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The specificity of interactions between genomic regulatory elements and potential target genes is influenced by the binding

of insulator proteins such as CTCF, which can act as potent enhancer blockers when interposed between an enhancer and a

promoter in a reporter assay. But not all CTCF sites genome-wide function as insulator elements, depending on cellular and

genomic context. To dissect the influence of genomic context on enhancer blocker activity, we integrated reporter con-

structs with promoter-only, promoter and enhancer, and enhancer blocker configurations at hundreds of thousands of ge-

nomic sites using the Sleeping Beauty transposase. Deconvolution of reporter activity by genomic position reveals distinct

expression patterns subject to genomic context, including a compartment of enhancer blocker reporter integrations with

robust expression. The high density of integration sites permits quantitative delineation of characteristic genomic context

sensitivity profiles and their decomposition into sensitivity to both local and distant DNase I hypersensitive sites.

Furthermore, using a single-cell expression approach to test the effect of integrated reporters for differential expression

of nearby endogenous genes reveals that CTCF insulator elements do not completely abrogate reporter effects on endog-

enous gene expression. Collectively, our results lend new insight into genomic regulatory compartmentalization and its in-

fluence on the determinants of promoter–enhancer specificity.

[Supplemental material is available for this article.]

A boundarymodel offers an attractive paradigm for understanding
regulatory specificity in mammalian genomes through the delin-
eation of independent regulatory domains. Insulators are a class
of genomic regulatory elements that block interaction of enhanc-
ers with their cognate promoters (Phillips and Corces 2009).
Enhancer blocker activity is canonically defined by a reporter assay
that interposes a candidate insulator element between a weak pro-
moter and an enhancer (Chung et al. 1993), while barrier insula-
tors protect transgenes from silencing owing to spreading of
heterochromatin (West et al. 2002). Insulators have also been
used to counter genotoxicity from transgene enhancer activation
of endogenous oncogenes (Li et al. 2009; Liu et al. 2015). Known
insulators such as the chicken beta-globin hypersensitive site 4 el-
ement or the Igf2/H19 imprinting control region (Bell and
Felsenfeld 2000) are composite elements with enhancer blocker,
barrier, and other activities (Dickson et al. 2010), and often have
secondary functions, such as silencers (Qi et al. 2015).

The architectural protein CTCF is the only known vertebrate
insulator protein, and its binding can confer a potent enhancer
blocking effect (Phillips and Corces 2009). Additionally, binding
sites for CTCF colocalize with genomic features such as topologi-
cally associated domain boundaries (Dixon et al. 2012), but direct
functional analysis of these sites is impeded by the difficulty of ge-
nome engineering at the relevant scales. Although binding affini-
ty, DNA methylation, and recognition sequence orientation
appear to confer some specificity for CTCF sites involved in
domain organization (de Wit et al. 2015; Guo et al. 2015;
Sanborn et al. 2015), these factors alone remain inadequate to dis-

tinguish true insulator elements impacting expression of nearby
genes from the ∼100,000 CTCF sites genome-wide (Maurano
et al. 2015; Tycko et al. 2019). Stably integrated reporter assays
have shed light on the mechanics of insulator function, but such
methods do not assess interaction with the surrounding endoge-
nous genomic elements (Walters et al. 1999). In contrast, integrat-
ed barcoded reporter assays (Akhtar et al. 2013; Maricque et al.
2019; Moudgil et al. 2020) offer the potential to directly assess
the interaction between novel CTCF sites and the endogenous ge-
nomic landscape.

Here, we aim to functionally characterize endogenous geno-
mic regulatory elements through their effect on integrated report-
ers. We describe a high-throughput randomly integrated barcoded
reporter platform based on a previously described enhancer block-
er construct interposing a potentCTCF insulator element (Liu et al.
2015) between a weak promoter and a potent enhancer. We inte-
grate these reporters, both with and without insulator elements,
randomly throughout the genome of K562 erythroleukemia cells
using the Sleeping Beauty transposase system.We use the unique re-
porter barcodes to map individual insertion locations and enable
position-specific readout of genomic context effects. Finally, we
apply single-cell RNA-seq (scRNA-seq) to detect specific reporter
integrations that perturb endogenous gene expression.

Results

Flow cytometry characterization of enhancer blocker reporter

The canonical definition of an enhancer blocker relies on a well-
studied reporter construct design (Chung et al. 1993; Liu et al.

3These authors contributed equally to this work.
4Present addresses: Neochromosome Inc., Long Island City, NY 11101,
USA; 5BlueRock Therapeutics, New York, NY 10016, USA
Corresponding author: maurano@nyu.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.276449.121.

© 2022 Ribeiro-dos-Santos et al. This article is distributed exclusively by Cold
Spring Harbor Laboratory Press for the first six months after the full-issue publi-
cation date (see https://genome.cshlp.org/site/misc/terms.xhtml). After six
months, it is available under a Creative Commons License (Attribution-
NonCommercial 4.0 International), as described at http://creativecommons.
org/licenses/by-nc/4.0/.

Research

32:425–436 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/22; www.genome.org Genome Research 425
www.genome.org

mailto:maurano@nyu.edu
https://www.genome.org/cgi/doi/10.1101/gr.276449.121
https://www.genome.org/cgi/doi/10.1101/gr.276449.121
http://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
https://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


2015) incorporating the well-characterized human HBG1 promot-
er driven by the murine Hbb locus control region (LCR) hypersen-
sitive site 2 (HS2) enhancer. We designed a series of reporter
constructs bearing potent insulator elements (A1 or C1) previously
identified from analysis of highly occupied genomic CTCF sites
(Supplemental Fig. S1; Liu et al. 2015). These insulators were inter-
posed between the reporter promoter and enhancer in an enhanc-
er blocker position (Fig. 1A). Reporter expression drove Puro and
GFP to enable selection and/or measurement of transcriptional ac-
tivity on a cellular level. The transcription unit was flanked by
Sleeping Beauty (Mátés et al. 2009) inverted terminal repeats (ITR)
to permit stable integration at random genomic sites without
high bias for particular regions (de Jong et al. 2014). Transposition
was performed through transient cotransfection with a plasmid
expressing SB100X, a highly active variant of the Sleeping Beauty
transposase (Mátés et al. 2009).

We first characterized activity of several different classes of re-
porters, including GGlo (promoter-only), GGlo+HS2 (promoter
and enhancer), and Ins +GGlo+ Ins +HS2 (enhancer blocker)
(Supplemental Table S1) in K562 erythroleukemia cells using
flow cytometry (Fig. 1B; Supplemental Fig. S2). The baseline pro-
moter-only GGlo construct showed low activity, whereas the
GGlo+HS2 construct including an enhancer showed higher activ-
ity (Fig. 1B). In contrast, Ins +GGlo+ Ins +HS2 reporters showed
low activity, slightly below that of promoter-only GGlo constructs
(Fig. 1B), thus recapitulating classical work defining enhancer
blocker insulators (Chung et al. 1993).

To confirm that the enhancer blocker effect is tightly coupled
to CTCF occupancy, we tested a series of constructs whose insula-
tor elementswere truncated to the core 54-bpCTCF recognition se-
quence (A1Core and C1Core) (Supplemental Fig. S1). These
constructs showed similar activity to the baseline construct (Fig.
1B). Exchanging the insulator elements A1Core and C1Core

showed similar activity in the enhancer blocker position, suggest-
ing they can be used interchangeably (Fig. 1B). As the relative ori-
entation of genomic CTCF sites may play a role in determining
their specificity (de Wit et al. 2015; Guo et al. 2015; Sanborn
et al. 2015), we designed constructs with the orientation of each
CTCF site reversed. This showed that CTCF effect on reporter activ-
ity was orientation independent (Fig. 1B). Ins + Ins +HS2without a
promoter showed essentially no activity, confirming that neither
the insulator elements nor Sleeping Beauty ITRs have intrinsic tran-
scriptional activity on their own (Fig. 1B). Ins +GGlo+ Ins showed
activity below that of GGlo, recapitulating the previously reported
silencer activity of insulator A1 (Liu et al. 2015), which might be
conferred by an NFI site outside the core CTCF recognition se-
quence (Supplemental Fig. S1). These results confirm that our re-
porter assay detects canonical enhancer blocker reporter activity
mediated by a strong CTCF recognition sequence.

Although each reporter class manifests characteristic activity
in cellular assays, cellular activity potentially varies with transfec-
tion or transposition efficiency and selection for reporter activity.
Furthermore, although flow cytometry assesses single-cell GFP lev-
els representing the total activity of all reporters integrated in that
cell, genomic context may modulate the effect of individual inser-
tion sites. We therefore turned to a genomics approach capable of
distinguishing site-specific reporter activity.

Reporter activity in genomic context

To assess the effect of genomic context on reporter activity, we de-
veloped a massively parallel reporter assay (MPRA) to deconvolute
the position-specific activity of individual reporters. We designed
reporter plasmid libraries incorporating 16-nt reporter barcode
(BC) sequences to uniquely identify each insertion site
(Supplemental Fig. S3). For each transfection, we generated three

B

A

Figure 1. Cellular activity of enhancer blocker activity. (A) Reporter scheme consisting ofHBG1 promoter (GGlo) driving Puro andGFP expression. ACTCF
site is interposed between the promoter and an HS2 enhancer to act as an enhancer blocker. (ITR) Sleeping Beauty inverted terminal repeats; (HS2) beta-
globin hypersensitive site 2 enhancer. (B) Reporter plasmids cotransfected with a plasmid expressing the Sleeping Beauty SB100X transposase for random
genomic integration. GFP activity was measured by flow cytometry. A1 and C1 represent previously characterized CTCF-binding insulator elements (Liu
et al. 2015). A1Core and C1Core were truncated to the core 54-bp CTCF recognition sequence. FW and RV indicate forward or reverse orientation of in-
sulator elements. Independent transfections are shown separately. Dots indicate median GFP levels, and whiskers extend to the 25th and 75th percentiles.
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types of sequencing libraries (Fig. 2A; Supplemental Fig. S4): an in-
verse PCR (iPCR) library to map reporter genomic insertion sites, a
DNA library to determine their representation, and an RNA library
tomeasure their expression. Sequencing libraries were constructed
using a two-stage nested polymerase chain reaction (PCR) to add
Illumina adapters. Further, RNA and DNA libraries incorporated
an 8- to 12-nt unique molecular identifier (UMI) (Jee et al. 2016)
to permit single-molecule counting.

We performed five independent experiments using theGGlo,
GGlo+HS2, and Ins +GGlo+ Ins +HS2 constructs, as well as
an Ins +GGlo+HS2+ Ins construct wherein the reporter was
fully flanked by insulator elements (Supplemental Table S1).
After growth for 8–11 d, multiple DNA, RNA, and iPCR libraries
(n=2–5 replicates) were generated for each experiment
(Supplemental Table S2) and sequenced to saturation. Reporter ac-
tivity was quantified as the log-ratio of normalized RNA and DNA
counts. Individual transfections averaged 36,195 reporter inser-
tions analyzed after quality control (Fig. 2B; Table 1; Supplemental

Table S3). These data yielded high-resolution maps of genomic re-
porter activity, with an insertion every 14–107 kb on average, and
at an average distance from an endogenous DNase I hypersensitive
site (DHS) of 6–40 kb. Insertion densities were moderately en-
riched in regions of active DHSs and generally similar across exper-
iments (Supplemental Fig. S5). To maximize resolution for
visualization, libraries with the same construct design from the
five experiments were merged, averaging 117,428 insertion sites
per construct (Table 1; Supplemental Table S3).

Examination of the beta-globin (Fig. 2C) and MYC (Fig. 2D)
loci showed notable differences in patterns of reporter activity.
GGlo showed variable activity that was highly responsive to local
genomic context: at the beta-globin locus, its activity was concen-
trated tightly at genes; at MYC, activity localized to two separate
domains around theMYC gene itself and distal acute lymphoblas-
tic leukemia (ALL) enhancers. In contrast, GGlo+HS2 showed
more variable insertion location and site-specific activity. Inser-
tions were depleted over several regions, including directly

BA
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Figure 2. Site-specific profiling of enhancer blocker activity. (A) Barcoded reporters were randomly integrated using SB100X transposase. Site-specific
reporter activity was read out in multiplex using sequencing to map insertion sites (inverse PCR libraries), barcode representation (DNA libraries), and ex-
pression (RNA libraries). (GGlo) HBG1 promoter; (BC) unique barcode; (HS2) beta-globin hypersensitive site 2 enhancer; (ITR) Sleeping Beauty inverted ter-
minal repeats. (B) Counts of analyzed sites in thousands for five experiments including promoter-only (GGlo), promoter and HS2 enhancer (GGlo +HS2),
with CTCF site interposed between GGlo and HS2 (Ins +GGlo + Ins +HS2), or with CTCF sites fully flanking the reporter and enhancer (Ins +GGlo +HS2 +
Ins). (C,D) Analysis of enhancer blocker functionality at the HBB (C) andMYC (D) loci. The top three tracks show reporter activity. Data shownmerged from
replicate experiments. The bottom three tracks show CTCF ChIP-seq data for K562 erythroleukemia cells, and DNase-seq data for K562 and Jurkat T-cell
leukemia cells. Regions highlighted in D include the MYC-335 enhancer region coinciding with a genetic association for colorectal cancer (Sur et al.
2012), the Notch-T-ALL (Acute Lymphocytic Leukemia) enhancer cluster (Herranz et al. 2014), and the AML (acute myeloid leukemia) amplified region
(Radtke et al. 2009).
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upstream of MYC and downstream from its proximal DHS cluster,
suggesting that the GGlo+HS2 construct does not support expres-
sion at these regions, or that those insertions have a negative effect
on cell growth. Notably, GGlo had higher activity than GGlo+
HS2 near the beta-globin LCR and MYC enhancer clusters. We
speculate that the HS2 enhancer in the reporter may interfere
with its activation by the endogenous genomic enhancers. Ins +
GGlo+ Ins +HS2 showed less variable activity and a broader win-
dow of genomic positions permissive of expression, consistent
with a model in which CTCF sites moderate the impact of sur-
rounding genomic context on regulatory activity.

Decomposing context sensitivity

Reporter activity averaged across all insertion sites (Fig. 3A) recapit-
ulated observed cellular activity (Fig. 1). Of note, there was signifi-
cant overlap in expression among reporter classes, suggesting that
although each reporter shows characteristic activity in aggregate,
activity at individual sites can be strongly modulated by genomic
context. We therefore assessed the correlation in activity for inser-
tion pairs separated by different distance scales (Fig. 3B; Supple-
mental Fig. S6A). GGlo correlation between insertions started
high at short range, but dropped steeply with increased distance.
GGlo+HS2 showed the lowest correlation across all distance
ranges, suggesting themost stochastic activity. Constructs bearing
insulators (Ins +GGlo+ Ins +HS2 and Ins +GGlo+HS2+ Ins)
maintained high correlation that decayed less significantly with
distance. These results suggest intrinsic activity, stochasticity,
and sensitivity to genomic context can be read out in a systematic
manner using our approach (Fig. 3C).

We then assessed the influence of genomic features relevant
to insulator function. It has been hypothesized that TAD organiza-
tion directly affects expression (Symmons et al. 2014). Thus, we re-
peated our analysis but stratified our reporter pairs into those that
share the same TAD and those that do not. Reporters in the same
TAD presented overall higher correlation than those in different
TADs, even when comparing insertion pairs separated by similar
distances (Supplemental Fig. S6B). If reporter or endogenous
CTCF orientation influences gene expression at a given genomic
site, insertion pairs having consistent orientations should show in-
creased correlation. Yet, our analysis showed little effect of orienta-
tion on correlation across all distance ranges (Supplemental Fig.
S6C), implying that the orientation of endogenous CTCF sites is
not a major factor in reporter activity.

To provide an easily computedmetric reflecting the contribu-
tion of genomic context at different distance scales, we counted
the number of DHSs within 5 and 100 kb of the reporter insertion
site (Supplemental Fig. S7A,B). We then used a linear regression

model to systematically quantify the effect of these indicators of
genomic context on reporter activity (Fig. 3D). Consistent with
the correlation pattern observed at nearby insertions (Fig. 3B),
GGlo and Ins +GGlo+ Ins +HS2 showed the highest contribution
of genomic features to reporter activity, whereas GGlo+HS2
showed the lowest. Each reporter class showed distinct contribu-
tions of DHSswith 5 and 100 kb, suggesting that our approach pro-
vides a means of partitioning the influence of genomic context
into short- and long-range components.

Virtually all genomic features vary along chromosomeswith a
significant degree of correlation, including structural features such
as gene density, G+C content, and density of various repeat clas-
ses. To distinguish the contribution of these structural features
(which do not vary across cell types) versus the role of the cell-
selective actuation of regulatory DNA, we used DHS maps from
109 cell types (Supplemental Table S4; Thurman et al. 2012). For
each of these cell types, we computed the number of DHSs within
5 and 100 kb of reporter insertion sites and evaluated predictive
performance for reporter activity measured in K562 cells.
Predictive performance using features computed from unmatched
cell typeswas poor, with the highest performance in closely related
cell types, such as the leukemia cell lines CMKandKBM-7 (Fig. 3E).
These results suggest that despite the large genomic intervals re-
flected by these features, their predictive power is highly cell
type–selective.

Next, we evaluated overall predictive performance for a series
of models to dissect the molecular underpinning of these features
representing genomic context. Using just the number of DHSs
within 100 kb yielded a similar performance to the baseline model
on all reporter classes, although GGlo performance was addition-
ally influenced by the number of DHSs within 5 kb (Fig. 3F). The
relevance ofDHSdensity as a feature extending as far as 100 kb sug-
gests an infinitesimalmodel in which genomic context reflects the
influence of a large number of regulatory elements, withmost con-
tributing a small but significant effect. To assess the scope of geno-
mic features contributing to context on this scale, we analyzed
ChIP-seq data from the ENCODE Project (The ENCODE Project
Consortium2012) for 321 histonemodifications, sequence-specif-
ic TFs, coactivators, and corepressors in K562 cells (Supplemental
Table S4). Adding all ChIP-seq data sets as features yielded the over-
all highest predictive performance and increased predictive perfor-
mance relative to the originalmodel based solely onDHSs (Fig. 3F).
The improved performance did not derive from histone modifica-
tions, but rather sequence-specific TFs, coactivators, and corepres-
sors (Fig. 3F). Lamin-associated domains (LADs) have previously
been associated with reporter expression, but their predictive pow-
er alone was inferior to the DHS-based features (Leemans et al.
2019). Breaking out each TF ChIP-seq track individually showed
that no single factor contributed a dominant amount to predictive
performance (Fig. 3G). These results suggest that numerous dis-
tinct trans-acting factors each contribute to genomic context
over long range.

Clonal analysis using integrated barcodes

Single-cell RNA-seq approaches can provide the compartmentali-
zation needed to associate reporter BCs integrated in the same
cell, which can provide a unique combinatorial genetic identifier
for cells derived from a given clone during transfection (Lu et al.
2011; Biddy et al. 2018; Weinreb et al. 2020). We adapted our in-
tegrated reporter assay to the droplet-based 10x Genomics
scRNA-seq platform and generated a full-transcriptome 3′ scRNA-

Table 1. Summary of insertions analyzed per reporter class and
experiment

Reporter
class

Experiment

Merged1 2 3 4 5

GGlo 66,742 25,930 28,107 — — 120,604
GGlo +HS2 28,305 21,572 11,974 — 48,015 109,742
Ins +GGlo +

Ins +HS2
46,566 35,348 18,469 30,935 81,005 211,802

Ins +GGlo +
HS2 + Ins

— — — — 27,565 27,565

Counts are of insertions passing all QC filters.
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seq library (Fig. 4A; Supplemental Table S5). To ensure maximal
representation of BCs frommoderately expressed reporters, we ad-
ditionally generated a reporter transcript enrichment library from
the same scRNA-seq cDNA using an amplicon-based targeted li-
brary construction approach.

We developed a graph-based clonal inference approach to
identify cells deriving from the same clone to impute reporter pres-
ence and improve analysis power (Fig. 4B). The reporter-enriched
scRNA-seq libraries were used to initialize a graph in which nodes
represented cellBCs and reporter BCs that were connected based
on sequencing reads. This initial graph was then pruned to reduce
the impact of expected sources of experimental noise in large
screens, such as chimeric PCR products and cell doublets
(Methods; Supplemental Data S2; Supplemental Data S3).

Weperformed both a pilot experiment including Ins +GGlo+
Ins +HS2 (Experiment 4) and a scaled-up experiment (Experiment
5) using three different classes of reporter constructs, including
GGlo+HS2, Ins +GGlo+ Ins +HS2 (transfected in replicate from
the same plasmid library), and Ins +GGlo+HS2+ Ins. We generat-
ed DNA, RNA, and iPCR libraries from each transfection separately
but pooled the cells from four independent transfections (labeled
A–D) for scRNA-seq (Supplemental Table S5). We used our clonal
inference approach to deconvolute the pooled transfections and
prune conflicting cells or clones. The majority of cells were assign-
able to a single transfection, with the exception of reporter BCs
shared from the replicate transfections B and C (Fig. 4C,D).

We first confirmed that that reporter activity was highly re-
producible across multiple cells (Fig. 4E). For comparison,

E

F

BA C

D
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Figure 3. Quantitative assessment of genomic context effects on reporter activity. (A) Distribution of activity by reporter class. Average activity was com-
puted across all fully mappable 10-kb bins with at least one insertion. Horizontal bars represent medians. (B) Correlation in activity for nearby insertions by
reporter class merged across all experiments. For each insertion, 50 nearby insertions were sampled with replacement fromwithin 500 kb. Correlation was
computed across pairs of insertions in each distance bin. Bins with fewer than 100 data points were omitted. (C) Model of genomic context effects on
reporter activity and correlation profiles. Increased correlation across all length scales reflects deterministic versus stochastic activity. Constant correlation
across all length scales reflects context-independent activity, whereas a reduction of correlation with distance represents genomic context dependency. (D)
Linear regression coefficients formodel partitioning reporter activity into close and long-range genomic context represented by count of DHSs within 5 and
100 kb, respectively. (E) Predictive performance of reporter activity using DHS data from other cell types. Bar indicates median. (F) Predictive performance
of models incorporating ENCODE histone and TF ChIP-seq data, and lamin-associated domains (LADs) (Leemans et al. 2019). Model including the number
of DHSs within 5 and 100 kb as features is used as baseline for comparison (dashed line). (G) Analysis of TF ChIP-seq feature importance under iterative
removal of feature with smallest effect size. Inflection points are labeled with the number of ChIP-seq features.
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unrelated reporters in the same cells or with permuted data within
clones showed little correlation (Fig. 4E). Clonal inference signifi-
cantly consolidated cells by identifying clonally related cells and
reporter BCs present in the same cell (Fig. 4F,G). Assessing reporter
insertion sites in the same cell showed that the distance between
insertions was sufficiently large to enable independent readout
of hundreds of reporters in a given cell (Fig. 4H).

Effect of reporters on endogenous gene expression

The compartmentalization provided by single-cell readout enables
direct linkage of individual insertions to their effect on adjacent

genes (Gasperini et al. 2019). To investigate the effect of ectopic
regulatory DNA on the local genomic landscape, we developed
an analysis approach called differential expression of clonal alter-
ations local effects (DECAL), which compares the expression of a
gene in perturbed clone against the expression in all other clones
while accounting for the sparsity of single-cell data (Fig. 5A;
Methods). DECAL models single-cell gene expression count using
a negative binomial regression with dispersion estimated using a
maximum likelihood model and a regularization strategy.

Our use of clonal inference permitted imputation across cells
of reporter presence and flanking gene expression levels, which
substantially increased the number of cells linked to a particular

E F

B

A

C

D

G H

Figure 4. scRNA-seq inference of clonal relationship of reporter insertions. (A) scRNA-seq experiment to infer clonal relationships between single cells
using presence of reporter BCs. (B) Graph-based inference of clones from scRNA-seq data using reporter BC to link cells deriving from the same clone.
(C,D) Deconvolution of pooled transfections in Experiment 5. The x-axis represents cells (C) or final inferred clones (D), grouped by inferred transfection
and ordered according to hierarchical clustering. (Multiple) reporter BCs or cellBCs linked to multiple transfections; (Unknown) reporter BCs or cellBCs
detected only in scRNA-seq data. (E) Reporter BC counts show high correlation across multiple cells. All reporter BCs in the same cells or reporter BC counts
shuffled within clones show little correlation. (F–H) Summary of clones including number of cells per clone (F), number of reporter BCs per clone (G), and
distance between reporters integrated in cells derived from the same clone (H). Boxes represent 1st and 3rd quartiles, horizontal bars indicate median, and
whiskers represent ±1.5 interquartile range. Horizontal red line in H at 500 kb indicates distance cutoff selected for insertions in the same clone to be con-
sidered independent.
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reporter beyond those with direct measurement of the reporter BC
(Supplemental Fig. S8A). Expression levels were highly consistent
between cells with direct measurement of the reporter BC and oth-
er cells in the same clone (Supplemental Fig. S8B).

After performing a power simulation to identifywell-powered
tests (Supplemental Fig. S9; Methods), we tested the full-scale data
fromExperiment 5 for significant changes of gene expressionnear-
by insertions, merging results from the two Ins +GGlo+ Ins +HS2
replicates (transfections B and C). There was sufficient power to
test an average of 3122 insertions for each of the three distinct re-
porter classes (Table 2; Supplemental Data S4). While most report-
ers did not have an effect on nearby endogenous gene expression,
a small proportion (3.2%–6.8%) of reporters of all three classes
caused detectable effects on expression of a nearby gene (Table
2). Although K562 cells are highly aneuploid (Zhou et al. 2019),
we did not observe confoundingwith increased copy number level
(Supplemental Fig. S10A). As expected (Symmons et al. 2014), in-
sertions were more likely to affect expression of genes with a tran-
scription start site (TSS) in the same topologically associating
domain (TAD) (Fig. 5B; Supplemental Fig. S10B; Supplemental
Table S8).

Reporters inserted in the gene body itself were more likely to
affect that gene’s transcript (Fig. 5C; Supplemental Table S9), con-

sistent with results from a smaller screen (Zhang et al. 2020).
Focusing on insertions outside of gene bodies still showed a simi-
larly increased significance for insertionswithin the same TADver-
sus across different TADs (Supplemental Fig. S10C), suggesting
that these two effects are not confounded.

The overall direction of effect for significant insertion-gene
tests was evenly divided between increased and decreased expres-
sion of the target gene (Fig. 5D). Ins +GGlo+ Ins +HS2 and Ins +
GGlo+HS2+ Ins showed a slightly higher rate of increased gene
expression relative to the other two constructs, raising the possibil-
ity that the reporter insulator element also modulates the effect of
the reporter on endogenous gene expression. Notably, insertions
within gene bodies skewed toward decreased expression of that
gene. Collectively, these results underscore the role for genomic
context in dictating the effect of ectopically delivered regulatory
elements on endogenous gene expression.

Discussion

Although recognized classes of genomic regulatory elements were
originally defined using reporter assays, short constructs alone
cannot model the effect of hundreds or thousands of regulatory
sites that collectively influence genomic context (Klein et al.

BA

C

D

Figure 5. Analysis of reporter effect on nearby endogenous gene expression. (A) Schematic of DECAL analysis framework. (B,C) Rate of significant effect
on gene expression by whether reporter and gene are in the same TAD (B) and whether reporter is inside or outside gene body (C). Numbers at the top
indicate the number of significant tests. Error bars represent 99% confidence intervals estimated by 1000 bootstrap simulations. (D) Significant tests for
each category broken down by proportion of those that increase versus decrease expression.
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2020). Here, we show that although insulator elements demon-
strate a strong effect in aggregate, individual reporters demon-
strate a wide range of expression levels depending on genomic
context. Indeed, high reporter expression at some genomic inte-
gration sites implies a total abrogation of insulator function.
Similarly, integrated reporters perturbed endogenous gene ex-
pression regardless of whether they harbored insulator elements.
A strict barrier definition of insulator function is difficult to rec-
oncile with these results, or with studies showing perturbations
of CTCF binding yield readily detectable alterations in genome
organization but not of gene expression (Nora et al. 2017;
Zhang et al. 2020).

Our results are instead consistent with amodel in which insu-
lators moderate but do not eliminate sensitivity to genomic con-
text and suggest that insulator elements might counteract
increased stochasticity from an enhancer element while still leav-
ing expression subject to position effects. Consistent with this
model, single-cell analyses have shown that enhancers increase
the frequency of transcription in a given cell rather than augment-
ing the transcriptional rate per cell (Weintraub 1988;Walters et al.
1996). It is possible that more complex, composite regulatory ele-
ments might further fine-tune variability of expression and sensi-
tivity to context effects. For example, multiple tandem CTCF sites
have been shown to increase the strength of insulation (Huang
et al. 2021).

Genomic context is a key predictive feature of models for
recognizing functional regulatory variation (Halow et al. 2021),
suggesting a need for further large-scale characterization of geno-
mic regulatory element classes and composite regulatory ele-
ments. Our work suggests that genomic regulatory element
function should be evaluated on multiple axes, including expres-
sion (1) level, (2) consistency (stochastic vs. deterministic), and
(3) sensitivity to the local and/or long-range regulatory landscape
(Fig. 3C). We expect that our approach will enable further dissec-
tion of the interplay between regulatory sequence, genomic con-
text, and single-cell behavior, and facilitate incorporation of
genomic context sensitivity in models of functional regulatory
variation.

Methods

Plasmid cloning and barcoding

pCMV(CAT)T7-SB100 (SB100X) and pT2/LTR7-GFP were gifts
from Zsuzsanna Izsvak (Addgene plasmids #34879 and #62541, re-
spectively) (Mátés et al. 2009).

The human HBG1 globin promoter, murine Hbb hypersensi-
tive site 2 (HS2) enhancer, A1 insulator, C1 insulator, A1 Core, and
C1CoreDNA fragments (Supplemental Table S6) were synthesized
by GenScript USA. All plasmids used in this study are listed in
Supplemental Table S7.

Cell culture and transfection

K562 cells were obtained from ATCC (ATCC CCL-243) and cul-
tured in RPMI 1640 medium with glutamine (Thermo Fisher
Scientific MT10040CV) supplemented with 10% FBS (Gemini
Bio-Products 100-106), 1 mM sodium pyruvate, and 10 units/mL
penicillin-streptomycin. Cultures were maintained at 37°C and
5% CO2 and were subcultured once cultures reached a density of
5 ×105 cells/mL.

Using the Thermo Fisher Scientific Neon Transfection System
100 µL Kit according to the manufacturer’s instructions with vary-
ing amounts of transposon and transposase, 1 × 106 K562 cells
were transfected (Supplemental Table S1). Cells were transfected
with 4 µL TE to use as a negative control for puromycin selection.
Transfected cells were selected with puromycin (2.5 µg/mL). K562
media with puromycin was replaced every 2 d. Cell counts were
performed either using PrestoBlue (Thermo Fisher Scientific
A13261) and fluorescence detection with the Synergy H1 Multi-
Mode Microplate Reader, or were stained with trypan blue and
counted on a hemocytometer.

Flow cytometry of GFP expression assays

On day 8 after transfection, GFP expression was measured using
the Sony SH800S Cell Sorter. For each experiment, a 100 µM
chip and the Optical Filter Pattern 2 were used; the 405, 488,
and 561 nm lasers were enabled; automatic color compensation
was turned off; and sensor gain settings were set to the following
values: forward scatter (FSC) = 3, back scatter (BSC) = 30.5%, and
FL2 (GFP) = 36.5%.

Using FlowJo v10.7.2, single live cells were gated using side
scatter (SSC) and FSC values from a TE (mock) transfected cell sam-
ple. GFP expression data were plotted on a histogram of unit area
versus GFP fluorescence (525±50 nm).

Generation of barcoded reporter plasmids

Sleeping Beauty reporter constructs used in this studywere barcoded
using a Gibson Assembly approach before introduction into K562
cells (Supplemental Fig. S3). The plasmid backbone to be barcoded
was PCR amplified using pTR-GibsonBC-FW and pTR-GibsonBC-
RV primers, and the correct length fragment was purified from a
1% agarose gel. Next, Gibson Assembly was performed using the
amplified plasmid backbone and a synthesized DNA fragment
“GibsonBC4” according to the manufacturer’s protocol (NEB
E2611L). Barcoded plasmid library DNA was purified using the
ZymoClean&Concentrate-5 (ZymoResearchD4014) protocol be-
fore transformation. Purified barcoded plasmid DNA was trans-
formed into electrocompetent MegaX DH10B-T1 bacteria
(Thermo Fisher Scientific C640003) using an Eppendorf 2510
electroporator set to 1800 V. After recovering for 1 h at 37°C, trans-
formation reactions were transferred to 50 mL LB Media with 100
µg/mL ampicillin and incubated for 16 h at 37°C, shaking at 220
RPM. Barcoded plasmid library DNA was purified using the

Table 2. Effect of reporter insertion on endogenous gene expression

Reporter class
Number of

tests
Number of reporters

tested
Number of genes

tested
Number of significant

tests
Average distance to TSS of

significant tests (kb)

GGlo +HS2 2808 2110 868 193 118
Ins +GGlo + Ins +HS2 4174 3079 989 135 116
Ins +GGlo +HS2 + Ins 2303 1711 876 119 124

Genes within 250 kb of a reporter insertion were tested for differential expression. Summary of the number of tests, unique reporters, unique genes,
and significant tests (Q-value < 0.05) by reporter class.
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ZymoPure II Plasmid Maxiprep kit protocol and quantified on a
NanoDrop.

Genomic DNA purification

At 11–14 d post-transfection, cell pellets containing 3×106 to
4 × 106 cells eachwere snap frozen in LN2 and stored at−80°C until
DNA extraction. Cell pellets were allowed to warm to room tem-
perature, and then were resuspended in 385 µL DNA Quick
Extract (Lucigen QE09050) and transferred to a 1.5 mL tube.
Cells were incubated for 15 min at 65°C, followed by 5 min at
98°C. After cooling briefly, 10 µL Proteinase K (Sigma-Aldrich
P4850-5ML) was added, and cell lysate was incubated overnight
at 55°C. The following day, 5 µL RNase A (Sigma-Aldrich R4642-
50MG) was added, and the cell lysate was incubated for 30 min
at 37°C. Genomic DNA was precipitated by adding 4 µL
Glycoblue (Thermo Fisher Scientific AM9515), 40 µL 3M Sodium
Acetate, and 1 mL ice-cold 100% ethanol. After incubating at
−80°C for 1 h, DNA was pelleted by centrifugation at 20,000g for
30min at 4°C. TheDNApellet waswashed twicewith 70%ethanol
and then resuspended in 200 µL Buffer EB (Qiagen 19086).

RNA purification

At 11–14 d post-transfection, cell pellets containing 1×106 cells
each were resuspended in 350 µL TRIzol solution (Thermo Fisher
Scientific 15596026) and stored at −80°C until RNA extraction.
Frozen samples were allowed to warm to room temperature, and
then 350 µL cell solution was transferred to a Phase-Lock gel
tube (Thermo Fisher Scientific NC1093153). To each Phase-Lock
tube, 70 µL chloroformwas added and shaken vigorously, followed
by a 2 min incubation at room temperature. Tubes were centri-
fuged at 12,000g for 10 min at 4°C. Following centrifugation, the
aqueous phase was decanted from each tube and transferred to a
new tube. Then, 350 µL 70% ethanol was added and mixed well,
and the solutionwas transferred to aQiagen RNeasy-mini spin col-
umn. Samples were centrifuged at 13,000g for 15 sec, and the flow-
through was discarded. Next, 350 µL Buffer RW1 was added to
each column, samples were centrifuged at 13,000g for 15 sec,
and the flow-throughwas discarded. This Buffer RW1wash was re-
peated once more for a total of two washes. Next, 500 µL Buffer
RPE was added to each column, samples were centrifuged at
13,000g for 15 sec, and the flow-through was discarded. This
Buffer RPE wash was repeated once more for a total of two washes.
After the last RPE wash, the column was centrifuged for an addi-
tional 2 min at 13,000g to remove residual ethanol. Samples
were eluted in 40 µL RNase-free H2O.

To ensure that the RNA preparation was DNA-free, we used
the Ambion TURBO DNA-free kit protocol (Thermo Fisher
Scientific AM1907). Following DNase treatment, RNA was trans-
ferred to a fresh tube, and the concentration was quantified on
the NanoDrop.

Amplicon library preparation

For DNA libraries, unique molecular identifiers (UMIs) and the in-
ner portion of the P5 sequencing adapter were added. Twenty mi-
crograms of genomicDNAwas digested with PstI (NEB R3140L) for
1 h at 37°C and then purified using the Zymo Clean &
Concentrate-25 (Zymo Research D4034) protocol. One cycle of
PCR was performed with the following conditions: eight replicate
50 µL reactions were prepared, each containing 500 ng PstI-digest-
ed DNA, 1× Phusion Hot Start FlexMastermix (NEBM0536L), and
200 nM of the primer P5_Plasmid_8N/9N/10N, and incubated for
5 min at 98°C, for 1 min at 60°C, and for 10min at 72°C. Replicate
reactions were combined and then purified using the Zymo Clean

& Concentrate-5 (Zymo Research D4014) protocol, eluting the
DNA in 20 µL.

For RNA libraries, cDNA was synthesized using the Super-
Script IV First Strand Synthesis kit (Invitrogen), with 5 µg RNA
template and 2 µM primer P5_barcode_0N/1N/2N (containing a
truncated sequencing adapter) in two replicate reactions per sam-
ple. RNAwas first incubated with primers and dNTPs for 10min at
60°C, then placed on ice for 1 min. The remaining reverse tran-
scription (RT) reagents were added, and samples were incubated
for 10 min at 55°C, for 10 min at 80°C, and then cooled to 4°C.
Next, 1 µL RNase H was added to each reaction, and incubated
for 20 min at 37°C. Single-stranded cDNA was purified using the
Zymo Clean & Concentrate-5 protocol (Zymo Research D4014),
using seven volumes of DNA binding buffer and eluting in 10 µL
Zymo DNA elution buffer. Unique molecular identifiers (UMIs)
and the inner portion of the P7 sequencing adapter were added
to each single-stranded cDNA molecule using 1 cycle of PCR
with the following conditions: two replicate 50 µL reactions
were prepared, each containing 5 µL cDNA, 1× Phusion Hot Start
FlexMastermix (NEBM0536L), and 200 nMof the primer P7_Plas-
mid_8N/9N/10N, and incubated for 5 min at 98°C, for 5 min at
64°C, and for 5 min at 72°C. Replicate reactions were combined
and then purified using the Zymo Clean & Concentrate-5 (Zymo
Research D4014) protocol, eluting the DNA in 20 µL.

For inverse PCR (iPCR) libraries, 40 µg genomic DNA was di-
gestedwithDpnII for 2 h at 37°C. DigestedDNAwas purified using
the ZymoClean&Concentrate-25 columnprotocol, and digestion
was verified by running 100 ng DpnII digested DNA out on a 1%
agarose gel. Intramolecular DpnII ligation was performed using
DpnII digested DNA at a concentration of 5 µg/mL, and T4 DNA
ligase at a concentration of 10,000 units/mL. Ligation reactions
were incubated overnight at 4°C, and ligation products were puri-
fied using the Zymo Clean & Concentrate-25 column protocol.

DNA, RNA, and iPCR libraries then amplified using a nested
PCR approach to add full Illumina sequencing adapters in two
stages. To add the inner P5 and P7 sequencing adapters (DNA
and RNA samples already had P5 or P7 added, respectively), sam-
ples were amplified for 20–30 PCR cycles. Eight replicate 50 µL re-
actions were prepared, each containing 2 µL DNA, 1× Phusion Hot
Start FlexMastermix (NEBM0536L), 200 nM of the appropriate P5
and P7 primers for each library type (Supplemental Table S6), and
incubated 1 cycle for 5 min at 98°C; 20–30 cycles (sample depen-
dent) for 15 sec at 98°C, for 15 sec at 55°C, and for 30 sec at
72°C; and 1 cycle for 10min at 72°C. Replicate reactions were com-
bined and then purified using the Zymo Clean & Concentrate-5
(Zymo Research D4014) protocol, eluting the DNA in 20 µL.

The remaining (outer) adapter sequences with indexing bar-
codes were added to each library using 10 cycles of PCR with the
following conditions: one 50-µL reaction was prepared per library,
each containing 1 µL DNA purified from the previous round of
PCR, 1× Phusion Hot Start Flex Mastermix (NEB M0536L), 200
nM of each indexed P5 and P7 primers (e.g., P5_amplicon_S502
and P7_Amplicon_N704) (Supplemental Table S6), and incubated
1 cycle for 5 min at 98°C, 10 cycles for 15 sec at 98°C, for 15 sec at
71°C, and for 30 sec at 72°C, and 1 cycle for 10 min at 72°C. Final
DNA librarieswere purified using the ZymoClean&Concentrate-5
(Zymo Research D4014) protocol, eluting the DNA in 20 µL.
Completed libraries were quantified using the Qubit dsDNA HS
(Thermo Fisher Scientific Q32851) kit protocol.

Single-cell RNA-seq library preparation

Cells were transfected as described above (Supplemental Table S1).
To enrich for cells that received the transposase construct, mKate-
positive cells were sorted into new plates 24 h after transfection
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using a Sony SH800 cell sorter as described above, except that the
665±30 nm optical filter was used to gate for mKate fluorescence,
and expanded.

scRNA-seq expression libraries were generated using the 10x
Chromium Next GEM Single Cell 3′ workflow (10x Genomics
1000128). For Experiment 4, an additional sort for GFP-positive
cells was performed on day 4, and 5700 cells were collected for
scRNA-seq (Supplemental Table S5), whereas the remaining cells
were expanded in culture for an additional 7 d, at which point
cell pellets were collected for RNA, DNA, and iPCR libraries.

For Experiment 5, cell pellets were collected for RNA, DNA,
and iPCR libraries, and cells were frozen 14 d post-transfection.
After thawing cells and expanding for 2 d, cells were collected
from each of four separate transfections and pooled for scRNA-
seq libraries (Supplemental Table S5). Additional pellets were col-
lected post-thaw for additional RNA, DNA, and iPCR libraries.

Separate libraries enriched for reporter transcripts were gener-
ated from the cDNA produced in the Post GEM–RT Cleanup &
cDNA Amplification step of the 10x Chromium Single Cell 3′

(v3.1) library protocol using PCR with the following conditions:
eight replicate 25 µL reactions were prepared, each containing 1
µL amplified 10x Chromium Single Cell cDNA, 1× Phusion Hot
Start Flex Mastermix (NEB M0536L), 500 nM of the primer
P5_Halfsite, and 500 nM of the primer P7_10xSBbarcodeV2_0N,
and incubated 1 cycle for 5 min at 98°C; eight cycles (sample de-
pendent) for 15 sec at 98°C, for 15 sec at 66°C, and for 30 sec at
72°C; and one cycle for 10 min at 72°C. Replicate reactions were
combined and then purified using the Zymo Clean &
Concentrate-5 (Zymo Research D4014) protocol, eluting the
DNA in 20 µL. Completed indexed adapter sequences were added
to each library during a final 10 cycles of PCR using the conditions
described in DNA Library Preparation above. Completed libraries
were quantified using the Qubit dsDNA HS (Thermo Fisher
Scientific Q32851) kit protocol.

Sequencing and analysis

Illumina libraries were generated and sequenced on an Illumina
NextSeq 500. Reads were demultiplexed by a standard pipeline us-
ing Illumina bcl2fastq v2.20, requiring a perfectmatch to indexing
BC sequences.

DNA, RNA, iPCR, and enriched scRNA-seq libraries were pro-
cessed by a custom pipeline (Supplemental Table S2). Read pairs
whose sequence comprised >75% G bases were dropped. PCR
primer sequence was removed, and UMI and cell barcodes (cell
BC) were extracted using UMI-tools v1.0.1 (Smith et al. 2017) in-
cluding the option “‐‐quality-filter-threshold=30”. Reporter bar-
codes (BCs) were extracted from the expected position from read
pairs matching the expected template sequence with <10% mis-
matched bases. BCs were required to have two bases or fewer
with base quality score below 30. Reporter BCs, cell BCs, and
UMIs were each deduplicated using a directed adjacency approach
based on that of UMI-tools (Smith et al. 2017).

iPCR libraries were trimmed to remove plasmid sequences, in-
cluding the potential for digestion at a secondary DpnII site using
cutadapt v2.9 (Martin 2011). Reads were then mapped to a hg38
reference genome augmented with transposon and Sleeping
Beauty sequences using BWA v0.7.12 (Li and Durbin 2009).
Libraries for which read 1 was sequenced to 24 bp or more beyond
the end of the plasmid sequenceweremapped in paired-endmode
using BWA-MEMwith -Y option. Otherwise read 2 was mapped in
single-endmode using BWAaln and samse. Readswithout reporter
BCs, aligned with insertions or deletions, with >10% mismatch
rate, with mapping quality <10, or with >1 kb between mates
(for paired mapping) were excluded from further analysis. The in-

tegration insertion site was defined as the 5′ mapping site of read
2. Reporter BCs were additionally deduplicated and grouped by co-
ordinates. Sites with the same reporter BC within ±5 bp were col-
lapsed, and integrations of different BCs within ±5 bp were
excluded. Integrations with fewer than two reads, representing
<1% of the total coverage at a given genomic position, or BCs
found at multiple sites were excluded.

Replicate DNA, RNA, and iPCR libraries were combined for a
given experiment and normalized to one million sequenced reads
in R v3.5.2 (R Core Team2018).Missing RNA counts were imputed
as 0, and only BCs with more than 10 DNA UMIs and a mapped
integration site were considered. Reporter activity was computed
as log2(RNA/DNA+1).

DNase-seq data for K562 (DS9764) was downloaded from
https://www.encodeproject.org and processed using a standard
pipeline. DNase I hypersensitive sites were identified using hot-
spot v1 (John et al. 2011) hotspot peaks (1% FDR). CTCF ChIP-
seq data was taken from a previously published work (Maurano
et al. 2015).

Reporter activity modeling

Reporter activity was modeled using linear regression in R v3.5.2
(R Core Team2018). The basemodel included two features indicat-
ing the number of DHS within 5 and 100 kb of each insertion. To
assess the relevance of other genomic features, we downloaded
DNase-seq of 109 different cell types, and K562 ChIP-seq data
for 321 histone modifications, sequence-specific TFs, coactivators,
and corepressors from the ENCODE Project, as well as lamin-asso-
ciated domains (Supplemental Table S4). These data were repre-
sented as features by counting the number of DHS or ChIP-seq
hotspots within 5 and 100 kb of each insertion and by a binary in-
dicator if the insertion laid within a lamin-associated domain.
Before modeling, the complete data set was divided into training
and testing sets representing 75% and 25% of the data, respective-
ly. Each regressionmodel evaluated was fitted with a 10-fold cross-
validation strategy using the training set, and the best model was
later evaluated using the testing data set. The R packages rsample
and recipes were used to prepare and divide the data set for train-
ing, testing, and cross-validation. The regression models were fit-
ted using lm function and parsnip package and evaluated using
the yardstick package.

Clonal inference

Cells and reporter BCs deriving from a single initial transfected
clone were identified from the enriched scRNA-seq libraries using
Python v3.8.1. First, we constructed a bipartite graph whose nodes
were cell BCs and reporter BCs, connected by edges weighted by the
pair’s UMI count. Edges with fewer than two UMI were dropped.
The Jaccard index of reporter BC overlap for all pairs of cells within
a clone was computed as the sum of edge weights connecting the
cells to shared BCs divided by the sum of the UMIs for both cells.
For all cell pairs whose Jaccard index was <30%, the edge with the
lowest weight between either cells was removed for each shared BC.

For Experiment 5, for which scRNA-seq data was generated
from a superloaded pool of four independent transfections, each
reporter BC was labeled by its known transfection based on the
union of all DNA/RNA/iPCR data. BCs found in more than one
transfection were removed from the graph. Edges connecting a
cell BC to a reporter BC from a transfection representing <80% of
the cell’s total UMI were trimmed. Nodes directly connected to
two different transfections (i.e., doublets or reporter BC collisions)
were dropped.
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To filter out chimeric PCR artifacts, edges representing <5%of
total UMI for a given reporter BC or <2% for a given cellBC were
removed. Reporter BCs mapping to multiple integration sites or
found in multiple transfections were removed. Finally, edges
bridging two independent communities of two or more nodes
with <20% centrality and representing <10% of each community’s
UMIs were pruned. Unconnected nodes were pruned. The remain-
ing connected communities were defined as clones.

scRNA-seq analysis

scRNA-seq 3′ libraries were analyzed using Cell Ranger v4.0.0
(Zheng et al. 2017). A genomic reference was constructed against
hg38 and transposon sequences as described above in sequencing
and analysis. Ensembl release 93 was used for gene annotations.
Only cellBCs contained in the whitelist of non-empty cellBCs
and absent from blacklists of poor-quality cellBCs with few UMIs
and/or too many pSB reads were considered in further analysis.

Reporter effects on endogenous gene expression

We explored the reporter impact on geneswhose TSS laywithin 250
kb from a reporter. For each reporter and gene, we compared the ex-
pression on the set of perturbed cells (those belonging to the report-
er’s clone) against all other cells. Only genes with Ensembl category
of protein_coding or lincRNA were considered. Only cells included
in both single-cell expression and clone assignments were used. To
avoid potential confounding from nearby reporter insertions in the
same clone, we discarded any reporters with a second reporter with-
in 500 kb. Based on power simulations, tests with fewer than three
perturbed cells, average target gene expression in the perturbed or
unperturbed cells of less than 10 UMI, or overall average expression
below 0.05 UMI were excluded from the analysis.

Differential expression of clonal alterations local effects
(DECAL) models the reporter effect using a negative binomial (or
Gamma-Poisson) regression with regularized dispersion estimate:

Y � NB(m, u), (1)

log(m) = log(depth)+ b0 + bc X (2)

where Y is the observed counts for a particular gene across all cells,
µ is the expected average gene UMI count, θ is the gene UMI distri-
bution dispersion, β0 and βc are the regression coefficients, depth is
the cell total UMI count, andX is an indicator vector that is 1 if the
cell belongs to the reporter clone (perturbed) or 0 if it does not (un-
perturbed). To estimate the distribution dispersion (θ) of each
gene, we used the approach of Hafemeister and Satija (2019) of fit-
ting a Poisson regression [Y � Pois(eb0 + log(depth))] for a random
subset of 2000 genes and estimating θ usingmaximum likelihood.
Then, we expanded the estimation to all genes with average ex-
pression ≥0.05 UMIs by fitting a kernel regression of θ in relation
to the gene average expression.

Perturbation (βc) significance was estimated by two-tailed
P-value based on Student’s t-distribution. Storey’s Q-value ap-
proach was used for multiple testing correction (Storey and
Tibshirani 2003) for each transfection individually. Tests with Q-
value <0.05 were considered significant.

We performed simulations based on Equation (1) to estimate
detection power over a range of clone sizes (n) and effect sizes with
a fixed dispersion (θ) of 100. For each simulation condition, we
generatedUMI counts for 1000 genes and the samenumber of cells
as the actual scRNA-seq data set. Expected average gene UMI
counts (µ) ranged from theminimumandmaximumobserved val-
ues in the actual scRNA-seq data set in a logarithm scale. For each
gene, n cells were sampled and their UMI counts altered by the de-

fined effect size. The resulting simulations were evaluated by our
analysis algorithm given only the simulated countmatrix and cells
assignment as perturbed and unperturbed.

TAD definitions for K562 cells were derived from previously
published contact matrices (GSE63525_K562_intrachromoso-
mal_contact_matrices.tar.gz) (Rao et al. 2014) and KR normalized.
To identify TADs, Armatus v2.2 (Filippova et al. 2014) was used
with gamma=0.5.0 and a resolution of 5 kb. Results were lifted
over to hg38 using UCSC liftOver (Supplemental Data S1).

A K562 copy number map based on shotgun whole-genome
sequencing was obtained (Zhou et al. 2019). Calls in hg19 were di-
vided into 500-bp intervals, lifted over to hg38 using UCSC
liftOver, and then consolidated. Regions in hg38 covered by dis-
crepant copy number calls were excluded from analysis.

Software availability

Code used in sequencing data processing is available at GitHub
(https://github.com/mauranolab/mapping/tree/master/transposon).
ChIP-seq and DNase-seq data were processed using a standard
pipeline available at GitHub (https://github.com/mauranolab/
mapping/tree/master/dnase). Code used for scRNA-seq differential
expression analysis is available at GitHub (https://github.com/
mauranolab/decal). All repositories are also available as Supple-
mental Code.
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