi) + ∑
i<j

fij(θi, θj) + · · ·+ f1···n(θ1, . . . , θ1)

The HDMR component functions { fu} convey a global sensitivity analysis, where,
defining variance term

σ2
u = Var fu =

∫
Θ

f 2
u(θu)ν(dθ),

we have a decomposition of variance

σ2
f = Var f = ∑

u⊆{1,··· ,n}:|u|>0
σ2

u

The normalized terms Su = σ2
u/σ2

f are called sensitivity indices. Appendix F gives a
brief description of global sensitivity analysis via HDMR.

2.2.2. Statistical Structure

A second analysis can be conducted on the hitting times T (θ) for the parameter vector
θ using reliability theory. Put random hitting set T(Θ) ≡ {T (θ) : θ ∈ Θ} where Θ = {θi}
is an independency of parameter values. For each parameter vector θ ∈ Θ, we partition
the hitting times T (θ) into C censored values with censor times C(θ) = {ai(θ)} and M− C
non-censored (hitting) values N (θ) = {x ∈ T (θ) : x < ∞}. The likelihood is given by

L(T(Θ)|ϑ) = ∏
θ∈Θ

∏
x∈N (θ)

f (x|ϑ) ∏
x∈C(θ)

R(x|ϑ),

where f is the hitting time probability density function (‘failure density’) and R is censoring
time distribution (‘reliability distribution’), and ϑ are the parameters of the density and
distribution functions. Note that f and R each specify each other, so ϑ are the common
parameters. Reliability definitions are given in Appendix G.

We show reliability quantities in Table 1 for the two-parameter (α, β) ∈ (0, ∞)2

Weibull(α, β) distribution and Cox proportional hazard’s model where γ is a vector of
coefficients for the θ. We use the Python software lifelines for estimation of ϑ for the
Weibull–Cox model from data [53]. The mean failure time Eτ(θ) is given by

Eτ(θ) =
∫ ∞

0
t f (t, θ|α, β, γ) = βe−γ·θ/αΓ(1 + 1

α )

We have second moment∫ ∞

0
t2 f (t, θ|α, β, γ) = β2e−2γ·θ/αΓ(1 + 2

α )

giving variance
Varτ(θ) = β2e−2γ·θ/α(Γ(1 + 2

α )− Γ2(1 + 1
α ))

Thus, if γ < 0, then Eτ(θ) and Varτ(θ) exponentially increase in θ.
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Table 1. Weibull reliability model.

Name Quantity Baseline Quantity Proportional Hazards

Failure density f (t|α, β) α
t (

t
β )

αe−(
t
β )

α

f (t, θ|α, β, γ) α
t (

t
β )

αeγ·θe−(
t
β )

αeγ·θ

Failure distribution F(t|α, β) 1− e−(
t
β )

α

F(t, θ|α, β, γ) 1− e−(
t
β )

αeγ·θ

Reliability distribution R(t|α, β) e−(
t
β )

α

R(t, θ|α, β, γ) e−(
t
β )

αeγ·θ

Cumulative hazard H(t|α, β) ( t
β )

α H(t, θ|α, β, γ) ( t
β )

αeγ·θ

Hazard rate h(t|α, β) α
t (

t
β )

α h(t, θ|α, β, γ) α
t (

t
β )

αeγ·θ

2.3. Surface Chemistries

The system given by (2) of polymerization with mutation requires two separate hitting
events, one sequence in the high-fidelity set x ∈ R and either another sequence in the
high-fidelity set x ∈ R or its complement xc ∈ E, in order for high-fidelity replicators
to maximally engage in templated-directed polymerization and achieve some fraction of
the population. This setup of RNA polymerase action, requiring two such events for the
polymerase and template, makes the hitting times long. Basically, the same information
must be discovered twice before it can be used, which is unsatisfactory. We idealize
polymerase activity conveyed by a non-RNA species, here clay, with the parameter kclay−p,
as clay itself is not thought to be capable of polymerization but is capable of oligomerization
of RNA. The reactions are given by

∅
kclay−o−−−→ x (23)

x
kclay−p−−−→ x + xc

∗ (24)

where non-RNA polymerization has mutation with fidelity probability p ∈ (0, 1] and xc
∗ is

the complement of x with mutation. The reaction rates are given by

k̆clay−o(t) = kclay−o

and
k̆clay−p(t) = kclay−pNt(X1)

Therefore, upon the first hitting of the high-fidelity replicators R with sequence
x ∈ R through (4) or (23), x gives two high-similarity single-stranded sequences x and xc

∗
through (24), which then may participate in template-directed RNA polymerization (4).

2.4. Reactions as Measure-Kernel-Functions

All the reactions x 7→ y which involve substrate x may be represented using transition
kernels, which form linear operators. At each iteration of SSA, a reaction type is chosen,
followed by a transition to a particular domain (X,X ) with distribution νt, followed by
mapping into a codomain (Y,Y) using transition probability kernel Q with distribution
µt = νtQ. The notions of νt and Q involve measure-kernel-functions. The probability of
transition of y into B ∈ Y given x is given by Q

Q(x, B) =
∫

B
Q(x, dy) = P(y ∈ B : x)

Appendix C recalls some facts about Q.
We define kernels Q for RNA and non-RNA polymerization to provide insight into the

reactions. Consider Xt for some t ∈ R≥0. Recall that Nt is the random counting measure
of Xt on single and double-stranded sequences (E ∪ F, 2E∪F). For RNA and non-RNA
polymerization, we take νt as a (random) probability measure for x in domain (X,X ) and
describe a transition probability kernel Q from x into y in codomain (Y,Y).
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2.4.1. RNA Polymerization

For RNA polymerization, we have that

{x}, {y} 7→ {x}, {y}, {yc
∗}

which results in the creation of the single-stranded sequence {yc
∗}. The first dimension

is the polymerase and the second is the template. We give a definition of the probability
measure on the product space of sequences. Recall that (E ⊗ E)≥0 denotes the collection of
non-negative E ⊗ E -measurable functions.

Definition 1 (Measure on domain νt). Let νt be a random probability measure on (E× E, E ⊗E)
formed by random counting measure Nt (12)

νt{x, y} =
krep(x, y)Nt({x})(Nt({y})− I(x = y))

k̆rep(t)
for (x, y) ∈ E× E

with
νt( f ) = ∑

(x,y)∈E×E
νt{x, y} f ◦ (x, y) for f ∈ (E ⊗ E)≥0 (25)

We write νt(A) = νtIA for A ∈ E ⊗ E .

Because the first two coordinates are preserved under the mapping, we focus on the
new dimension as a transition from (E× E, E ⊗ E) into (E, E) using transition probability
kernel Q. In this case, Q is defined by a 16n × 4n matrix whose rows vectors (dimension
4n) are probability vectors. The structure of Q follows from the polymerase replication
with mutation, whereby each nucleotide position has fidelity probability p : E 7→ (0, 1],
which depends on the first dimension of E× E. We put px = p(x) for sequence x ∈ E.
Now, we state a simple fact on the binomial structure of the number of mutations made by
a polymerase.

Theorem 1 (Mutation distribution). The number of mutations by polymerase x ∈ E on template
y ∈ E is distributed

h(yc, yc
∗) ∼ Binomial(n, 1− px) for px ∈ (0, 1)

with mean n(1− px) and variance npx(1− px) and

h(yc, yc
∗) ∼ Dirac(0) for px = 1.

Now, we partition E into level sets (Hi(y)) by Hamming distance to the template
complement yc,

Hi(y) = {x ∈ E : h(yc, x) = i} for i ∈ {0, . . . , n}. (26)

We define the transition kernel Q for RNA polymerization, where Q completely
encodes RNA polymerization using Theorem 1.

Corollary 1 (Transition probability kernel Q). We have that the transition probability kernel Q
for RNA polymerization is defined by
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Q((x, y),Hi(y)) =
(

n
i

)
(1− px)

i pn−i
x for (x, y) ∈ E× E, i ∈ {0, . . . , n}, px ∈ (0, 1)

and

Q((x, y), {z}) = 1
|Hi(y)|

(
n
i

)
(1− px)

i pn−i
x for (x, y) ∈ E× E, i = {0, . . . , n}

z ∈ Hi(y), px ∈ (0, 1)

and
Q((x, y), {yc}) = 1 for (x, y) ∈ E× E, px = 1.

RNA polymerization is defined by Q using the binomial structure of polymerase muta-
tion. A more sophisticated model could be defined as a sum of Bernoulli random variables
with varying success probabilities in the Poisson binomial distribution. This could be used
to take into account polymerase mutation that varies with nucleotide position. Another
idea is taking into account schemata such as repeats which destabilize the polymerase [54].

Proposition 1 (Measure on codomain µt). µt = νtQ is a probability measure on (E, E) de-
fined by

µt( f ) =
∫

E×E
νt(dx, dy)

∫
E

Q((x, y), dz) f (z) for f ∈ E≥0 (27)

It is multiplication of νt as a 16n dimension row vector with 16n × 4n dimension matrix Q,
giving a 4n dimension row vector νtQ. We write µt(A) = µtIA for A ∈ E .

Define the partition (Hi) of E as

Hi ≡ {x ∈ E : min{H(x,R),H(xc,R)} = i} for i ∈ {0, . . . , n}. (28)

Then, µt(Hi) for i ∈ {0, . . . , n} is the distribution on sequences by distance to R, i.e.,

µt(Hi) = ∑
x∈E

µt{x}IHi (x) for i ∈ {0, . . . , n}

contains the instantaneous information of RNA polymerization.
A more general model for replication is where polymerase activity is tied to geometry,

i.e., compartmentalization/spatial confinement, with state space (C, C) and to metabolic
state (M,M). In this telling, the polymerase reaction rate could be tied to the degree of
spatial confinement and the source of the activated nucleotides from metabolic precursors.
Then, the polymerase state-space is (C×M× E× E, C ⊗M⊗ E ⊗ E) with law νt and the
polymerase transition kernel Qcme is defined as the mapping from (C×M× E× E, C ⊗
M⊗ E ⊗ E) into (E, E). Thus, the law on the input–output space-state (C×M× E× E×
E, C ⊗M⊗ E ⊗ E ⊗ E) is given by µt = νt ×Qcem, or in differential notation,

µt(dc, dm, dx, dy, dz) = νt(dc, dm, dx, dy)Qcem((c, m, x, y), dz)

2.4.2. Non-RNA Polymerization

If there exists some kind of non-RNA polymerase activity, we have that the mapping

{x} 7→ {x}, {xc
∗}

which we regard as a mapping from (E, E) into (E, E). Let νt be a probability measure on
(E, E) defined by

νt{x} =
Nt({x})
Nt(E)

for x ∈ E
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Similar to RNA polymerization, for fidelity probability p ∈ (0, 1], we have Q as the
4n × 4n matrix defined by

Q(x,Hi(x)) =
(

n
i

)
(1− p)i pn−i for x ∈ E, i ∈ {0, . . . , n}, p ∈ (0, 1)

and

Q(x, {z}) = 1
|Hi(x)|

(
n
i

)
(1− p)i pn−i for x ∈ E, i = {0, . . . , n}, z ∈ Hi(x), p ∈ (0, 1)

and
Q(x, {xc}) = 1 for x ∈ E, p = 1.

µt = νtQ is a probability measure on (E, E) defined by

µt( f ) =
∫

E
νt(dx)

∫
E

Q(x, dy) f (y) for f ∈ E≥0

Note that, for SSA, Q is fixed over the simulation, whereas the probability measure νt
depends on time. That is, the reactions are chosen according to the reaction rates, and the
reactions each use respective Q. The νt is formed using a random counting measure, so νt
is random. This approach generalizes in the obvious way to all the reactions.

2.5. Decay

The RNA sequences have finite lifetimes in reality. This comes from a variety of
sources, including radiation, pH, intrinsic molecular stability, etc. We assume double-
stranded RNA is stable, whereas single-stranded RNA is not. Therefore, we create a
reaction for decay of single-stranded RNA into constitutive nucleotides

x
k∅−→ ∅ (29)

with reaction rate
k̆∅(t) = k∅Nt(X1)

2.6. Compartmentalization

It is thought that compartmentalization plays a role in RNA origins of life, giving foci
of reproducing sequences [23,55]. This is somewhat anticipated by the similarity function
s : E× E 7→ (0, 1], where sequences are more likely to copy similar sequences than less
similar ones, due to an underlying spatial localization. Explicit spatial effects may be
modeled by assuming each x ∈ E is marked with a position on a bounded subset of the
real line ([−T, T],B[−T,T]) ⊂ (R,BR). We think of this as a one-dimensional projection of
the three-dimensional system. Additional species can be introduced, such as lipids, with
reactions forming a vesicle M (vesiculation), which encloses some A = [r, s] ⊂ [−T, T]. We
assume the lipids interact with the single stranded sequences in A to form vesicles as

x
kmic−−→ M(A) (30)

with reaction rate
kmic(t) = kmicNt(X1).

Hence, vesiculation is coupled to the population of sequences by design so that it
evolves on roughly the same time-scale as sequence activities. Note that vesicles can
enclose one another, i.e., M(A) and M(B) where A ⊂ B or B ⊂ A, but cannot cross, i.e.,
for all vesicles at locations A, . . . , B we have that A ∩ B ∈ {A, B,∅}. For example, suppose
one vesicle A = [0, 1] encloses another two, B = [ 1

3 , 1
2 ] and C = [ 2

3 , 3
4 ]. Then, A \ (B ∪ C) =

[0, 1
3 )∪ (

1
2 , 2

3 )∪ (
3
4 , 1]. Although A \ (B∪C) is disconnected in one dimension, the intervals
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are physically connected in three dimensions, where vesicles are spheres. We identify each
vesicle to a union of disjoint intervals, disjoint across the vesicles.

We posit that compartmentalization precedes the hitting of a high-fidelity replicator
through ensuring necessary concentration of RNA and a stable environment. Generally,
we identify compartmentalization state to (C, C) with probability measure ν. Let Qc
be a transition probability kernel from (C, C) into (E, E), encoding the transition from
compartmentalization coordinates to RNA sequences. The product space (C× E, C ⊗ E)
has law µ = ν × Qc. Upon hitting a high-fidelity replicator and achieving Darwinian
evolution to acquire information, e.g., genes, the sequences are assumed to become adapted
to compartmentalization coordinates (C, C) through the transition probability kernel Q′c
from (C × E, C ⊗ E) into (C, C), so that µ = ν × Qc × Q′c is the law on the full space
(C× E× C, C ⊗ E ⊗ C). In this telling, compartmentalization precedes RNA activity, and,
upon hitting high-fidelity replicators that can maintain their information, is followed by
genomic adaptation.

2.7. Metabolism

We identify metabolism reaction-state to the measurable space (M,M) with prob-
ability measure ν. Let Qm be a transition kernel from (M,M) into (E, E), positing that
metabolism precedes replication. For example, certain metabolic state may be precursors to
the synthesis of RNA. Consider product space (M× E,M⊗E) with measure µ = ν×Qm.
Now we suppose that, upon achieving Darwinian evolution in replicators, the replicators
will eventually become adapted to (M,M). Hence, we interpret (M,M) as a mark-space
of (M× E,M⊗E), representing genomic adaptation. Let Q′m be a transition kernel from
(M × E,M⊗ E) into (M,M). Then, µ = ν × Qm × Q′m is a probability measure on
(M× E×M,M⊗E ⊗M), where

µ( f ) =
∫

M
ν(dx)

∫
E

Qm(x, dy)
∫

M
Q′m((x, y), dz) f (x, y, z) for f ∈ (M⊗E ⊗M)≥0

or
µ(dx, dy, dz) = ν(dx)Qm(x, dy)Q′m((x, y), dz).

Therefore, metabolism-first followed by replication and genomic adaptation is en-
coded by the structures of Qm and Q′m. We do not specify these transition kernels in this
article but mention that they are richly textured.

2.8. Reaction Overview

The reactions of the system having decay and clay and their reaction orders are shown
in Table 2. There is one zero-order reaction, three first-order reactions, and two second-
order reactions. Additionally, we show reactions and orders for compartmentalization
and metabolism.

Table 2. Reactions and orders.

Reaction Order

RNA double strand formation 2
RNA double strand dissociation 1
RNA polymerization 2
RNA decay 1
Clay polymerization 1
Clay oligomerization 0

Compartmentalization 1
Metabolism to replication 1
Metabolism & replication to metabolism 2
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3. Results

Consider some initial population of I random sequences X0. The population over time
is given by Xt with associated random counting measure Nt on (Ḡ, 2Ḡ). Recall parameters

θ = (n, q, k, l, m, p, k∅, kss, kds, krep, kclay−o, kclay−p)

for sequence dimension n, high-fidelity sequence set size q, fitness degree k, similarity
degree l, fidelity degree m, clay fidelity probability p, RNA decay rate k∅, double-strand
dissociation rate kss, double-strand formation rate kds, RNA replication rate krep, and
clay oligomerization and polymerization rates kclay−o and kclay−p. These parameters are
summarized in Table 3.

The following is the description of how the parameter values were specified and to
what they biologically correspond. The sequence dimension n is chosen from {3, 4, 5}. The
fitness and similarity functions are chosen by setting the value of the range of the curvature
parameters k and l from one (inside the high-fidelity manifold) to some small values, such
as over an exponential grid. For example, when i = 0.1, the fitness of sequences that are
maximally dissimilar have 10% of the fitness of the high-fidelity sequences. We range the
grid from 0.1 to 0.001 for fitness and similarity. The RNA fidelity parameter m = 0.25
is chosen such that the high-fidelity sequences have value one and the lowest fidelity
sequences have value 0.25, equal to random chance. The clay fidelity parameter is set to
an optimistically high value of 0.9 for clay studies. The double-strand dissociation and
formation rates kss and kds are set to unity as a baseline. In comparison, the RNA replication
rate is set to a large value, 10, whereby replication is the dominant reaction. The decay
parameter k∅ is set to some uniform random value in (0, 1). The clay RNA oligomerization
rate is set to unit, and ‘clay’ RNA polymerization rate is set to a uniform random value
in (0, 20).

Table 3. Model parameters.

θ Name Domain Value(s)

n sequence dimension N>0 {3, 4, 5}
k RNA fitness parameter R≥0 {− log(i)/n : i = 0.1, 0.05, 0.01, 0.005, 0.001}
l RNA similarity parameter R≥0 {− log(i)/n : i = 0.1, 0.05, 0.01, 0.005, 0.001}
m RNA fidelity parameter R≥0 − log(0.25)/n
p clay fidelity probability (0, 1] 0.9
kss double-strand dissociation rate R≥0 1
kds double-strand formation rate R≥0 1
krep RNA replication rate R≥0 10
k∅ RNA decay rate R≥0 (0, 1)
kclay−o clay RNA oligomerization rate R≥0 1
kclay−p clay RNA polymerization rate R≥0 (0, 20)

With the parameters governing the reaction rates, different values of these parameters
confer different regimes for the system.

3.1. Stability: ODEs

We characterize the zeros of the vector field f from ODE system (A1) and use the
eigenvalues of the Jacobian (A2) to determine their stability.

Theorem 2. The ODE system (A1) for R = {x}, x ∈ E, has a single unstable fixed-point at
[x] = 1 and [y] = 0 for y ∈ G \ x.

Proof. Solving f = 0 gives a single solution [x] = 1 and [y] = 0 for y ∈ G \ x. For
this solution, the eigenvalues of the Jacobian contain no zero values and positive values.
Therefore, the solution is unstable.
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It follows from Theorem 2 that, for all other initial conditions, the system has no equi-
libria.

Corollary 2 (Unbounded). For all initial conditions X0 such that I = |X0| > 1, the system
is unbounded.

This confirms the obvious: the system, a replicating network with no death, is almost
always an increasing system.

3.2. Simulation Reaction State

We are interested in the behavior of temporal probability measures, νt (25) on the
sequence product space and µt = νtQ (27) on the sequence space, for RNA polymerization.
These reveal the instantaneous information of the system. The structure of µt reveals
the state of polymerization and is a leading indicator of the population concentrations
over time.

3.2.1. Core Model with “Tent” Functions, Probable Hitting P(τv(θ) < ∞) ∼ 1

Take sequence dimension n = 3 and fitness and similarity curvature parameters
k = l = − log(0.01)/n and fidelity parameter m = − log(0.25)/n. Set rates for double-
strand dissociation and formation kss = kds = 1 and polymerization rate krep = 10 and use
the “tent” function for fitness, similarity, and fidelity. Take random initial population X0
with initial population size I = |X0| = 10 and random singleton R = {{x}} (q = 0). We
simulate 5000 reactions, simulation censored at hitting time τv for volume fraction v = 0.25.
Take partition of the sequence space by Hamming distance to the high-fidelity manifold
(Hi) (28) of sequence space E. In Figure 1, we plot measures of a typical realization
of the system Xt on the partition (Hi) of sequence concentration (Figure 1a), growth
(Figure 1b), and polymerase sequence output µt (Figure 1c). Some quantities are plotted
on log-log scale, whereas others are plotted on a linear-log scale. These results show
that the concentrations are relatively stable for most time, until the high-fidelity manifold
is hit. Then, the concentration of high-fidelity replicators rapidly increases to exceed
25%. Similarly, Figure 1b shows the growth curves on a log-log scale, where the high-
fidelity manifold rapidly increases near the end of the simulation. Figure 1c shows the
structure of the RNA sequence polymerization output temporal probability measure µt.
Low probability is assigned to polymerization of high-fidelity replicators for most of the
reaction time, followed by a large increase near the end of the simulation, where high-
fidelity replicators dominate with 56% probability. Therefore, the RNA sequence polymerization
output temporal probability measure µt is a leading indicator of the concentration curve, i.e., at
simulation end-time, concentration of high-fidelity replicators is 25% and polymerization output
is 56%.

3.2.2. Core Model with “Tent” Functions, Improbable Hitting P(τv(θ) < ∞) ∼ 0

We use the same configuration as Section 3.2.1 except for setting fitness and similarity
curvature parameters to k = l = − log(0.1)/n. In Figure 2, we plot measures of a typical
realization of the system Xt on sequence partition by Hamming distance to the high-fidelity
manifold (Hi) of concentration (Figure 2a), growth (Figure 2b), and µt (Figure 2c). The
behavior has completely changed: the high-fidelity group ends the simulation with around
6% concentration, only steadily increasing, and never hits. The polymerase output µt
shows 6%. This indicates that the concentration of high-fidelity replicators is unlikely to
increase further, as the population is generally in equilibrium with the polymerase output.
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(a) (b)

(c)

Figure 1. Measures of system population Xt until hitting time τv for high-fidelity replicator volume fraction v = 0.25 with
sequence dimension n = 3, fitness/similarity curvature l = k = − log(0.01)/n, initial population size I = |X0| = 10,
singleton high-fidelity replicator R = {{x}}, with “tent” fitness and similarity functions. (a) concentration of RNA
sequences by Hamming distance to high-fidelity replicator; (b) population size of RNA sequences by Hamming distance to
high-fidelity replicator; (c) polymerase RNA sequence output by Hamming distance to high-fidelity replicator.
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(a) (b)

(c)

Figure 2. Measures of system population Xt until hitting time τv for high-fidelity replicator volume fraction v = 0.25
with sequence dimension n = 3, fitness/similarity curvature l = k = − log(0.1)/n, initial population size I = |X0| = 10,
singleton high-fidelity replicator R = {{x}}, with “tent” fitness and similarity functions. (a) concentration of RNA
sequences by Hamming distance to high-fidelity replicator; (b) population size of RNA sequences by Hamming distance to
high-fidelity replicator; (c) polymerase RNA sequence output by Hamming distance to high-fidelity replicator.

3.2.3. Core Model with Linear Functions, Improbable Hitting P(τv(θ) < ∞) ∼ 0

The same configurations for Section 3.2.1 are used, except the fitness, similarity, and
fidelity functions are linear. Similar to the “tent” functions, we specify the terminus
landscape curvature for fitness and similarity k = l. Then, the fitness function for RNA
polymerization is given by

fk(x,R) = 1 +
(

k− 1
n

)
H(x,R) for x ∈ E

and

sk(x, y) = 1 +
(

k− 1
n

)
S(x, y) for x, y ∈ E
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We put fitness and similarity landscape curvature k = l = 0.01 for fitness and
similarity and v = 0.25 for hitting volume fraction of high-fidelity replicators. We simulate
Xt for 5000 reactions. We find that the probability of hitting is near zero P(τ0.25(θ) < ∞) ∼ 0.
In Figure A1, we plot measures of a typical realization of Xt on (Hi) of concentration
(Figure A1a), growth (Figure A1b), and µt (Figure A1c). The simulation ends with high-
fidelity concentration of ∼5% and polymerase output of ∼4%. Therefore, the concentration
of high-fidelity replicators will continue to decrease. Linear surfaces are not sufficient to
achieve hitting times τv(θ) < ∞ for high-fidelity replicator volume fraction v = 0.25, in contrast
to the nonlinear “tent” functions.

3.2.4. Expanded Model with “Tent” Functions, Probable Hitting P(τv(θ) < ∞) ∼ 1

We consider a similar model to the previous subsections and expand it with clay
oligomerization rate (of RNA) kclay−o, clay polymerization rate (of RNA) kclay−p, and clay
polymerization fidelity p. Therefore, the full set of variables is given by
θ = (n, kss, kds, k, kclay−o, kclay−p, p). The value of fitness/similarity landscape curvature
k, l and clay RNA polymerization raet kclay−p are set such that the replicative mass of
each is initialized to 10. This means that RNA and clay polymerization have the same
reaction mass at the beginning of the simulation. We set sequence dimension n = 3,
fitness/similarity landscape curvature k = l = − log(0.01)/n, clay RNA polymerization
fidelity p = 0.9, and double-strand dissociation and formation rates kss = kds = 1. This
is a high hitting regime, i.e., the probability of hitting is close to one P(τv(θ) < ∞) ∼ 1.
In Figure A2, we plot measures of a typical realization of Xt on (Hi) and additionally the
probability of reactions over time. High-fidelity replicators ended the simulation with 25%
concentration (Figure A2a) and RNA polymerase output ∼62% (Figure A2c), indicating
that the concentration of high-fidelity replicators will continue to increase. All species
exhibit superexponential growth (Figure A2b). Clay polymerization decreases in contribu-
tion over time, whereas RNA polymerization increases substantially over time, and RNA
double-strand reactions are small and stable (Figure A2d).

3.3. Hitting Times: Functional and Survival Analysis

We study various models in order of increasing complexity. We examine the hitting
time surface τv(θ) in the parameters θ ∈ Θ, including probability of hitting P(τv(θ) < ∞).
We begin with the core model with no decay or clay.

3.3.1. Core Model, τv(θ) for v = 0.1 with θ = (n, k) and “Tent” Functions

We are interested in the structure of the hitting time τv(θ) of (19) as a function
of the parameter vector θ. We use the Weibull–Cox proportional hazard’s model of
Table 1 for the hitting time τv for volume fraction v = 0.1. Let θ = (n, k) with sequence
dimension n ∈ {3, 4} and fitness and similarity parameters k = l = − log(i)/n for
i ∈ {0.1, 0.05, 0.01, 0.005, 0.001}. Set m = − log(0.25)/n for fidelity probability parameters.
For each value of sequence dimension n, take random initial population X0 with initial
population size I = |X0| = 10 and random singleton R = {{x}} for the high-fidelity
manifold and fix these for the fitness/similarity landscape curvature parmeters k = l.
We fix the double-strand dissociation and formation rate parameters kss = kds = 1 and
set RNA polymerization rate krep such that the overall RNA polymerization rate is given
by k̆rep(0) = 10 and use the “tent” function for fitness, similarity, and fidelity. We take
10 realizations of hitting time τv(θ) for each parameter vector θ ∈ Θ and allocate 5000 reac-
tions. This gives 100 independent hitting times and up to 500,000 reactions. The times are
comparable because the system is initialized to the same replication mass.

For the simulations, 66 hitting times are finite. The coefficients positively contribute
to hitting, where γn ≈ 0.97 and γk ≈ 13.29, both with p-values less than 0.005. Therefore,
hittings are strongly positively influenced by the parameters of the fitness and similarity
functions and less so by the dimension. Plots of the coefficients and survival and cumulative
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hazard curves are given in Figure A3. High survival is found for k large and low survival for k
small. Cumulative hazard is highest for k small.

We estimate HDMR of the classifier (whether or not hitting time is finite) using all
100 samples. The results are shown in Figure A5 and Table 4. The HDMR explains roughly
80% of variance. Sk ≈ 0.69 and Sn ≈ 0.06, so hitting probability is strongly influenced by fitness
landscape curvature k and less so by sequence length n. The component functions fk and fn for
fitness landscape curvature and sequence dimension are strictly decreasing, where larger
fitness landscape curvature parameter k results in decreasing hitting probability. These
results are consistent with the survival analysis.

Table 4. HDMR sensitivity indices of hitting probability P(τv(θ) < ∞) for the core model.

θ Sθ

Sequence length n 0.06
Curvature k 0.69

∑ 0.75

We estimate HDMR of the regressor (hitting time) using the 66 simulations with finite
hitting time. The results are shown in Figure A4 and Table 5. The HDMR explains roughly
60% of variance. Sn ≈ 0.57 and Sk ≈ 0.04, so sequence dimension dominates the hitting time.
Both HDMR component functions fn and fk for sequence dimension and fitness landscape
curvature are increasing. The HDMR results reveal that conditioning on hitting reverses
the roles of sequence dimension n and fitness landscape curvature k.

Table 5. HDMR sensitivity indices of hitting time τv(θ) for the core model.

θ Sθ

Sequence length n 0.57
Curvature k 0.04

∑ 0.61

3.3.2. Clay and Decay Model, τv(θ) for v = 0.1 with θ = (n, k, k∅, kclay−p, p) and
“Tent” Functions

We expand the model to include clay and decay. We take parameter vector

θ = (n, k, k∅, fclay, pclay) ∈ Θ

Θ = {3, 4} × {− log(i)/n : i = 0.1, 0.05, 0.01, 0.005, 0.001} × (0, 1)× (0, 1)× (0, 1)

with double-strand dissociation and formation and clay oligomerization reaction rates
kss = kds = kclay−o = 1. For each parameter vector θ ∈ Θ, (i) we choose singleton
high-fidelity replicator manifold R = {x} for some RNA sequence x ∈ E and choose
random initial population of RNA molecules X0 such that the initial population size is
10, I = |X0| = 10, and where the initial population does not intersect the high-fidelity
manifold X0 ∩R = ∅, that is, the initial population does not reside on the high-fidelity
manifold; (ii) we initialize the replicative mass of the system such that the initial overall
RNA polymerization reaction rate is given by k̆rep(0) = (1− fclay)20 and the initial overall
clay RNA polymerization reaction rate k̆clay−p(0) = fclay20; (iii) we sample the hitting
times τv(θ) for volume fraction of high-fidelity replicators v = 0.10 a total of M = 10
times, each censored by 5000 reactions, giving hitting time set T (θ) of (20). We attain
input–output data set as D = {(θi, T (θi)) : i = 1, . . . , 240}. This gives a total of 2400
simulations.

For the simulations, 1546 hitting times are finite. The results of fitting the Weibull–
Cox model are shown below in Table 6 and Figure A6. The curvature parameter k again
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significantly dominates with a large positive value. All the remaining parameters have
values less than one. Sequence dimension n again is a relatively small positive contributor.
The clay fraction fclay is small and positive and replication fidelity parameter p is not
significant.

Table 6. Weibull–Cox model parameters for hitting times of clay and decay model.

θ Name Coefficient γθ p-Value

n sequence dimension 0.54 <0.005
k = l RNA fitness parameter 27.87 <0.005
p clay fidelity probability −0.08 0.35
k∅ RNA decay rate 0.80 <0.005
fclay fraction clay RNA polymerization rate 0.96 <0.005

We estimate HDMR of the classifier (whether or not hitting time is finite) using all
2400 samples. Component functions and sensitivity indices are shown below in Figure A7
and Table 7. First-order HDMR captures 74% of explained variance, and second-order
captures 4%. Curvature dominates hitting probability with large sensitivity index Sk ≈ 67%.
The HDMR component function in landscape curvature fk is a decreasing function, where
small values increase and large values decrease hitting probability. Sequence dimension
n has sensitivity index Sn ≈ 2%, and the HDMR component function fn is decreasing,
where high dimension decreases the probability of hitting. Clay parameter sensitivity
index is small S fclay

≈ 2%, and the HDMR component function for fractional clay RNA
polymerization rate, f fclay

, is decreasing, where low-to-medium clay fractions increase and
high-clay fractions decrease probability of hitting. The HDMR results are consistent with
the Weibull–Cox model.

Table 7. HDMR sensitivity indices of hitting probability P(τv(θ) < ∞) for expanded model (clay
and decay).

θ Sθ

Sequence length n 0.0213
Curvature k 0.6732

Decay rate k∅ 0.0120
Clay fidelity p 0.0114

Fraction clay RNA polymerization rate fclay 0.0219

∑ 0.7399

We estimate HDMR of the regressor (hitting time) using the 1546 simulations with
finite hitting time. Component functions and sensitivity indices are shown below in
Figure A8 and Table 8. First-order HDMR captures 33% of explained variance, and second-
order captures 7%. In stark contrast to the contributions to the classifier, the parameters k and n
are insignificant to hitting time. Instead, the largest sensitivity index is S fclay

≈ 20%. The HDMR
component function for fractional clay RNA polymerization rate, f fclay

, is an increasing
function, where small fclay decreases and large fclay increases the hitting time. This suggests
that high clay-fractions representing first-order reactions increase the hitting time, as clay
polymerization has less replicative mass than RNA polymerization, i.e., things go faster
with RNA polymerization. The second largest sensitivity index is decay Sk∅ ≈ 11%. Decay
is an increasing function, with sharp increase in hitting times nearby one, i.e., things go
slower with large decay resulting in increased hitting time.
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Table 8. HDMR sensitivity indices of τv(θ) < ∞ for expanded model (clay and decay).

θ Sθ

Sequence dimension n 0.0013
Curvature k 0.0030

Decay k∅ 0.1129
Clay fidelity p 0.0152

Fraction clay RNA polymerization rate fclay 0.2014

∑ 0.3339

3.4. Compartmentalization

Compartmentalization has a direct effect on the calculation of the reaction rates,
specifically replication, by computing only a subset of the reactions in X 2

1 . Put

Xt(A) = {x ∈ Xt : l(x) ∈ A}.

For vesicle region A ∈M, we have that

k̆rep(t, A) = ∑
(x,y)∈X 2

1

krep(x, y)Mt({x} × A)(Mt({y} × A)− I(x = y)) for t ∈ R≥0, A ⊂ [−T, T]

= ∑
(x,y)∈X2

t (A)

krep(x, y)Mt({x} × A)(Mt({y} × A)− I(x = y))

and total replicative mass

k̆rep(t) = ∑
A∈M

k̆rep(t, A) for t ∈ R≥0

As M increases in size over time, the number of partitions grows, and

∑
A∈M

|X2
t (A)| � |X 2

1 |.

Therefore, the replicative mass will be reduced with M, and the system evolves less
quickly. This suggests that there is a trade-off between the degree of compartmentalization and the
replicative mass of the system.

4. Discussion and Conclusions

Origins of life is a fascinating problem. The wonderful complexity of extant life follows
from origins. The distribution of life in the universe is tied to origins.

In this article, we have attempted to peek into the problem by concentrating on the
RNA world hypothesis, studying hitting times of high-fidelity replicators. We develop fit-
ness, similarity, and fidelity functions as landscapes for a mathematical model of replicating
RNA molecules at the sequence level and observe hitting times through simulation studies.
We draw attention to the distinction between the probability of hitting P(τ(θ) < ∞) and
the hitting time τ(θ) < ∞.

In terms of mathematical set-up, we interpret the reactions as measure-kernel-functions.
Each reaction is identified to and fully encoded by a probability transition kernel. The
reactions take place in some domain, whereby all molecules may interact. We note that, in
reality, molecules have limited diffusion, and this effectively breaks the reaction domain
into independent subdomains above some length scale, i.e., molecules are more likely to
react with their neighbors. Therefore, we assume our reaction volume is sufficiently small
such that all molecules may participate in the reactions. We use for modeling purposes the
ansatz that sequence distance is correlated to spatial proximity, where similar sequences
are proximal, using a non-trivial similarity function s : E× E 7→ (0, 1].
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Theorem 2 and its Corollary 2 show that the system (without decay) is unbounded and
strictly increases. This formally shows the system to be a growth process. Next, we illustrate
findings about the core system with probable hitting (Section 3.2.1). In particular, we see
that the temporal image measure µt = νtQ, which describes the polymerization output,
is a leading indicator of high-fidelity sequence concentration. Polymerization output
and high-fidelity replicators super-exponentially increase near the end of the simulation.
Next, the fitness and sequence curvature parameters are set at a higher value which
confers reduced fidelity (Section 3.2.2). This reveals that hitting is never achieved and
that the polymerization output is in equilibrium with population composition. Hence, the
probability of hitting is strongly influenced by landscape curvatures. Next, linear curvature
is utilized for fitness and similarity and results in no hitting (Section 3.2.3). This reveals
that nonlinear curvature is necessary to achieve hitting of high-fidelity replicators. Next,
we expand the model with non-RNA (‘clay’) based polymerization and find that such
activity decreases over time, in contrast to RNA polymerization, which greatly increases
and dominates other reactions over time the system (Section 3.2.4).

For functional and survival analysis of the hitting times, we study the core model,
whereby hitting times are strongly positively influenced by the fitness and similar functions
yet are not impacted significantly by sequence dimension (Section 3.3.1). In particular,
survival analysis reveals low fitness curvature confers low survival (high hitting), whereas
high fitness curvature confers high survival (low hitting). HDMR analysis shows that
hitting probability is strongly influenced by fitness curvature and much less so by sequence
dimension, supporting the survival analysis. HDMR analysis of hitting time shows re-
versed roles for sequence dimension and landscape curvature, where sequence dimension
dominates hitting time, with curvature playing a far less significant role. This gives the
finding that hitting probability is driven by curvature, whereas hitting time is driven by
sequence dimension. Next, we perform functional and survival analysis of the core model
augmented with ‘clay and decay’ dynamics (Section 3.3.2). Survival analysis shows similar
results to the core model, where curvature dominates survival (no hitting), with sequence
dimension playing a significantly reduced role. HDMR analysis of hitting probability
shows that curvature dominates hitting probability, similar to the core model, whereas
sequence dimension again plays a significantly reduced role. HDMR analysis of hitting
time reveals that the presence of ‘clay and decay’ significantly increase hitting time, with
curvature and sequence dimension playing insignificant roles. These results are consistent
in that clay polymerization has less replicative mass than RNA polymerization, where
RNA polymerization is a faster reaction.

Overall, we find that nonlinear landscapes are necessary for hitting: linear landscapes are
insufficient. For nonlinear landscapes, we find that the probability of hitting is dominated by
curvature and that hitting times are dominated by sequence dimension. These results suggest
that the landscapes in nature are nonlinear with high curvature, and that the hitting time
for high-fidelity replicators is an increasing function of sequence dimension. When clay
and decay are added to the model, hitting probability is again dominated by curvature,
and clay and decay are relatively insignificant. This reflects that clay and decay are low
order reactions. They increase hitting times.

For replication and compartmentalization, we suggest that compartmentalization,
while a necessary condition, slows overall system dynamics with increasing vesiculation
rate. Essentially, as compartmentalization increases, there is a corresponding reduction
in absolute replicative system mass, as certain reactions among elements are no longer
possible, being physically sequestered. While the timescale of a simulation is tied to the
replicative system mass of the system, there is variability in replicative mass across com-
partments. Some compartments contain large genomic and metabolic populations. It favors
the search for the high-fidelity replicator by there being a distribution on compartmental
‘fitness’ such as resource concentrations so that the high-fitness compartments drive replica-
tive system mass. Compartmentalization is identified to the measure ν on coordinates in
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(C, C), for which coordinates are “marked” by sequences through the transition probability
kernel Qc, and followed by genomic adaptation via the transition probability kernel Q′c.

Metabolism is thought to be identified to production of precursors to RNA synthesis,
leading to replication identification, followed by genomic adaptation to metabolic state.
Metabolism is thus defined through the transition kernels Qm and Q′m.

The independence of the transition kernels can be scrutinized, and it is possible
that general transition kernels on the full product spaces across location, genomic, and
metabolic states are necessary to satisfactorily explain RNA origins, i.e., all three functions
may have co-evolved. This notion is suggested in the hot springs hypothesis for origins,
where compartmentalization is hypothesized to furnish necessary conditions to genomic
and metabolic state [26–28]. In this telling, the base measurable space of interest is (F,F ) =
(C× E×M, C ⊗ E ⊗M) with measure ν. Then, identification of a high-fidelity replicator
is described through the transition probability kernel Qcem from (F,F ) into (F,F ) in
“marking” the base measurable space with state for genomic replication; finally, genomic
adaptation is conveyed through the kernel Q′cem from (F× F,F ⊗F ) into (F,F ). Hence,
RNA origins of life has law ν×Qcem ×Q′cem on the product space (F× F× F,F ⊗F ⊗F ),
reflecting the steps of replicator identification and adaptation through the definitions
transition kernels Qcem and Q′cem.

A putative “genesis machine” here is a mapping from the base (initial) measurable
space (F,F ) into the product space of identified high-fidelity replicators undergoing adap-
tation, i.e., (F × F × F,F ⊗ F ⊗ F ). More generally the base space could additionally
contain amino acid sequence space (P,P). Such a machine is fully specified through the
definitions of the distribution ν on the base space and the transition kernels Qcemp and Q′cemp
(pre and post genes, respectively). Because the stages of transition occur purely through
random drift, an experiment performed by such a machine would take an unacceptably
long period of time to complete. Experimental demonstration can be contemplated by
augmenting the base measurable space with a control space (X,X ) to accelerate dynamics,
using for instance closed-loop shaped radiation to address molecular degrees of freedom in
their appropriate frequency domains, (open-loop) catalysts, temperature, geometry, selec-
tion, concentration through centrifugal force, etc., resulting in the new (four-dimensional)
base space (F̃, F̃ ) = (C× E×M× P× X, C ⊗ E ⊗M⊗P ⊗X ). Then, the transition ker-
nels Q̃cemp and Q̃′cemp become mappings from (F̃, F̃ ) into (F̃, F̃ ) and from (F̃× F̃, F̃ × F̃)
into (F̃, F̃ ), respectively. The general design of a genesis machine is the definitions of
the augmented base space (F̃, F̃ ), its distribution ν̃, and the augmented transition kernels
Q̃cemp and Q̃′cemp, giving law µ̃ = ν̃× Q̃cemp × Q̃′cemp on the full 15-dimensional product
space (F̃× F̃× F̃, F̃ ⊗ F̃ ⊗ F̃ ), written in differential notation

µ̃(dx, dy, dz) = ν̃(dx)Q̃cemp(x, dy)Q̃′cemp((x, y), dz)

Origins could be experimentally demonstrated using a sequence of adaptive control fields
in (X,X ), cycling through the transitions, and a detection system for online identification
of the system whose elements belong to the product measurable space. The full design and
estimated operating timescale for such a machine needs further research to assess practical
feasibility. We call the creation of primordial life (primordia) by the continuous causal efforts
of a genesis machine given initial prebiotic conditions artebiogenesis, where arte- is Latin
and means “from skill.” The primordia are not necessarily those that occurred in nature.
Primordia and their genesis represent non-trivial system trajectories across the transition
to the earliest life in sterile environments and belong to a manifold of primordial lifeforms,
each having characteristic geochemical setting.

The probability measure µt = νtQ has additional utility to integrate ‘test’ functions
or queries about the system. If we let f ∈ E≥0 be a fitness function, then the fitness value
J(µt) = µt( f ) is the expected value of the fitness function with respect to the probability
measure µt. In OptiEvo theory, J(µt) is studied as a function of the population Xt on
(E, E) [52]. OptiEvo assumes that the set of all probability measures {µt} is convex and
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that Xt has sufficient flexibility such that J(µt) may be explored around µt. Then, OptiEvo
predicts that J(µt) has global maxima on (E, E) and that these form a connected level-set
of sequences with the same fitness value. Both predictions are consistent with our model.
The first prediction is consistent with zero distance in fitness and similarity functions for
high-fidelity sequences. The second prediction is consistent with the high-fidelity set being
a singleton or a product-space construction. A contention is whether Xt has sufficient
flexibility in exploring J(µt) around µt. This has direct bearing on the structure of Q: if
Xt is inflexible, then Q is constrained to certain subspaces of (E, E), i.e., not all transitions
are possible.

In future work, the model could be extended to the space of sequences of lengths up
to n, (E∗, E∗) or even the space of sequences of all lengths, where distance and similarity
functions would utilize a more general string distance metric, e.g., Levenshtein distance.
We note that the size of (E∗, E∗) is not much larger than (E, E). Alternative similarity
functions could be explored, such as the trivial case of constant similarity, e.g., s(x, y) =
1 for (x, y) ∈ E × E. A limitation of this article is the restriction to short sequences
due to computational efficiency. The numerical size of the sequences is mathematically
low-dimensional and does not correspond to actual functions of RNA molecules. Other
parameter sets can be explored for example using experimentally derived values for
reaction rates, so that the timescales are calibrated. Future research could see the simulation
software rewritten for a high-performance computing environment, enabling much longer,
e.g., length 10–1,000, sequences to be studied. Polymerase fitness can be made empirical
using known RdRp sequences as members of the high-fidelity manifold. Another area of
future work could be studying the aforementioned transition kernels Qc, Q′c, Qm, and Q′m.
More general models for polymerization transition kernel based on the structure of the
Poisson-binomial distribution could be employed. It would be interesting to study lipid-
RNA and metabolism-RNA interactions and equip the system with the ability to append
nucleotides to their sequences to form functional genes, such as storing useful information
for the replication channel, perhaps a Hammerhead ribozyme to convey rolling-circle
amplification. We note that transition kernels here generally lack amino acid state and are
pure-RNA. An area to explore is the notion of the transition kernel into the space of high-
fidelity replicators to depend on amino acid sequences and then to elaborate the system
to contain a primitive translation system and examine various hitting times. Additional
reactions can be introduced as operations on pairs of sequences, such as concatenation, and
others for sequence splitting, and so on, with corresponding transition kernels enabling
RNA networking and recombination dynamics.
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Appendix A. Discrete Probability Space

We define some concepts related to the space (E, E). The discrete probability measure
ν on (E, E) is defined by

ν(A) = νIA = ∑
x∈E

ν{x}IA(x) for A ∈ E

where ν{x} is the probability mass at the point x ∈ E and

IA(x) =

{
1 if x ∈ A
0 otherwise

For the collection of non-negative E -measurable functions E≥0, we have

ν( f ) = ∑
x∈E

ν{x} f (x) for f ∈ E≥0.

Appendix B. Other Fitness Functions

Another fitness function can be defined using polynomials, such as lines, quadratics,
etc, in terms of k ∈ N>0

fk(x, R) =
(

1− H(x,R)

n + 1

)k
∈ (0, 1] for x ∈ E

or

fk(x, R) = 1−
(
H(x,R)

n + 1

)k
∈ (0, 1] for x ∈ E

However, another surface is using a sigmoid function. Put

E(x) =
1

1 + exp[−x]
for x ∈ R

We have fitness for k ∈ (0, ∞)

fk(x,R) =
1− E

(
H(x,R)− n

2
k

)
1− E

(
− n

2k
) ∈ (0, 1] for x ∈ E

Appendix C. Measure-Kernel-Function

We recall a few facts about transition kernel Q. Q defines a function

Q f (x) =
∫

Y
Q(x, dy) f (y) for x ∈ E

that is in X≥0 for every function f ∈ Y≥0.
For every probability measure νt on (E, E) and at time t ≥ 0, the quantity µt = vtQ

defines a probability measure on (Y,Y) as

µt(A) =
∫

X
νt(dx)Q(x, A) for A ∈ Y .

For every probability measure νt on (X,X ) and function f ∈ Y≥0, we have that

µt( f ) = (νtQ) f =
∫

X
νt(dx)

∫
Y

Q(x, dy) f (y).
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Here, the spaces are discrete, i.e.,

νt(A) ≡ νt(IA) = ∑
x∈X

νt{x}IA(x) for A ∈ X

where νt{x} is the probability mass at the point x ∈ X at time t ≥ 0.

Appendix C.1. Reactions as Measure-Kernel-Functions

We index the reaction types on (Z,Z) = (N>0, 2N>0). Let ηt be the probability measure
on (Z,Z) formed from the normalized reaction rates. Let Q∗ be the transition kernel from
(Z,Z) into (X,X ). Then, ηtQ∗ = νt is the distribution on (X,X ) and µt = νtQ is the
distribution on (Y,Y). Then, a reaction is the mapping (Z,Z) 7→ (X,X ) 7→ (Y,Y).

Appendix C.2. Deterministic Model

Consider the core model defined in (2)–(4) with reaction rates k̆ds(t), k̆ss(t), and k̆rep(t).
We are neglecting clay and decay for the moment. All the reactions impact (E, E). For
double-strand formation, the input space is (X,X ) = (E × E, E ⊗ E) and the output
space is (Y,Y) = (F,F ). For double-strand dissociation, the input and output spaces are
swapped. For polymerization, (X,X ) = (E×, E ⊗ E) and (Y,Y) = (E, E). Hence, (E, E) is
positively impacted by polymerization, positively impacted by double-strand dissociation,
and negatively impacted by double-strand formation. Put [x] = Nt({{x}}) and [x, xc] =
Nt({{x, xc}}). Recall the νt, Q, and µt = νtQ for the reactions, e.g., ν

rep
t , νds

t , Qrep, etc.
For x ∈ E, we have the system of m = 3

2 4n deterministic nonlinear ordinary differential
equations (ODEs) in m variables as mean-field equations

d[x]
dt

= fx = k̆rep(t)µ
rep
t {{x}}+ k̆ss(t)µss

t {{x}, {xc}} − k̆ds(t)µds
t {{x, xc}} (A1)

= k̆rep(t) ∑
(y,z)∈E×E

ν
rep
t {{y}, {z}}Q

rep((y, z), {{x}}) + kss[x, xc]− kds[x][xc]

= ∑
(y,z)∈E×E

krep(y, z)[y]([z]− I(y = z))Qrep((y, z), {{x}}) + kss[x, xc]− kds[x][xc]

d[x, xc]

dt
= fxxc = kds[x][xc]− kss[x, xc]

The fixed points of f are the equilibria of the system, i.e., f (x) = 0 for x ∈ Rm
≥0. The

Jacobian of the system is

J =


d f1
dx1

· · · d f1
dxm

...
. . .

...
d fm
dx1

. . . d fm
dxm

 (A2)

The eigenvalues of the Jacobian reveal the stability of the fixed points. If all the
eigenvalues of the Jacobian evaluated at the fixed point have negative real parts, then the
fixed point is stable. If none of the eigenvalues are zero and at least one of the eigenvalues
has a positive real part, then the fixed point is unstable. If at least one eigenvalue is zero,
then the fixed point can be either stable or unstable.

Appendix D. Hitting Cardinality

We index the N reactions of Xt with arrival times {Ti} in (R̄≥0,BR̄≥0
), where R̄ =

R≥0 ∪ {∞}. Define the hitting reaction v(θ) ∈ N in terms of hitting time τ(θ) ∈ R̄≥0 as

v(θ) =
N

∑
i=1

I[0,τ(θ)](Ti)
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v(θ) is right-censored at N reactions. If τ(θ) = ∞, then v(θ) = N. If τ(θ) < ∞, then
v(θ) < N.

Reaction Cardinality

In this section, we study, instead of the hitting time τv(θ), the hitting reaction number
vv(θ) for v = 0.1. We study the core model with parameter vector θ = (n, k). We
uniformly sample sequence length n ∈ {3, 4, 5} and fitness/similarity landscape curvature
k = l ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} and form input–output data D =
{(θi, v(θi)) : i = 1, . . . , 1200}. We set double-strand dissociation and formation rates
kss = kds = 1 and initialize the overall RNA polymerization rate krep such that the initial
replicative mass is 10. For each parameter vector θ ∈ Θ, we randomly choose the initial
population of sequences X0 with initial population size I = |X0| = 10 and singleton
high-fidelity sequence manifold R such that the initial population of sequences does not
intersect the high-fidelity replicator manifold, X0 ∩R = ∅.

D contains 781 hitting events. We denote these D∗. We form a first-order HDMR on
v(θ) using D∗. The HDMR truth-plot, component functions, and sensitivity indices are
shown below in Figure A9. First-order HDMR captures approximately 31% of variance.
Both component functions fn and fk have similar sizes, with fn somewhat larger than fk.
The HDMR component function for sequence dimension fn is essentially an increasing
linear function of sequence length n, and component function for landscape curvature fk is
generally an increasing function of the fitness/similarity landscape curvature. These results
suggest that sequence dimension and curvature influence the hitting reaction. Larger sequences
and flatter curvature increase the hitting reaction.

Table A1. HDMR sensitivity indices of vv(θ) < ∞ for core model and v = 0.1.

θ Sθ

Sequence dimension n 0.1619
Curvature k 0.1464

∑ 0.3083

Appendix E. Approximate Reaction Rates

One approach to reducing the computational complexity of k̆(t) is to approximate
the sums using Monte Carlo. Define random variables X1 ∼ Uniform(X1) and X2 ∼
Uniform(X2). Let {X1i} and {X2i} be independencies of such random variables. Given N
random samples of X1, the first reaction rate becomes

k̆ds(t|N) =
|X1|
2N

N

∑
i=1

kdsNt(X1i)Nt(X
c
1i)

whose expected value is approximated using M realizations,

Ek̆ds(t|M, N) ' |X1|
2MN

M

∑
j=1

N

∑
i=1

kdsNt(X1ij)Nt(X
c
1ij)

requiring a total of MN evaluations. In a similar manner, the second reaction rate is

Ek̆ss(t|M, N) ' |X2|
MN

M

∑
j=1

N

∑
i=1

kssNt(X2ij ∪Xc
2ij)
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and, putting X∗1 ∼ Uniform(X1), we have the third reaction

Ek̆rep(t|M, N) ' |X1|2
MN

M

∑
j=1

N

∑
i=1

krep(X1ij,X∗1ij)Nt(X1ij)(Nt(X
∗
1ij)− I(X1ij = X∗1ij)) (A3)

We refer to SSA simulation with Monte Carlo approximate reaction rates as Monte
Carlo Approximate SSA, or MCASSA.

Appendix F. High Dimensional Model Representation

Suppose we have a real-valued square-integrable function f (x) ∈ L2(E, E , ν) with E =
Rn, E = BRn , ν = ∏i νi, and x = (x1, . . . , xn) ∈ E. The {νi} may be diffuse (continuous)
and/or discrete. Put B = {1, . . . , n}. We would like to decompose f into orthogonal
function subspaces { fu : u ⊆ B} (projections) in such a way that each projection on an
input subspace fu maximizes variance and across subspaces retrieves total variance, i.e.,
f = ∑u⊆B fu and Var f = ∑u⊆B Var fu. The solution to this problem in the retrieval of
{ fu : u ⊆ B} is known as high dimensional model representation (HDMR) or functional
ANOVA expansion and for f is written as

f (x1, . . . , xn) = f0 + ∑
i

fi(xi) + ∑
i<j

fij(xi, xj) + . . . + f1...n(x1, . . . , xn)

where the { fu : u ⊆ B} are called component functions. For independent inputs, the compo-
nent functions are mutually orthogonal and, aside from the constant component function
f0 = E f (order zero), have zero mean E fu = 0 for all non-empty (2n − 1) subspaces, where

Var fu =
∫

E
f 2
u(xu)ν(dx) < ∞ for u ⊆ B

and
Var f =

∫
E
( f (x)− f0)

2ν(dx) = ∑
u⊆B

Var fu < ∞.

A key principle of HDMR is that the expansion for most f may be truncated at low
order T � n in a T-order HDMR,

f (x) ' f T(x) = ∑
u⊆B:|u|≤T

fu(xu) for T � n.

HDMR is often used in global sensitivity analysis to assess input–output correlations at
various orders, where the variances are normalized to define sensitivity indices

Su =
Var fu

Var f
for u ⊆ B.

When the inputs are correlated ν 6= ∏i νi, then the component functions may still be
uniquely recovered under hierarchical orthogonality, the variance decomposes

Var f = ∑
u,v⊆B

Cov( fu, fv),

where
Cov( fu, fv) =

∫
E

fu(xu) fv(xv)ν(dx) for u, v ⊆ B

and the sensitivity indices generalize to structural and correlative sensitivity indices [56],
defined respectively as

Sa
u =

Var fu

Var f
for u ⊆ B
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and

Sb
u =

∑v⊆B:u 6=v Cov( fu, fv)

Var f
for u ⊆ B

with total sensitivity index
Su = Sa

u + Sb
u for u ⊆ B

where ∑u⊆B Su = 1. We use the total sensitivity index as a measure of variable importance
and the component functions as profiles of output dependence on the input subspaces.

Appendix G. Reliability Definitions

Given a failure distribution f and reliability (survival) distribution R, we give some
relations: the cumulative failure distribution is defined as

F(t|ϑ) =
∫ t

0
f (s|ϑ)ds

where
R(t|ϑ) + F(t|ϑ) = 1,

the hazard rate h(t|ϑ) is defined as

h(t|ϑ) = f (t|ϑ)
R(t|ϑ) ,

the cumulative hazard is defined as

H(t|ϑ) =
∫ t

0
h(s|ϑ)ds,

and we have reliability expressed in terms of the cumulative hazard

R(t|ϑ) = e−H(t|ϑ).

Another useful quantity is the mean residual life

µ(t|ϑ) =
∫ ∞

t R(s|ϑ)ds
R(t|ϑ) .
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Appendix H. Additional Figures

Appendix H.1. Linear Landscape

(a) (b)

(c)

Figure A1. Linear landscape: Measures of system population Xt until hitting time τv for high-fidelity replicator volume
fraction v = 0.25 with sequence dimension n = 3, fitness/similarity curvature k = l = − log(0.01)/n, initial population size,
I = |X0| = 10, singleton high-fidelity replicator R = {{x}}, with linear fitness and similarity functions. (a) Concentration
of RNA sequences by Hamming distance to high-fidelity replicator; (b) population size of RNA sequences by Hamming
distance to high-fidelity replicator; (c) polymerase RNA sequence output by Hamming distance to high-fidelity replicator.
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Appendix H.2. Core Model with Clay

(a) (b)

(c) (d)

Figure A2. Core model with clay: Measures of system population Xt until hitting time τv(θ) for high-fidelity replicator
volume fraction v = 0.25 with sequence dimension n = 3, fitness/similarity curvature k = − log(0.01)/n, initial population
size I = |X0| = 10, singleton high-fidelity replicator R = {{x}}, double strand separation and formation rates reaction rate
kss = kds = 1, clay replication fidelity probability p = 0.9, and RNA polymerization rate krep and clay polymerization rate
kclay−p chosen such that the replicative mass of each is 10. (a) Concentration of RNA sequences by Hamming distance to high-
fidelity replicator; (b) population size of RNA sequences by Hamming distance to high-fidelity replicator; (c) polymerase
RNA sequence output by Hamming distance to high-fidelity replicator; (d) probability of reactions over time.
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Appendix H.3. Hitting/Survival Analysis

(a)

(b) (c)

Figure A3. Survival analysis of hitting time τv for high-fidelity replicator volume fraction v = 0.1 for core model. (a) Coef-
ficients of the Cox proportional hazard survival model; (b) survival curves in sequence dimension n = L and landscape
curvature k = l; (c) cumulative hazard in sequence dimension n = L and landscape curvature k = l.
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(a)

(b) (c)

Figure A4. First-order HDMR analysis of hitting time τv(θ) < ∞ for core model. (a) Hexagonal-bin truth plot; (b) HDMR
component function for sequence length n = L, fn(n), in sequence length for hitting time, of hitting time; (c) HDMR
component function for landscape curvature, fk(k), in landscape curvature, of hitting time. The color function is from blue
(negative) to white (zero) to red (positive). The black dots represent standard deviation of the error.
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(a)

(b) (c)

Figure A5. First-order HDMR analysis of hitting probability P(τv(θ) < ∞) for core model. (a) Hexagonal-bin truth plot;
(b) HDMR component function for sequence length, fn(n), in sequence length, of hitting probability; (c) HDMR component
function for landscape curvature, fk(k), in landscape curvature, of hitting probability. The color function is from blue
(negative) to white (zero) to red (positive). The black dots represent standard deviation of the error.

Figure A6. Survival analysis of hitting time τv for volume fraction v = 0.1 for expanded model (clay
and decay). Coefficients of the Cox proportional hazards survival model.
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(a) (b)

(c) (d)

Figure A7. First-order HDMR analysis of hitting probability P(τv(θ) < ∞) for expanded model (clay and decay).
(a) Hexagonal-bin truth plot; (b) HDMR component function for sequence length n = L, fn(n), in sequence length,
of hitting probability; (c) HDMR component function for curvature, fk(k), in curvature, of hitting probability; (d) HDMR
component function for clay fitness, f fclay

( fclay), in clay fitness, of hitting probability. The color function is from blue
(negative) to white (zero) to red (positive). The black dots represent standard deviation of the error.
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(a) (b)

(c) (d)

(e)

Figure A8. First-order HDMR analysis of hitting time τv(θ) < ∞ for expanded model (clay and decay). (a) Hexagonal-bin
truth plot; (b) HDMR component function for sequence length, fn(n), in sequence length, of hitting time; (c) HDMR
component function for curvature, fk(k), in curvature, of hitting time; (d) HDMR component function for clay-fraction,
f fclay

( fclay), in clay fraction, of hitting time; (e) HDMR component function for decay rate, fk∅ (k∅), in decay rate, of hitting
time. The color function is from blue (negative) to white (zero) to red (positive). The black dots represent standard deviation
of the error.
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(a)

(b) (c)

Figure A9. First-order HDMR analysis of hitting cardinality vv(θ) < ∞ for core model and volume fraction v = 0.1.
(a) Hexagonal-bin truth plot; (b) HDMR component function for sequence dimension, fn(n), in sequence dimension, of
hitting cardinality; (c) HDMR component function for curvature, fk(k), in curvature, of hitting cardinality. The color
function is from blue (negative) to white (zero) to red (positive). The black dots represent standard deviation of the error.
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