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Abstract

Background: Adolescence is a period characterized by major biological development, which may be associated
with changes in DNA methylation (DNA-M). However, it is unknown to what extent DNA-M varies from pre- to
post-adolescence, whether the pattern of changes is different between females and males, and how adolescence-
related factors are associated with changes in DNA-M.

Methods: Genome-scale DNA-M at ages 10 and 18 years in whole blood of 325 subjects (n = 140 females) in the
Isle of Wight (IOW) birth cohort was analyzed using lllumina Infinium arrays (450K and EPIC). Linear mixed models
were used to examine DNA-M changes between pre- and post-adolescence and whether the changes were
gender-specific. Adolescence-related factors and environmental exposure factors were assessed on their association
with DNA-M changes. Replication of findings was attempted in the comparable Avon Longitudinal Study of Parents
and Children (ALSPAC) cohort.

Results: In the IOW cohort, after controlling for technical variation and cell compositions at both pre- and post-
adolescence, 15,532 cytosine—phosphate—guanine (CpG) sites (of 400,825 CpGs, 3.88%) showed statistically
significant DNA-M changes from pre-adolescence to post-adolescence invariant to gender (false discovery rate
(FDR) = 0.05). Of these 15,532 CpGs, 10,212 CpGs (66%) were replicated in the ALSPAC cohort. Pathway analysis
using Ingenuity Pathway Analysis (IPA) identified significant biological pathways related to growth and
development of the reproductive system, emphasizing the importance of this period of transition on epigenetic
state of genes. In addition, in IOW, we identified 1179 CpGs with gender-specific DNA-M changes. In the IOW
cohort, body mass index (BMI) at age 10 years, age of growth spurt, nonsteroidal drugs use, and current smoking
status showed statistically significant associations with DNA-M changes at 15 CpGs on 14 genes such as the AHRR
gene. For BMI at age 10 years, the association was gender-specific. Findings on current smoking status were
replicated in the ALSPAC cohort.

Conclusion: Adolescent transition is associated with changes in DNA-M at more than 15K CpGs. Identified
pathways emphasize the importance of this period of transition on epigenetic state of genes relevant to cell
growth and immune system development.
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Background

The time period from pre-adolescence to post-
adolescence is denoted as the adolescence transition
period, during which children experience significant
gender-dependent social, environmental, and physio-
logical changes, e.g., transition to independence, initi-
ation of smoking, puberty, rapid growth, and often body
mass index (BMI) increase [1-4]. The timing and inten-
sity of these changes have been associated with a range
of adult phenotypes. For instance, we and others have
found that the timing and intensity of pubertal events
are associated with height [3, 5] and lung function [6] in
adulthood. In addition to physiological changes, pre-
and post-adolescence transition has also been linked to
changes in disease status for conditions such as asthma,
emphasizing the importance of this critical transition
period to life-long health. In particular, a gender reversal
of asthma prevalence occurs across adolescence from
male predominance of asthma prevalence in pre-
adolescence to female predominance in post-
adolescence, primarily as a consequence of increased
new onset and reduced remission in girls [7-10].

It is known that epigenetic factors regulate cell lineage
and tissue-specific gene expression, and one of the most
commonly studied epigenetic mechanisms is DNA
methylation (DNA-M). DNA-M is a covalent addition of
a methyl-group to a methyl group to a cytosine followed
by a guanine (cytosine—phosphate—guanine or CpG). Re-
duction of DNA methylation may facilitate transcription
through allowing transcription factors or co-activators to
bind to regulatory elements (promoter or enhancer re-
gions) [11-13]. At intragenic regions, DNA-M has
inverted U-shape relationship with gene expression
levels, whereby the highest levels of intragenic methyla-
tion are found in moderately expressed genes [11, 14].
Through epigenetic regulation of gene activity, DNA-M
is associated with disease susceptibility directly, or
through synergistic effects with single nucleotide poly-
morphisms [15-17].

Longitudinal studies have established that DNA-M
over time is stable at some CpG sites and varies at
others (dynamic methylation) [18-21]. In our recent
study, we also demonstrated changes in DNA-M be-
tween pre- and post-adolescence in genes encoding
components of the Th2 immune response pathway and
their association with asthma status change [22]. Given
the regulatory function of DNA-M and its association
with health conditions, assessing changes of DNA-M in
a longitudinal setting provides the potential to identify
epigenetic biomarkers of disease-susceptibility. A recent
study based on 55 children (30 girls) examined changes
in DNA-M between ages 8 and 14 years and identified
48 CpGs that DNA-M showed statistically significant
changes regardless of gender and 397 gender-specific
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CpGs [23]. However at age 14, most children are still in
the adolescence transition period; hence, the CpGs iden-
tified at this age may not be truly representative of pre-
and post-adolescence transition phenomena. Changes in
DNA methylation in response to environmental expo-
sures that alter in the adolescent period have also been
identified, for example, the use of oral contraceptives
and age at menarche with DNA-M at age 18 in the
GATA3 gene [1]. Identification of such changes in DNA
methylation will lead to increased understanding of the
mechanisms by which such modifiable factors may lead
to change in phenotype and provide new opportunities
for intervention.

In this study, the aim was to identify CpGs at the gen-
ome scale where DNA-M significantly changes from
pre-adolescence to post-adolescence (denoted as “dy-
namic CpGs”) and assess their gender-specificity. Associ-
ation of these dynamic CpGs with adolescence-related
factors such as growth spurt and body mass index, as
well as exposures such as tobacco smoke and air pollu-
tion were assessed. We hypothesized that DNA-M
changes from pre- to post-adolescence and adolescence-
related factors were associated with these changes.

Results

Subjects in the Isle of Wight (IOW) birth cohort with
DNA-M available at both ages, 10years (pre-adoles-
cence) and 18 years (post-adolescence), were included in
the study (n = 325 including 140 female participants).
We analyzed in total 400,825 CpG sites common to Illu-
mina 450k and 850k EPIC array platforms.

Results from the IOW birth cohort

At the genome-scale, medians of DNA-M at all CpGs
(in M values calculated as base 2 logit transformed beta
values) indicated that DNA-M at age 18 tended to be
higher than that at age 10 years for both genders, but at
age 18 DNA-M of females overall was higher than that
of males (Table 1).

With respect to individual CpG sites, when focusing
on DNA-M changes (from pre- to post-adolescence)
without considering gender specificity (Model 1, see
Methods section), 15,532 (~ 3.88%) of the 400,825 CpGs
showed statistically significant changes (dynamic CpGs).
Of these 15,532 CpGs, DNA-M increased from age 10 to
age 18 at 8894 (57%). The Manhattan plot of -logl0

Table 1 Descriptive statistics of M values (I0W, 400825 CpGs)

Gender Age 10 Age 18
Female Median 0.72 0.85
(n = 140) o

95% empirical interval — 718,417 — 7.08, 4.85
Male Median 0.73 0.79
(n = 185) o

95% empirical interval —7.03,4.02 — 7.03, 444
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transformed p values of the 400,825 tests are shown
in Fig. 1a with the dashed line indicating the cut-off
of statistical significance after controlling false discov-
ery rate (FDR) of 0.05. Approximately 1/3 (27%) of
the dynamic CpGs were located in gene promoters
within 200 bp (TSS200) or 1500 bp (TSS1500) of the
transcription start site (Fig. 1b), significantly lower
than the proportion of total CpGs (29%) in the ana-
lysis (p value = 2.0 x 107'°).
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Using linear mixed models with gender and time
interaction effects included (Model 2), we identified
at 1179 CpGs (FDR = 0.05; Additional file 1), where
DNA-M changes across adolescence were gender-
specific (Fig. 2a). More than 36% (420 CpGs) of
these 1179 gender-specific dynamic CpGs were in
promoter regions (Fig. 2b), significantly higher than
the percentage (27%) of gender non-specific dynamic
CpGs (p value = 41.6 x 107'"). A small portion of
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Fig. 1 a Manhattan plot of Model 1 (examining the overall changes of DNA-M from pre- to post-adolescence. The x-axis represents chromosome
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Fig. 2 a Manhattan plot of Model 2 (examining gender-specific changes of DNA-M from pre- to post-adolescence). The x-axis represents
chromosome numbers [1 to 22]. The y-axis is —log10 transformed raw p values (~logiop). CpGs with FDR-adjusted p value less than 0.05 were
located above the dotted line. b Locations of the identified CpGs Model 2 (gender-specific DNA-M changes), n:%. Body includes the region of

body and 1° Exon, and the promoter region includes TSS1500 and TSS200

the 1179 CpG sites (83 CpGs; 7%) were among the
15,532 dynamic CpG sites identified without asses-
sing gender specificity, implying that DNA-M at the
remaining 1096 CpGs did not show an overall
change pre- and post-adolescence (irrespective of
gender), but DNA-M changed at least in one gender.
Of the 1179 CpGs, for both genders, DNA-M at 265
CpG sites was higher at age 18years, and lower at
age 18years at 469 CpGs, but the magnitude of
change was different between females and males. For
the remaining 445 CpG sites (of the 1179), the dir-
ection of methylation changes was opposite between
females and males.

Results from the replication cohort, Avon Longitudinal
Study of Parents and Children

To assess reproducibility of the findings from the IOW
cohort the same models at these CpGs used in the IOW
cohort were applied to data from the Avon Longitudinal
Study of Parents and Children (ALSPAC) cohort. After
controlling for FDR of 0.05, of the 15,532 dynamic CpGs
identified in the IOW, 13,739 (~ 88%) were found to be
statistically significant in ALSPAC. Among these 13,739
dynamic CpG sites, consistent directions of association
as those in the IOW cohort were observed at 10,212
CpG sites (74%). The distributions of the CpGs with re-
spect to direction of change and genomic location were
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also comparable to those found in the IOW cohort; for
instance, 27% (2757 CpGs) of the 10,212 CpGs were in
the promoter region of genes, and DNA-M at 61% CpGs
(6199 CpGs) was higher at age ~ 15.5years compared
with ~ 7.5 years of age. For the 1179 gender-specific dy-
namic CpGs identified in the IOW cohort, 37 (~ 3%) of
them survived multiple testing in the ALSPAC cohort at
FDR = 0.05. For both genders, none of the 37 CpGs
showed the same direction of associations as those in
the IOW cohort.

Pathway analysis of replicated dynamic CpG sites

We applied pathway enrichment analysis to the top 500
dynamic CpGs (of the 10,212 CpGs replicated in
ALSPAC) selected by effect size in the IOW cohort.
Pathway analyses using Ingenuity Pathway Analysis
(IPA) [24] revealed 56 significant canonical pathways (p
< 0.05) (Additional file 2). Among them the most statis-
tically significant four pathways were Amyotrophic Lat-
eral Sclerosis Signaling, G-Protein Coupled Receptor
Signaling, Relaxin Signaling and IL-17A Signaling in Air-
way Cells (Table 2). In total, 23 identified CpG sites
were mapped to the genes in these four pathways. Fig-
ures 3 a and b show the changes of DNA-M at these 23
CpGs in both IOW and ALSPAC cohorts, along with
the location of the CpGs with respect to genomic
location).

Associations of pubertal exposures with replicated
dynamic CpG sites

Adolescence is a period accompanied by significant
changes such as puberty, rapid growth, and often BMI
increases. We postulated that adolescence related factors
were associated with changes in DNA-M (Additional file
3). In this analysis, we focused on the 10,212 CpGs repli-
cated in ALSPAC. Among the adolescence factors of
interest, age of growth spurt, frequency of taking non-
steroidal drug, and current smoking status were shown
to be associated with DNA-M changes at 13 CpGs
(FDR-adjusted p values < 0.05) and these associations
did not differ between females and males. At two CpGs,
cg08770870 and cgl9663246, BMI at age 10 years was
associated with DNA-M changes (FDR-adjusted p values
< 0.05) and the associations were different between gen-
ders (Table 3). The influence of BMI at age 10 years on
DNA-M at age 18 years (adjusting for the effect of age
10 years’ DNA-M) was different between the two gen-
ders; at cg08770870, high BMI was linked to lower
DNA-M post-adolescence for girls, but higher post-
adolescence DNA-M among males (interaction p value
= 1.78 x 107°), while at cg19663246, high BMI was asso-
ciated with high DNA-M post-adolescence for both fe-
males and males, but for males, DNA-M was higher
(interaction p value = 3.86 x 107°). For a subject with
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later age of growth spurt, post-adolescence DNA-M at
cg08134671 tended to be lower (p values = 7.15 x 107).
For subjects who used non-steroidal drugs more often,
post-adolescence DNA-M at three CpGs (cg16384862,
¢g18552620, cgl12170787) was lower compared with sub-
jects who rarely used such drugs (all raw p values <
107°). Similar patterns were observed among subjects
who were active smokers; at all 9 identified CpGs, post-
adolescence DNA-M was lower if a subject was exposed
to tobacco smoke (all p values < 10™* with smallest p
value = 1.0 x 1073, Table 3).

We further tested in the ALSPAC cohort the CpGs
that were shown to be associated with adolescence fac-
tors in IOW. In the ALSPAC cohort, variables available
for analysis were BMI at age 5 or 7 years, reported age of
menarche, and current smoking status. Of the 9 CpGs
identified in IOW to have DNA-M changes associated
with current smoking status, DNA-M changes at 8 of
these CpGs showed the same direction of association in
ALSPAC as those in the IOW cohort, of which 5
(cg05575921, cg14753356, cg26703534, cg08709672, and
¢g16391678) were statistically significant (p value < 0.05,
Table 4).

For the 21 CpG sites showing associations with puber-
tal exposures in the IOW (Table 3), we further examined
their biological evidence using expression data via RNA-
seq. Of the 21 CpGs, 18 were available for the analysis.
Genes within 500 kbp upstream and downstream of the
CpGs were considered neighboring genes. In total 16
genes were identified and included in the analyses to
examine the association of DNA-M with expressions of
their neighboring genes (Table 5). At 5 CpGs, DNA-M
showed statistically significant associations, of which two
CpGs (cg05575921 and cg26703534) are on the AHRR
gene and one CpG (cg21241889) is on gene TRAFI. At
all these five CpGs, higher DNA-M was associated with
lower expression of genes (negative associations). At the
other 13 CpGs, the associations were statistically insig-
nificant and at 5 CpGs, tendency in negative associations
was also observed. All these 5 CpGs are located in the
Body region of genes.

Discussion

In an effort to gain a better understanding of the dynam-
ics of epigenetic change during the critically important
adolescent period, this study focused on the changes in
DNA-M between pre- and post-adolescence, and further
assessed potential factors that might be associated with
such changes. In the IOW cohort, we identified more
than 15K CpGs where DNA-M changes from pre- to
post-adolescence regardless of gender and at 1179 CpGs
the changes were different between genders. Of the 1179
CpGs, a large portion (~ 36%) are located in the pro-
moter region of genes. Most (10,212 CpGs, ~ 66%) of
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Table 2 The four most statistically significant canonical pathways from IPA
Pathways Ratio p value CpG sites Genes
Amyotrophic Lateral Sclerosis Signaling 0.081 0.00026 cg01483824 GRIN2D
cg05404236 IRS2
€g05942459 GRIK2
g 14029489 PRPH
€g19318393 CAPN2
920681578 AKT3
€g22562942 NEFM
€g23786580 HECW1
€g26746936 GRIKS
G-Protein Coupled Receptor Signaling 0.050 0.0010 cg00456868 CHRMS5
cg01207684 ADCY9
cg01939453 PDE10A
cg02914422 PDET1C
cg05404236 IRS2
cg10273340 GNAO1
cg11701471 OPRK1
cg11934695 ADRAID
€g19908812 NPY1R
cg20681578 AKT3
€g21213853 GRM2
923817981 CCR4
€g24540003 RELA
Relaxin Signaling 0.057 0.0032 cg01207684 ADCY9
cg01939453 PDE10A
cg02914422 PDE1C
cg05404236 IRS2
cg10273340 GNAO1
€g20681578 AKT3
€g24540003 RELA
€g25599619 GNB1
IL-17A Signaling in Airway Cells 0.077 0.0036 cg05404236 IRS2
cg15053248 MAP3K7
€g15931839 TRAF3IP2
€g20681578 AKT3
€g24540003 RELA

[1] Ratio is the number of genes in our list to the number of genes in a pathway [2]. CpGs and genes identified in at least two pathways are in bold font

the detected 15,532 CpGs were replicated in the
ALSPAC cohort. The findings are also consistent with
results in a recent study which focused on DNA-M
changes between ages 8 and 14 years [23]. Thompson
et al. [23] identified 48 differentially methylated CpGs
based on genome-scale DNA-M data in 55 children (n =
30 girls), and 43 (90%) of these 48 CpGs were among
the 10,212 CpGs replicated between IOW and ALSPAC
in this study.

In our data, DNA-M in females overall was higher
than that in males at age 18 years in the IOW cohort.
On the other hand, higher DNA-M in whole blood in
males was noted in another study and it was suggested
that the higher DNA-M could be due to the additional
X-chromosome in females [25]. This contrast was inter-
esting, since in our study, CpGs on sex chromosomes
were excluded to avoid such biasness. The observed dif-
ference in DNA-M between gender in the IOW may
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DNA-M between pre- and post-adolescence on CpGs linked to pathways in Table 2 (ALSPAC)

have been due to a different underlying mechanism.
Other studies also suggested significant autosomal differ-
ences in DNA methylation at specific CpG series be-
tween males and females [26] and the higher level of
methylation observed in females undoubtedly reflects
this. In addition, higher DNA-M in female compared
with boys was negligible at age 10 years, compared with
age 18 years. We postulate that at this earlier age, ado-
lescence transition just embarked and gender specificity

in DNA-M have not reflected in DNA-M. Sex differ-
ences in genome-scale DNA methylation pattern have
been observed in various tissues in addition to whole
blood [27, 28]. In-depth investigations on higher DNA-
M in females on autosome chromosomes after adoles-
cence will be helpful.

The findings from pathway analyses based on the top
500 of the 10,212 CpGs emphasized the importance and
uniqueness of the adolescence transition period. The G-
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Table 3 Analysis of the effect of pubertal exposures on dynamic CpG sites replicated in ALSPAC
Pubertal exposures CpG sites Genes Est. coeff. p valuegay p valueag;
BMlyo BMI,o X gender® cg08770870 RPH3AL 0.060 1.78 x 10°® 0.018
919663246 PDE1C 0.038 3.86 x 10°° 0.020
BMlyo €g08770870 RPH3AL - 0016 0013 0457
€g19663246 PDEIC 0.002 0.70 0.945
Pubertal events Age growth spurt cg08134671 GNG7 - 0.059 7.15x 107 0.007
Female's age of menarche cg06271237 PLAGL1 —0.028 791 x 10°° 0.081
Other pubertal exposures Non-steroidal drugs 916384862 Ccwcis; - 0.161 1.23x 1077 0.001
KDM4D
cg18552620 STK17A - 0.206 1.66 x 1077 0.001
cg12170787 SBNO2 - 0.014 7.60 x 10°° 0.026
€g00620824 HLA-C - 0029 393x107° 0.080
€g12054453 TMEM49 - 0.035 393 %107 0.080
cg11001739 MADIL1 0.029 527 x107° 0.090
Do you currently smoke (yes) €g05575921 AHRR -0.742 1.0x10 " 340 x 107°
cg14753356 IER3 -0.193 1.0x10 " 340x 10"
€g26703534 AHRR -0.178 1.0x10" 340x 10"
924296397 BSN 0.094 7.25x 1077 0.002
cg08709672 AVPR1B - 0.098 1.09 x 10°¢ 0.002
cg16391678 ITGAL -0.115 8.57 x 10°° 0.015
cg20295214 AVPR1B -0.117 155 x 107> 0.023
cg21241889 TRAF1 - 0.070 236x10° 0.030
cg04885881 SRM - 0.092 399 x 107 0.045
cg08109568 FAN1 - 0170 743 %107 0.071
cg08884752 SKI - 0.078 763 %107 0.071

[1] SFemale is the reference group [2]. Est. coeff.: estimated regression coefficients for each risk factor [3]. p valueg,w: raw p values for each test [4]. p valueaq;:
FDR-adjusted p values, and FDR-adjusted p values < 0.05 were in bold font. CpGs with FDR-adjusted p values < 0.1 were also included

protein coupled receptor signaling mediates transmem-
brane signaling involved in diverse physiological func-
tions including hormone release and actions, and cell
growth and differentiation. It also regulates immune sys-
tem activity and inflammation by chemokine receptors
binding ligands, which mediate intercellular communica-
tion between cells of the immune system. The relaxin
signaling pathway is closely related to the development
of the reproductive system. Relaxin produced through
this pathway is a polypeptide hormone best known for
its connective tissue remodeling, which affects the fe-
male reproductive system. It promotes the growth of the
cervix, uterus, mammary gland, and nipples [29]. In
addition, relaxin may have impact on enhancing sperm
motility [30]. It also has a role in regulating pituitary
hormone release [31], lung and skin remodeling [32] and
can induce inhibition of histamine release [33]. IL-17A
signaling in airway cells was also identified. IL-17A is
linked to the pathogenesis of several inflammatory and
autoimmune diseases [34] including respiratory disor-
ders such asthma where it activates MAPK and JAK/
STAT signaling in airway smooth cells [35], leading to

eosinophil recruitment and promotion of airway inflam-
mation. Of note, in the adolescence period asthma
sometimes remits and the higher prevalence childhood
asthma in males gives way to the higher female inci-
dence in adulthood [7-10].

Among all the factors associated with changes of
DNA-M across adolescence (invariant to gender), non-
steroid drug use and smoke exposure affected the great-
est proportion of CpGs in the IOW cohort, and findings
on more than half of the CpGs associated with active
smoking were replicated in the ALSPAC cohort. Al-
though the identified CpGs linked to the use of non-
steroid drugs had not been reported in previous studies,
and certainly deserve further investigation, most genes
including HLA-C, KDM4D, SBNO2, and TMEM49 to
which these CpGs mapped have shown to be associated
with inflammation or been treated as inflammation
markers [36-38], implying the potential impact of non-
steroid drugs on epigenetic mechanisms underlying
hemopoietic differentiation. The CpG site ¢g05575921 in
the AHRR gene has shown to be associated with active
smoke exposure in various studies [39]. The identified
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Table 4 Pubertal exposure analysis in ALSPAC on the factors and CpGs identified in IOW
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Pubertal exposures CpG sites Genes Est. coeff. p valuegay
BMIs/, BMIs,; X gehder$ €g08770870 RPH3AL - 0018 0465
€g19663246 PDEIC - 0.002 0.932
BMls, €g08770870 RPH3AL 0.008 0535
€g19663246 PDEIC 0.017 0.175
Pubertal events Female's age of menarche cg06271237 PLAGL1 0.004 0619
Other factors Current/Former smoking status (Yes) €g05575921 AHRR - 0.199 7.43 x 1078
cg14753356 IER3 - 0.099 0.010
926703534 AHRR —-0.071 0.002
€g24296397 BSN - 0017 0403
cg08709672 AVPR1B - 0.035 0.031
cg16391678 ITGAL —-0.092 0.003
€g20295214 AVPRIB — 0.004 0.896
€g21241889 TRAFT - 0.029 0.137
€g04885881 SRM - 0033 0.236
€g08109568 FANT - 0.005 0.868
cg08884752 SKI - 0.048 0.131

[1] *Female is the reference group [2]. Est. coeff.: estimated regression coefficients for each risk factor [3]. p valueg,y: raw p values for each test, and p values <

0.05 are in bold font

Table 5 Association of DNA-M at each of the 18 CpGs with
expression of their mapped genes

CpG Gene Region Estimate SE p value
€g21241889 TRAF1 Promoter - 386.899 176.498 0.030
€g00620824  HLA-C Promoter ~ 3723.357 7100079  0.600

- 2583 0.772 0.001
- 4.885 1.634 0.003
- 4.989 2.224 0.027

cg05575921 AHRR Body
cg11001739 MADILT Body
€g26703534 AHRR Body

cg08770870 RPH3AL  Body 2.836 1.584 0.076
cg12170787 SBNO2 Body 121.684 89.554 0.176
€g08884752  SKI Body —20.270 15247 0.186
cg08709672 AVPRIB  Body — 41434 44.148 0.350
€g24296397 BSN Body —42.795 56.336 0449
cg06271237 PLAGLT  Body - 6.530 8.863 0463
€g16391678 [TGAL Body — 66.564 91619 0.469
€g20295214 AVPRIB  Body 10419 27.976 0.710
cg08134671  GNG7 5'UTR 2924 3432 0.396
cg14753356 IER3 Intergenic — 8651.300 2796.589 0.002
€g04885881 SRM Intergenic  67.502 136.346 0.621

€g08109568  FANT Intergenic ~ 42.010 313325 0.894
cg19663246 PDEIC Intergenic ~ 0.000 0.000 NaN

[1] DNA-M and expressions via RNA-seq measured at age 26 years [2]. DNA-M
at these 18 CpGs are associated with pubertal exposures. [3] CpG sites
showing statistically significant results are in bold font

association of DNA-M of ¢g05575921 with expression of
AHRR further supports the regulatory functionality of
epigenetics. Effects of smoking on DNA-M differenti-
ation at the four CpGs corresponding to AVPRIB,
ITGAL, and SRM genes also have been shown in mul-
tiple cross-sectional studies [40-42]. For instance, at
both ¢g20295214 (AVPRIB) [40, 42] and cg04885881
(SRM) [42], earlier studies demonstrated lower DNA-M
among smokers. Our findings further indicated a longi-
tudinal impact of active smoking on DNA-M reduction
at these CpGs. In addition, although the association of
DNA-M at ¢g21241889 with smoking exposure was not
statistically significant in the ALSPAC cohort, the direc-
tion of association was consistent with that in the IOW.
Being located in the promoter region of gene TRAFI
and accompanied by the connection of smoking expos-
ure with expression of TRAFI [43], the statistically sig-
nificant association of DNA-M at ¢g21241889 with
expression of TRAFI revealed a strong potential of this
CpG'’s functionally regulatory role.

In addition, the impact of some factors on DNA-M
changes was different between females and males in the
IOW, e.g., pre-adolescence BMI, although these findings
were not replicated in the ALSPAC cohort. In recent
cross-sectional studies, it has been shown that DNA-M
is associated with BMI [44, 45]. Findings from our study
indicated that BMI at pre-adolescence may have the po-
tential to predict DNA-M changes in adolescence at
some CpGs, e.g., cg08770870 (RPH3AL) and cgl19663246
(PDEIC). Given the associations between BMI, atopy,
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and asthma [46-48], and a gender-specific effect of pre-
adolescence BMI on DNA-M changes suggested by our
study, further investigation into the role of these CpGs
in each gender on the development of atopy and asthma
may improve our understanding on the epigenetic mech-
anisms of these health conditions. In the IOW, we
showed that DNA-M changes at cg08134671 were asso-
ciated with the age of growth spurt. This CpG was
mapped to the GNG7 gene, a gene critical to the
stabilization or formation of a G protein heterotrimer
[49]. The protein was likely to contribute to allergic
asthma alterations [50]. Although it has been shown that
asthma affects growth spurt [51, 52], to our knowledge,
no studies have reported whether and how the age of
growth spurt influences the status of asthma. These pu-
bertal exposure-associated CpGs sites have a potential to
serve as informative epigenetic markers in future studies
on asthma and its related health conditions.

The study has some limitations. First, although we had
a great consistency in gender-unspecific dynamic CpGs
between the IOW and ALSPAC cohorts, the findings on
gender-specific dynamic CpGs were not replicated in the
ALSPAC cohort. Specifically, in the ALSPAC cohort, 36
of the 1179 gender-specific dynamic CpG sites identified
in IOW also showed gender-specific changes, but the
direction of gender-specificity was different from that in
the IOW. Such inconsistencies might be due to the dif-
ferences in the ages when DNA-M was assessed between
the cohorts: 10 and 18 years in the IOW and 7 and 15
years in ALSPAC. Since children at ages 14 or 15 years
are still in the adolescence transition period and some
children may have just started puberty, we postulate that
at this age gender specificity may have not been reflected
in DNA-M. A further assessment on gender-specificity
in large cohorts with ages comparable to IOW is war-
ranted in future studies.

In addition, we focused on personal smoking and did
not evaluate the effects of second-hand smoking due to
the high correlation between these two exposures. In fu-
ture studies, joint effects between these two levels of ex-
posures may want to be considered for their impact on
DNA-M changes. Finally, tissue specificity in DNA-M
has been discussed in animal and human studies [53—
55]; for instance, larger variations in DNA-M were ob-
served in saliva compared with DNA-M in blood [55].
The tissue specificity in DNA-M is likely to lead to tis-
sue specificity in DNA-M changes over time. The
present study only focused on DNA-M changes in whole
blood from pre- to post-adolescence.  Any
generalizability of the findings should be used with cau-
tion. Nevertheless, we hope the findings from our epi-
genetic study would benefit future investigations in the
area of adolescence development and health conditions
such as childhood asthma where a gender reversal of
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asthma prevalence was observed. One example of such
type of investigations is to test the impact of the identi-
fied pubertal exposure-associated CpGs on the risk of
asthma transition from pre- to post-adolescence.

Conclusions

DNA-M at more than 16K CpG sites is likely to change
in the period of adolescence transition in one or both
genders. Pathways inferred based on the identified CpGs
emphasized the importance of this period of transition.
Certain factors, including pre-adolescence BMI, age of
growth spurt, non-steroid drug use, and current smoke,
are potentially associated with DNA-M changes in
adolescence.

Methods

The Isle of Wight birth cohort

The Isle of Wight birth cohort was established to study
the natural history of asthma and allergies and identify
genetic and environmental risk factors, and composed of
children born on the IOW, UK, between January 1,
1989, and February 28, 1990. The island is close to the
British mainland, is semi-rural, and with no heavy indus-
try. The population is largely of Caucasians (~ 99%). In-
formed consent was obtained from 1456 out of 1536 (~
95%) newborns. The 1456 newborns were followed up at
ages 1 (n = 1167; 80.2%), 2 (n = 1174; 80.6%), 4 (n =
1218; 83.7%), 10 (n = 1373; 94.3%), and 18 (n = 1313;
90.2%) years. Parents of each child completed detailed
questionnaires regarding asthma and allergy prevalence
at every follow-up. Blood samples were collected at ages
10 and 18years from most participants. Details of the
IOW cohort have been described elsewhere [56]. In this
study, we focused on the age 10 and 18 year follow-ups.

DNA methylation

DNA was extracted from whole blood samples using a
standard salting out procedure [57]. Genome-scale
DNA-M was assessed using the Illumina Infinium
HumanMethylation450 BeadChip and MethylationEPIC
Beadchip (Illumina, Inc., San Diego, CA, USA), which
interrogate > 484,000 and > 850,000 CpG sites, respect-
ively, associated with over 24,000 genes. The bisulfite
conversion efficiency on all 10 (n = 453) and 18 years (n
= 520) was estimated for array data from each of the
samples. MethyLumiSets were generated by reading raw
idat files using either the methylumIDAT function [58]
of methyLumi package [59] (450k Infinium Human
Methylation BeadChip array data) or using the readEPIC
function of wateRmelon [60] (Infinium Methylation
EPIC array data). The bscon function of wateRmelon
was used for estimating the bisulfite conversion effi-
ciency. The bisulfite conversion efficiency was found to
be high with a median of 94.1% (IQR 92.8-95.0) (mean
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(SD), 93.6% (2.9)). These efficiency rates are comparable
with the rates estimated for the EZ-96 DNA Methylation
kit used by Illumina platforms [61]. Data pre-processing
was undertaken using the CPACOR pipeline [62].
Briefly, intensity values from raw IDAT files were back-
ground corrected and assessed for quality. Probes not
reaching a detection p value of 107'° in at least 95% of
samples were excluded. The data were quantile normal-
ized using the R package, minfi [63]. Autosomal probes
were then extracted and converted to beta values. The
beta values represent the ratio of the methylated (M)
probe intensities of the sum of methylated (M) and
unmethylated (U) probe intensities (Beta = % with
constant C = 100 introduced for the situation of too
small M+U). Next, principal components (PCs) inferred
based on control probes were used to represent latent
chip-to-chip and technical variation. Since DNA-M data
were from two different platforms, we determined the
PCs based on DNA-M at shared control probes. In total,
195 control probes were shared between the two arrays,
and used to calculate the control probe PCs with the top
15 to represent latent batch factors [64]. CpG sites com-
mon between Illumina 450k platform and EPIC platform
were included in the study. To reduce the potential in-
fluence of probe SNPs, CpG sites were further excluded
if the minor allele frequency of the probe SNP in the
Caucasian population at that site is > 7% (i.e., ~ = 10 out
of 1456 subjects expected to have the minor allele in the
cohort) and the probe SNP was within 10 base pairs of
the targeted CpG site.

Beta values close to 0 or 1 tend to suffer from severe
heteroscedasticity, and it has been demonstrated that
base-2 logit transformed beta values (denoted as M
values) perform better in differential analysis of methyla-
tion levels [65]. In this study, M values were used to rep-
resent methylation levels in the analysis.

The association of DNA-M assessed from whole blood
and pubertal exposures could be confounded by cellular
heterogeneity [66, 67]. Hence, there was a need to adjust
cell type proportions in whole blood. The method pro-
posed by Jaffe and Irizarry [68] that modified from
Houseman et al’s [69] was recommended [70] to esti-
mate cell proportions and implemented in Bioconductor
[71] minfi package.

Statistical methods

To identify dynamic CpG sites such that DNA-M
changes between two-time points (pre- and post-
adolescence), linear mixed models with repeated mea-
sures were implemented. M values of DNA-M at both
ages were treated as the response variable; gender (with
girls as the reference group) and time were included as
predictors (Model 1). Adjusting factors included
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indicators to different platforms (450K and EPIC), cell
type proportions and principal components representing
latent factors due to batch effects and technical variation
at each time point. To assess gender specificity in DNA-
M changes, we extended Model 1 with gender x time
interaction included (Model 2). In Model 1, CpG sites
with statistically significant time effects were treated as
being dynamic CpG sites. In Model 2, sites were selected
if statistically significant interaction effects were identi-
fied. In both models, multiple-testing was corrected by
controlling FDR of 0.05 [72]. The analyses were per-
formed in SAS version 9.4 [73] .For the linear mixed
models, SAS seems to have difficulty in handling a large
number of missing values. CpG sites were not analyzed
if they had > 20% missing values.

To examine the association of a phenotypic factor with
changes of DNA-M at each identified dynamic CpG site,
linear regressions were applied with DNA-M at age 18
years as the dependent variable and a phenotypic factor
and DNA-M at age 10vyears as the independent vari-
ables. The factors (Additional file 3) included BMI at age
10 years, height at age 10, age of growth spurt, age of pu-
bertal events, frequency of nonsteroidal drugs use,
current smoke and ever smoked status, pet exposure at
age 10 years, pollution, and status of living on farm. For
females, pubertal events included body hair growth, skin
change, menarche, and breast growth; for males, body
hair growth, skin change, facial hair. The goal was to
examine the effects of these factors on DNA-M at age
18 years adjusting for DNA-M at age 10 years, i.e., their
effects on the change of DNA-M. In the analyses, DNA-
M was first corrected for the effects of batch, cell types,
and principal components, and then included in the lin-
ear regressions. Gender was included in the model as an
adjusting factor. To evaluate gender-specificity with re-
spect to the association of a phenotypic factor with
DNA-M changes, we further included a gender and fac-
tor interaction effect into the model. Results were
regarded as statistically significant with p value < 0.05
after adjusting for multiple testing by controlling FDR of
0.05 across all testing CpGs for each phenotypic factor.
The analyses were performed in SAS version 9.4 [73].

Replication in ALSPAC

The findings in the IOW were further tested in the
ALSPAC longitudinal birth cohort. All pregnant women
(expected date of delivery between April 1, 1991, and
December 31, 1992) resident in a defined geographical
area in the South West of England were eligible. In total,
14,541 pregnant women were recruited, for obstetric
data abstractions and earlier questionnaires. Out of the
14,541 women, 13,761 women were eligible, and further
10,321 out of these eligible women had DNA sampled.
Details of ALSPAC have been described elsewhere [74—
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76]. Please note that the study website contains details
of all the data that is available through a fully searchable
data dictionary and variable search tool (http://www.
bristol.ac.uk/alspac/researchers/our-data/)

Genome-scale DNA-M in the ALSPAC cohort was
assessed using the Illumina 450k platform. Based on the
availability of DNA-M at two-time points (average ages
of 7.5 and 15.5years), data from 478 females and 461
males were analyzed in our study including some sub-
jects from the ARIES study [77]. The pre-processing
of DNA-M included removing batch effects and tech-
nical variation, details of which can be found else-
where [77]. CpGs with detection p value > 0.01, and
samples were flagged that contained sex-mismatch
based on X-chromosome methylation were excluded
from the analyses. Phenotypic factors examined in-
clude pre-adolescence BMI, age of menarche, and ac-
tive smoking status.

Pathway analysis

The genes corresponding to CpGs were identified using
the Illumina array manifest gene annotations and SNIP-
PER (https://csg.sph.umich.edu/boehnke/snipper/) ver-
sion 1.2. The Ingenuity Pathway Analysis system—IPA°®
was used to identify global canonical pathways (QIA-
GEN Inc., https://www.qiagenbioinformatics.com/prod-
ucts/ingenuity-pathway-analysis) [24].

Assessment on biological evidence using RNA-seq data
To examine the biological evidence of the CpGs associ-
ated with phenotypic factors, we utilized DNA-M and
expressions via RNA-seq measured at age 26 years of n
= 139 subjects in the IOW cohort.

DNA-M at age 26 years was analyzed using Illumina
Infinium Methylation EPIC Beadchip and pre-processed
in the same way as the DNA-M at ages 10 and 18 years.
Expression at age 26 years was measured using paired-
end (2 x 75bp) RNA sequencing using the Illumina Tru-
Seq Stranded mRNA Library Preparation Kit with IDT
for Illumina Unique Dual Index (UDI) barcode primers
following manufacturer’s recommendations. All samples
were sequenced second time using exactly the same
protocol and for each sample the output from both runs
were combined. FASTQC [78] were run to assess the
quality of the FASTQ files. Reads were mapped against
Human Genome (GRch37 version 75) using HISAT2
(v2.1.0) aligner [79]. The alignment files, produced in
the Sequence Alignment Map (SAM) format, were con-
verted into the Binary Alignment Map (BAM) format
using SAMtools (v1.3.1) [80]. HTseq (v0.11.1) [81] was
used to count the number of reads mapped to each gene
in the same reference genome used for alignment. Nor-
malized read count FPKM (Fragments Per Kilobase of
transcript per Million mapped reads) were calculated
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using countToFPKM package (https://github.com/AAl-
hendil707/countToFPKM).

Linear regressions were then applied to test the associ-
ations of DNA-M in M values with the expressions of
their corresponding genes to assess their biological evi-
dence. Associations with p value < 0.05 were deemed as
being statistically significant.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/513148-019-0780-4.

Additional file 1. List of 1,179 CpGs, DNA-M changes across adoles-
cence were gender-specific (FDR=0.05).

Additional file 2. List of 56 significant canonical pathways (p< 0.05).
Additional file 3.. Description of pubertal exposures.
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