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The contribution of the most common reciprocal translocation in childhood B-cell precursor leukemia
t(12;21)(p13;q22) to leukemia development is still under debate. Direct as well as secondary indirect effects
of the TEL-AML1 fusion protein are commonly recorded by using cell lines and patient samples, often bearing
the TEL-AML1 fusion protein for decades. To identify direct targets of the fusion protein a short-term induction
of TEL-AML1 is needed. We here describe in detail the experimental procedure, quality controls and contents
of the ChIP, mRNA expression and SILAC datasets associated with the study published by Linka and colleagues
in the Blood Cancer Journal [1] utilizing a short term induction of TEL-AML1 in an inducible precursor B-cell
line model.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE50736.

Experimental design, materials and methods

Establishment of TEL-AML1 inducible cell line system

The inducible TEL-AML1 cell line system has been previously de-
scribed [2] and has been a kind gift of Anthony Ford. This system is
based on the GeneSwitch™ System (Invitrogen), where the TEL-AML1
encoding cDNA is transcribed after induction with mifepristone (BA/
F3TA+ cells). The control cells (BA/F3TA−) contained only the pSwitch
vector. Induction conditions were optimized for this study since it was
crucial to obtain a sufficient number of viable cells just after one cell
doubling. Limiting the cell doublings was necessary to minimize the
occurrence of secondary effects of TEL-AML1 overexpression regularly
seen in cells and patient samples constitutively expressing the
TEL-AML1 fusion protein. BA/F3TA+ cells bearing the inducible TEL-
AML1 fusion gene were induced with 30 to 40 pM concentration of mi-
fepristone for 72 h. The expression of the fusion transcript was tested
by FACS analysis using the V5-tag FITC-conjugated antibody (Abcam,
Cambridge, UK) while cell viability was assessed by trypan blue dye ex-
clusion test of cell viability [3] (Fig. 1A). 91.7% of viable cellswere positive
for the fusion protein upon induction with 32.5 pM mifepristone, with
the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Fig. 1. (A) Evaluation of optimalmifepristone concentration for induction of TEL-AML1 ex-
pressionwas performed by treatment of 1.25 million cells with increasing amounts ofmi-
fepristone (0, 30.0, 32.5, 35.0, 37.5 and 40.0 pM) for 72 h (n = 3; SEM: standard error of
the mean). (B) Optimization of mifepristone induction time was carried out by induction
of 0.75 million cells each with 32.5 pMmifepristone. Cells were harvested after 2, 4, 6, 8,
16 and 24 h (n = 3; SEM: standard error of the mean). TEL-AML1 positive cells were an-
alyzed by FACS using an anti-V5 FITC-conjugated antibody (bars; left y-axis). Living cells
were counted in a Neubauer chamber by simultaneously staining dead cells with trypan
blue and are shown in relation to input cell quantity (diamonds; right y-axis).
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59.5% of cells surviving compared to non-induced cells. Within the
first 16 h one cell doubling was reached while maintaining the rate of
TEL-AML1 induced cells of 94% (±1.2%, ±1 SEM) (Fig. 1B). Therefore
BA/F3 cells with the inducible TEL-AML1 fusion gene were treated with
32.5 pM mifepristone for 16 h and compared to empty vector control
cells treated the same.

Cells were grown in RPMI 1640 (Gibco®, Camarillo, CA) supple-
mented with 2 mM L-glutamine (Gibco®), 10% fetal bovine serum
(PAA, Pasching, Austria), 50 μg/ml Gentamicin (Gibco®) and 10 ng/ml
IL3 (Gibco®). Moreover, BA/F3TA− cells were cultured with 200 μg/ml
Hygromycin B (Invitrogen). Growth medium for BA/F3TA+ cells
additionally contained 50 μg/ml Zeocin™ (Invitrogen).

Two replicates of each, TEL-AML1 induced cells and treated empty
vector control cells, were performed and analyzed by ChIP, mRNA
expression microarrays and SILAC. Induction was always controlled by
FACS analysis and an induction rate of at least 90% was required for all
experiments.
Other cell line models used

The human precursor B-cell line NALM-6 (DSMZ ACC 128) was sta-
bly transfectedwith a TEL-AML1 fusion gene. TEL-AML1 cDNAwas gen-
eratedwith overlap extension PCR from TEL (primers: 5′-GGCGCTCGCG
AATGTCTGAGACTCCTGCTCAG, 5′-GGATTCATTCCAAGTATGCATTCTGC
TATTCTCCCAATGGGCATGG) and AML1 (primers: 5′-CCATGCCCATTG
GGAGAATAGCAGAATGCATACTTGGAATGAATCC, 5′-CCGCGACTAGTTCA
GTAGGGCCTCCACACGGCCTC) [4], cloned into the expression vector
pMC3 [5] and transfected into NALM-6 cells using DMRIE-C (Invitrogen,
Darmstadt, Germany). Stable cell clones were selected using 400 μg/ml
Hygromycin for 3 weeks and cultured under selective pressure accord-
ing to the provider. Independent triplicates were investigated by ChIP.

Patient and controls

Four samples obtained from bonemarrow of pediatric patients with
TEL-AML1 positive precursor B-cell acute leukemia were collected at
diagnosis from bone marrow after informed consent. CD19+ cells of
two healthy donors were sorted from peripheral blood using standard
immunomagnetic cell sorting (MACS, Qiagen) and used for comparison
of patient gene expression profiles.

Furthermore results were compared to a previously published
dataset of 132 primary specimen including 20 patients with TEL-AML1
[6]. Pre-processed data comparing TEL-AML1 positive and -negative
patient samples was used as described by Fuka et al. [7].

Chromatin immunoprecipitation on microarray (ChIP-on-chip) data

Chromatin immunoprecipitationswere carried out essentially as de-
scribed elsewhere [8]. A TEL-AML1 antibodywas derived and character-
ized for this study [1]. Mouse endogenous TEL and AML1 was
precipitated with commercially available antibodies directed against
TEL (N-19; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
AML (Ab-1; Calbiochem/Merck, Darmstadt, Germany), respectively.
Magnetic protein G beads (Dynal, Invitrogen, Darmstadt, Germany),
pre-blocked with pre-immunization serum over night at 4 °C, were
used since protein A/G agarose beads (Santa Cruz Biotechnology,
Santa Cruz, CA) exhibited background binding of proteins to the beads
in the induced cells (Fig. 2). Antibody binding to the beads was
preformed with 5 μg antibody for 6 h at 4 °C. Washed beads with anti-
body were then incubated at 4 °C over night with DNA of 1 × 107

cross-linked cells, previously sheared to ~500 bp length with an ultra-
sound disintegrator UP 100H with sonotrode MS7 (Dr. Hielscher
GmbH, Teltow, Germany). TEL-AML1, TEL and AML1 bound DNA frag-
ments were amplified with GenomePlex® Complete Whole Genome
Amplification Kit (Sigma-Aldrich, Munich, Germany) and labeled
along with its respective input material for each ChIP. Quantitative
PCR amplification of Granzyme B, a known target of TEL-AML1, was
used as quality control for each experiment and an enrichment of at
least 5-fold over input was required for further processing.

Labeled DNA fragments were co-hybridized to 385K RefSeq mouse
promoter arrays (NimbleGen) by Source BioScience imaGenes (Berlin,
Germany). Log2 ratios of signals obtained from immunoprecipitated
and inputDNAwere calculated and scaled using Tukey biweight scaling.
Microarray and sample annotation datawas deposited in GEO under the
accession numbers GSE50730. Only genes identified with a peak false
discovery rate ≤0.05 in either replicate were retained for further
analysis.

Murine TEL and AML1 immunoprecipitations were performed in
triplicates (GEO accession numbers GSE50731 and GSE50732, respec-
tively). TEL-AML1 ChIP was performed in triplicates from stably
transfected NALM6 cells (GEO accession number GSE50733). Here
only genes identified with a peak false discovery rate ≤0.2 in at least
two out of three replicate experiments were retained for further
analysis.

Gene-expression data

Total RNA from patients was isolated following standard TRIZOL
procedure (Invitrogen), whereas total RNA from cell lines was isolated
with RNeasy mini columns (Qiagen, Hilden, Germany). RNA integrity
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Fig. 3. AML1-binding sites in promoters. AML1 binding sites are enriched in all TEL-AML1
direct targets and in a subset of direct targets with significant changes in protein output,
while indirect targets do not show enrichment over array background level. The
mean number of target sites per gene normalized to promoter region±1 SEM is depicted.
T-test statistics was performed; n.s., not significant; ***, p ≤ 0.001.
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and quantity was assessed with RNA 6000 nano chip on a 2100
bioanalyzer (Agilent Technologies). RNA from 5 × 106 cells was labeled
using a GeneChip 3′ IVT Express Kit (Affymetrix, Santa Clara, CA, USA)
and hybridized to a GeneChip Mouse Genome 430 2.0 Array
(Affymetrix) following standard procedure. Background correction
and normalization of the probe signals were performed using the
GCRMA package (v.2.28.0, [9]) in R 2.15 [10] and Bioconductor 2.16
[11] environment. Data was submitted to GEO (accession number
GSE50735). Differentially expressed genes between TEL-AML1 induced
cells and control were calculated using the linear model for microarray
data as implemented in the LIMMA R-package [12] with Benjamini–
Hochberg correction for multiple testing. Fold changes of means of
log2 expression were calculated. Genes with a P-value ≤0.05 and a
fold change of at least 1.5-fold were retained.

10 ng of patient-derived RNA was linear T7-amplified and Cy3 la-
beled with the Low Input Quick Amp Labeling Kit (Agilent Technolo-
gies) following the manufacturer's protocol. Yields of cRNA and the
dye-incorporation rate were measured with the ND-1000 Spectropho-
tometer (NanoDrop Technologies). Labeled RNA was hybridized to
Agilent Whole Human Genome Oligo Microarrays 8 × 60K. The Agilent
Feature Extraction Software (FES) was used to read out and process the
microarray image files. Normalized data was submitted to GEO (acces-
sion number GSE507349). For determination of differential gene ex-
pression between patients and controls, ratios of FES derived output
data files were generated using the Rosetta Resolver® gene expression
data analysis system (Rosetta Biosoftware).

Stable isotope labeling by amino acids in cell culture (SILAC) and mass
spectrometric data

Inducible TEL-AML1 BA/F3 cell lines were grown in L-arginine-
13C6

15N4 and L-lysine-13C6
15N2 supplemented growth media (“heavy

weight”) while mifepristone-treated vector control cell lines were
grown in L-arginine-13C6 and L-lysine-D4 supplemented growth media
(“medium weight”) for at least 5 doublings. Induction with mifepris-
tone was performed as described above. Non-induced cells bearing
the inducible construct were labeled with supplemented “low weight”
medium containing L-arginine and L-lysine without label. Pellets
corresponding to 7 × 106 cells were flash frozen in liquid nitrogen.
Mass spectrometric analysis of trypsin-digested size-fractionated
proteins was performed as described elsewhere [13,14]. Peptides and
proteins were identified with Mascot (Matrix Science, London, UK)
and quantified with MSQuant (http://msquant.sourceforge.net) as
described previously [14]. MSQuant analyzed data is provided as
supplement. To account for effects of mifepristone treatment we only
compared the middle and heavy weight peaks. Normalized peak ratios
of heavy weight to medium weight peaks either below 0.85 or above
1.15 were retained for further analysis.
Integrative data analysis

All analyses were performed using R 2.15 software [10] and
Bioconductor 2.16 [11]. Mapping of mRNA probe identifiers was first
performed to either mouse or human entrez gene IDs using
Bioconductor annotation package (mouse4302.db and hgug4112a.db,
respectively). Entrez gene IDs for corresponding peak regions of
mouse ChIP experiments were created by NimbleScan map peak analy-
sis. MGI IDs of SILAC peptide data were also mapped to entrez gene IDs
using biomaRt 2.12 [15]. Subsequently mapping of entrez gene IDs to
the most recent Ensemble gene ID at the time of analysis (Ensemble
v66) was carried out with biomaRt 2.12 to ensure uniformity of data
version for integrative analysis. For comparison of datasets obtained
from the inducible mouse cell line model, only genes queried by both,
promoter arrays and mRNA expression array platforms, were retained
for further analysis. Comparisons were carried out only on significant
genes as described above. TEL-AML1 direct targets were defined by
the binding of the fusion protein to promoter sequences and the simul-
taneous regulation of mRNA of the same gene and are thus reflected by
the overlap of mRNA expression and ChIP datasets (Supplementary
Table 1 of [1]). The indirect effects of TEL-AML1 overexpression were
defined by changes in mRNA expression and protein expression
as defined by microarray and SILAC analyses (Supplementary Table 2
of [1]).

The number of canonical AML1 binding motif “TG[CT]GGT[CT]” in
promoter regions was normalized to promoter region length of direct
and indirect target-genes and compared to the background AML1
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binding site count of the array (Fig. 3). P-values were calculated by
comparison of these values to the distribution of the background. The
background distribution of AML1 binding motif occurrence was
simulated by taking the same number of random probes of the array
platform as were identified in the respective TEL-AML1 ChIP experi-
ments with 1000 repetitions and again calculating the occurrence of
the AML1 binding motif as described above.
Discussion

We describe here a unique dataset obtained from a mouse early
B-cell model with induced TEL-AML1 (ETV6-RUNX1) fusion protein in
comparison to a treated control cell line. Using ChIP, mRNA expression
arrays and SILAC we queried the occupancy of the fusion protein simul-
taneously to its impact on mRNA and protein output. Furthermore we
generated occupancy profiles of the endogenous TEL and AML1 as
well as mRNA profiles of a small patient cohort with TEL-AML1 positive
early B-cell leukemia in comparison to CD19-sorted B-cells. This dataset
has been recently used to identify early direct and indirect targets
of TEL-AML1 [1] and reported persistent effects of directly regulated
TEL-AML1 genes in our and an independent patient cohort [6].
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