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Abstract: In this review, the role of fatty acids (FA) in human pathological conditions, infertility in
particular, was considered. FA and FA-derived metabolites modulate cell membrane composition,
membrane lipid microdomains and cell signaling. Moreover, such molecules are involved in cell
death, immunological responses and inflammatory processes. Human health and several pathological
conditions are specifically associated with both dietary and cell membrane lipid profiles. The role of
FA metabolism in human sperm and spermatogenesis has recently been investigated. Cumulative
findings indicate F2 isoprostanes (oxygenated products from arachidonic acid metabolism) and
resolvins (lipid mediators of resolution of inflammation) as promising biomarkers for the evaluation
of semen and follicular fluid quality. Advanced knowledge in this field could lead to new scenarios
in the treatment of infertility.

Keywords: diet; fatty acids; F2-isoprostanes; inflammation; male infertility; sperm quality resolvins;
oxidative stress

1. Introduction

Fatty acids (FA) play a fundamental role in cellular mechanisms. With respect to
the number of double bonds present within the carbon chain, they are classified as satu-
rated (SFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). As FA
are components of phospholipids in cell membrane structures, also involved in lipid–
protein interactions, the length of their carbon chains affects membrane properties, cellular
processes and susceptibility to cell death. Thus, the engineering of membrane lipid com-
position represents a new frontier in nutraceutical and pharmaceutical intervention [1,2].
In particular, SFA and PUFA influence membrane fluidity [3,4] and are also precursors
of lipid signaling molecules [5]. Among the n-3 PUFA, eicosapentaenoic (EPA, 20:5n-3)
and docosahexaenoic acid (DHA, 22:6n-3) are involved in immunological responses [6],
inflammatory processes and, by displacing n-6 PUFA and cholesterol, the modulation
of cell membrane composition, membrane lipid microdomains (lipid rafts) [7] and cell
signaling [8]. Interestingly, unsaturated FA appear to be involved in lipid ordering and
lipid raft stability, also influencing inflammatory effects, given that lipid rafts are platforms
for the assembly and function of many signaling pathways [9]. The role of dietary lipids
has been debated and supported for gut [10,11] and brain functions [12,13]; moreover, the
ability of EPA and DHA to reduce blood pressure and inflammatory processes has been
reported [14]. In cells, the membrane FA composition influences the inflammatory response
by affecting the production of inflammatory mediators [15]. In fact, the increase in the
membrane content of n-3 PUFA (EPA and DHA), at the expense of the arachidonic acid (AA,
20:4n-6) content (an n-6 PUFA), is followed by an increase in the production of eicosanoids
and resolvins [16]. Remarkably, it is well established that the inappropriate regulation of
inflammation contributes to a range of human diseases. Along these lines, high-fat diets
induce high levels of endotoxins, circulating free FA and inflammatory mediators, resulting
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in metabolic inflammation throughout the organism [17]. Recently, the PUFA biosynthesis
pathway has also been invoked in the inflammatory complications of COVID-19 [18].

Phospholipase A2 hydrolyzes AA esterified to membrane phospholipids so that its free
form is further metabolized by cyclooxygenase and lipoxygenase enzymes to a spectrum
of bioactive lipid mediators, including prostanoids and lipoxins, whose receptors are
coupled to G proteins and mediate pharmacological effects (prostanoid receptors and
lipoxin receptors). The role of AA metabolism in human health and inflammatory-related
diseases has been reviewed [19,20]. Human health and several pathological conditions have
been shown to be associated with both dietary and cell membrane lipid profiles [21–25]
(Figure 1).
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Figure 1. Role of polyunsaturated fatty acids (PUFA) in the modulation of the inflammatory process
and in various pathological conditions [22–24]. The biophysical features of the cell membrane are
conditioned by the membrane fatty acid (FA) composition [3,4]. PUFA metabolism is involved in
the release of pro-inflammatory and pro-resolution mediators. A different contribution is attributed
to n-3 PUFA (mainly pro-inflammatory mediators) and n-6 PUFA (main pro-resolving inflamma-
tory mediators) [15]. The n-6/n-3 PUFA ratio is related to both the onset and the progression of
several diseases [22,23]. References displayed in brackets refer to the references list. Legend: COX,
cyclooxygenase; LOX, lipoxygenase; LX, lipoxins; Rv, resolvins; Pr, protectins.

2. Fatty Acids in Normal and Altered Spermatogenesis

The role of FA metabolism in human sperm and spermatogenesis is a key issue that
requires clarification. FA accumulate in testicular cells through passive diffusion and/or
protein-facilitated transport, mediated by CD36 glycoprotein expressed in Sertoli cells. In
humans and animals, alpha-linolenic acid (ALA, 18:3n-3) and linoleic acid (LA, 18:2n-6)
are essential FA that cannot be synthesized and must therefore be provided by the diet.
Linolenic acid and ALA metabolites are obtained by an elongation and desaturation process
catalysed by enzymes such as elongases 2 (Elovl2) and 5 (Elovl5), ∆6-desaturase (FADS1)
and ∆5-desaturase (FADS2). DHA and EPA are derived from ALA metabolism [5].

Sertoli cells are the most relevant cell type in the testis concerning essential FA
metabolism. Active conversion of essential FA to docosapentaenoic acid (DPA, 22:5n-6) and
DHA was observed in Sertoli cells, which, in rats, show a high expression of ∆5-desaturase
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and ∆6-desaturase compared to germ cells. Decreased levels of DPA are related to smaller
testes [26] and lower fertility, which could be due to poor spermatid maturation. The FA
profile of cultured rat Sertoli cells was modified by testosterone, which is involved in the
modulation of ∆5 and 6 desaturase activity by PUFA biosynthesis [27].

The key enzymes involved in PUFA metabolism have been described during sper-
matogenesis and epididymal sperm maturation in stallions [28]. FADS1 was expressed in
germinal cells and ELOVL5 in germinal and Leydig cells, whereas FADS2 was not detected.
FADS1, FADS2 and ELOVL5 were detected in epididymal vesicles secreted via an apocrine
mechanism. Recently, Castellini et al. [29] observed in rabbit testis, using immunofluores-
cence, that PUFA intermediate metabolites, enzymes and final products showed a different
localization in Leydig, Sertoli and germinal cells. Leydig cells showed FADS1, FADS2 and
ELOV2; Sertoli cells, FADS2; germ cells, ELOVL5 (meiotic cells) and FADS1/2 (elongated
spermatids). Epididymal vesicles were positive for FADS1, ELOVL2 and ELOVL5 as well
as DHA, EPA and AA [29].

Human Sertoli cells prefer the metabolic conversion of n-3 FA over n-6 FA, which
justifies the high concentration of DHA in sperm. Metabolic diseases, including obesity
and type II diabetes mellitus, affect FA availability in Sertoli cells and, consequently, male
reproduction [30]. Regarding sperm cells, it is known that the FA profile influences not only
sperm motility and vitality but also capacitation, the acrosomal reaction and sperm–oocyte
fusion [31]. DHA and palmitic acid (C16:0) are the major PUFA and SFA in human sperm.
During spermatogenesis and epididymal maturation, the relative amount of DHA in the
sperm plasma membrane increases [32].

Normozoospermic men showed different FA amounts in sperm with respect to seminal
plasma [33]. DHA was 6.2 times higher in spermatozoa than in seminal plasma, whereas
behenic (C22:0) and oleic (C18:1) acids showed the opposite trend. Palmitic, stearic and
oleic acids and DHA were the most prevalent FA in sperm cells (Figure 2). Spermatozoa
and seminal plasma FA could be taken as predictors of cryopreservation success [34], since
sperm n-3 PUFA, especially DHA, were associated with sperm motility and viability after
freezing/thawing. MUFA and SFA in sperm are negatively linked to sperm motility and
sperm concentration [34–36]. On the other hand, a high concentration of DHA was detected
in the spermatozoa of normozoospermic subjects [33,37].
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FA profiles have also been investigated in human sperm and semen from individuals
with pathological conditions associated with infertility. Collodel et al. [38], in a population
of fertile and infertile individuals (idiopathic infertility and varicocele), reported that oleic
acid and total MUFA in sperm correlated negatively with sperm concentration, progressive
motility, normal morphology, vitality and the fertility index (obtained by sperm TEM
analysis mathematically elaborated) and positively with sperm necrosis. The amount of
EPA in sperm was positively correlated with necrosis and that of SFA negatively correlated
with sperm vitality. Many authors reported that, in sperm from controls, the n-3 FA
content increased, and the n-6 FA amount decreased, compared those detected in infertile
men [34,38,39].

In cases of asthenozoospermia, high levels of oleic and palmitic acids were measured
in seminal plasma [40].

It is well known that PUFA are very susceptible to lipid peroxidation (LPO), which
plays a prominent role in many acute and chronic diseases [41]. In cases of varicocele,
urogenital infections and idiopathic infertility, pathological conditions that may be as-
sociated with inflammatory status, a reduced amount of total n-3 PUFA and DHA was
observed [33,37,38,42].

So, sperm membrane FA composition and metabolism are both relevant to sperm
maturation processes and fertility. The data suggest that the FA content could represent a
good marker of male infertility, and proper dietary integration of FA may be a potential
therapy in this field [43].

3. Influence of Dietary FA Supplementation on Sperm Quality and Function

Two major issues have been pivotal points of investigation in the field of sperm FA
profiles: first, the comparison between FA profiles of fertile and infertile men and second,
the effect of dietary FA on sperm FA profiles as well as sperm quality and quantity [44].
A current research interest involves the evaluation of a FA diet in the treatment of male
infertility evaluated both in animal models and in humans, where standardization is
difficult due to variations in the diet and lifestyle as well as the variability of spermatozoa.
There is increasing evidence that dietary fat intake has an impact on semen quality [45–47],
which is negative in the case of SFA consumption [45].

Nonhuman models suggest that trans fatty acid (TFA)-supplemented diets not only
cause decreased spermatogenesis but can, in a dose-dependent manner, reduce the pro-
duction of testosterone and the testicular mass and promote testicular degeneration [48].
Dietary TFA affect human sperm morphology and oocyte quality by changing the mem-
brane lipid composition which, in turn, leads to impairment in metabolic pathways [49].
In rats, supplementation of a high fat diet with 2.5% olive oil partially counteracts the
negative effects on sperm quality by increasing motility, reducing oxidative stress and
slightly improving mitochondrial efficiency [50]. In mice fed a high-fat diet (Dio Rodent
Purified diet with 60% energy from fat, Labdiet) for over 2 months, a decrease in DHA in
the testis was associated with impairment of the sperm acrosome reaction and fertility [51].

Different animal studies have shown that dietary n-3 FA are incorporated into sper-
matozoa, but their effect on semen quality is inconsistent [52]. Some years ago, Lewis
et al. [53] observed that spermatozoa with a high PUFA content were susceptible to LPO
that could further lead to DNA damage; however, Kelley et al. [54] reported that n-3 PUFA
decreased LPO. Recently, in rabbits, supplemental dietary n-3 PUFA (one diet enriched
with 10% extruded flaxseed and another with 3.5% fish oil for 110 days) improved sperm
motility traits and resulted in an enrichment of membrane FA in the sperm and testes, even
if such an increased amount of PUFA negatively affected sperm oxidative status [55]. In
the same animal model, diets modulated the expression pattern of Toll-like receptor 4 and
proinflammatory cytokines on the hypothalamic-gonadal axis and reproductive organs [56].

In human semen, n-3 PUFA supplementation resulted in higher antioxidant activity;
enhanced sperm concentration, motility and morphology [47,57,58] and reduced sperm
DNA fragmentation [59]. Human testicular volume was positively related to the intake
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of n-3 PUFA and negatively related to the intake of n-6 PUFA and TFA [60]. A consider-
able number of infertile men with idiopathic oligoasthenoteratozoospermia might benefit
from n-3 FA (DHA + EPA) administration (1.84 g/d for 32 weeks), resulting in higher
antioxidant activity in human seminal fluid, which can enhance sperm count, motility and
morphology [48,61]. Alteration of the content and ratio of n-6 and n-3 FA in the diet has
been found to influence eicosanoid synthesis and metabolism and affect fertilising ability
in males [62]. An increase in the n-3/n-6 PUFA dietary ratio is valuable to sustain the repro-
ductive capacity of male turkeys, especially as they age [63]. Dietary DHA, more efficiently
than AA, restored fertility, sperm count and spermiogenesis in DPA and DHA-deficient
∆-6 desaturase-null mice [64]. Recently, a meta-analysis (randomized controlled trials)
indicated that supplementing infertile men with n-3 FA (DHA or EPA treatments either
alone or in combination with other micronutrients) resulted in significant enhancement of
sperm motility concomitant with an increased concentration of seminal DHA [65] and an
improvement in the semen quality of infertile and fertile men from couples seeking fertility
treatment [66].

At present, we believe that nutrition can both negatively and positively affect semen
quality. In this context, a meta-analysis of 16 randomized controlled trials showed that
semen parameters improve after n-3 supplementation and decrease with a diet rich in SFA
and TFA. These data confirmed the relevant role of a controlled FA diet in male fertility [67].

4. Current New Indices of Male Infertility Involving PUFA Oxidation
4.1. F2-Isoprostanes

Oxidative stress (OS) is caused by an imbalance between the production of reactive
oxygen species (ROS) and their quenching by antioxidant compounds that act as defence
mechanisms [68]. It is associated with the pathophysiology of various diseases related
to male infertility, such as varicocele, leukocytospermia and urogenital infections [69],
even though ROS, within a physiological range, are necessary for sperm motility, capac-
itation, the acrosomal reaction and oocyte interaction [70]. Spermatozoa are particularly
susceptible to damage by ROS as their plasma membrane is rich in PUFA, acquired during
testicular and epididymal maturation. In spermatozoa, LPO leads to cellular dysfunction
due to loss of the membrane fluidity and integrity necessary for successful sperm–oocyte
fusion [71]. Primary products resulting from this mechanism include malondialdehyde
(MDA), 4-hydroxynonenal (4-HNE) and acrolein [69,72].

MDA is an essential and widespread biomarker for the analysis and monitoring of
PUFA peroxidation [73]. In addition, 4-HNE and acrolein form adducts with several
sperm proteins, such as axonemal proteins, compromising sperm motility and, in general,
sperm function. Furthermore, 4-HNE can bind to mitochondrial proteins in human sperm,
triggering the loss of electrons and ROS formation; the resulting OS causes activation of the
intrinsic apoptotic cascade, loss of MMP, DNA damage and, finally, cell death [71].

As secondary products of LPO, a series of prostaglandin (PG)-like molecules called
isoprostanes (IsoPs) and monocyclic and serial cyclic peroxides have been identified. IsoPs
have been detected in mammalian plasma, urine, cerebrospinal fluid, sputum, saliva,
brain tissues, atherosclerotic plaques and gastric mucosa [74], and are considered a ‘gold
standard’ biomarker of endogenous LPO [75].

Our group studied the role of IsoPs in semen and suggested that these molecules
could represent new indices for the evaluation of semen quality and the pathogenesis
of infertility, indicating possible personalized therapeutic approaches (Figure 3). They
are initially formed in situ on phospholipids, as an esterified form, and then released as
free IsoPs into the circulation by the action of phospholipase A2; this process does not
require the action of the cyclooxygenase enzyme. These products include F2-IsoPs from AA,
F2-diomo-isoprostanes (F2-diomo-IsoPs) from adrenic acid (AdA) and F4-neuroprostanes
(F4-NeuroPs) from DHA, and they are all considered LPO indices. Among the IsoP groups,
F2-IsoPs are considered a reliable biomarker of endogenous LPO as they are ubiquitous
in the organism and chemically stable in biological fluids [76]. In humans, F2-IsoPs are
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commonly measured in plasma and urine [77] and, as of recently, represent a valid marker
of oxidative damage in semen [78].
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The production mechanism of F2-IsoPs includes various steps, generating four F2-IsoP
regioisomers, each composed of eight racemic diastereomers, for a total of 64 compounds.
The four classes of regioisomers (5-, 8-, 12- and 15-F2-IsoPs) are termed according to the
number of carbon atoms on which the hydroxyl group of the side chain is attached [76].
Among these, the most studied is 15-F2t-IsoP, also known as 8-iso-prostaglandin F2α
(8-iso-PGF2α or iPF2α-III). Eight-iso-PGF2α can be generated during inflammation by
prostaglandin endoperoxide synthase, in both the free and the phospholipid-esterified form.
The latter, which is the most abundant, is not a substrate for prostaglandin endoperoxide
synthase [79]. Therefore, free 8-iso-PGF2α represents an efficient tool for identifying LPO
events in biological fluid. The level of 8-iso-PGF2α generation in normal condition was
reported by van’t Erve et al. [79] in a meta-analysis of published data. Urine has the highest
average concentration (1200 ± 600 pg/mL); on average, ~100-fold less is detected in plasma
(45.1 ± 18.4 pg/mL) and exhaled breath condensate (30.9 ± 17.2 pg/mL). The study of
IsoPs in the male infertility field is growing with the purpose of identifying new indices
for detecting the presence and progression of oxidative stress/inflammation, as well as
for evaluating the efficacy of treatments; these potential biomarkers should be stable and
measurable by non-invasive methods [80]. In seminal plasma, F2-IsoPs can be detected both
in a free form and in cells esterified to membranes [78]. An increased amount of F2-IsoPs
was quantified in the semen of men with varicocele [81–83] and urogenital infections [83],
pathologies generally associated with high ROS levels [84] and inflammation [69].

Among the different aims was the definition of a normal range for F2-IsoP levels in
relation to their possible clinical use in discriminating the conditions of male infertility
associated with the presence of inflammation. Moretti et al. [83] identified a concentration
threshold (29.96 ng/mL) of F2-IsoPs able to discriminate a physiological status of human
semen from pathological conditions related to inflammation. To define this cut-off, seminal
levels of F2-IsoPs were assessed in 192 patients grouped on the basis of clinical diagnosis:
idiopathic infertility (no. 41), urogenital infection (no. 52), varicocele (no. 54) and fertile
men (no. 45). The concentration threshold, identified by the ROC curve, was able to
discriminate fertile from infertile samples; in particular, 44 out of 45 fertile men were under
the defined cut-off (29.96 ng/mL).
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From another point of view, F2-IsoPs could be a useful marker for evaluating in vitro
LPO resulting from gamete handling and in cryopreservation procedures, as well as the
efficacy of in vitro antioxidant supplementation. Indeed, sperm exposure to ROS is ex-
acerbated during common laboratory practices [68,84]. For this purpose, Noto et al. [85]
demonstrated in vitro that F2-IsoP levels increased when human sperm were treated with
an oxidant agent and decreased when an antioxidant compound was added. Chlorogenic
acid (100 µM) showed a protective effect against the alterations detected in the samples
treated with H2O2 (100 µM) for 1 h. High F2-IsoP levels were associated with reduced per-
centages of sperm with double-stranded DNA and high mitochondrial membrane potential.
To confirm the effectiveness of F2-IsoPs, the amount of MDA, widely used to evaluate
oxidative insult [86], was measured by HPLC. MDA levels showed an analogous trend of
F2-IsoPs, validating the effectiveness of F2-IsoPs as an index of in vitro LPO.

When evaluating the role of F2-IsoPs as a marker of LPO in seminal fluid, another aspect
could be considered. It has been reported that the plasma concentration of F2-IsoPs could
be modulated by the administration of defined diets [87,88]. In humans, diet is difficult to
standardise, and in the study of reproduction, isolated cells or tissues, when used as a model,
cannot describe the steps of maturation of spermatogenesis; consequently, they cannot reflect
the effect of diet during this process. Thus, an in vitro approach may be limiting.

Recently, the seminal F2-IsoP amount was assessed on rabbit bucks used as an animal
model after different dietary plans described above. Their diet was enriched with flaxseed,
which has a very high ALA content, whereas a fish oil diet directly supplies ALA derivatives
(EPA, DPA and DHA). F2-IsoPs were reduced in the semen and blood of rabbits fed both
n-3 PUFA dietary sources. Considering that F2-IsoPs are produced by AA, which is poorly
represented in these diets, the data suggested that cell membranes were enriched in n-3
PUFA obtained by dietary intake [55].

Moreover, the beneficial effect of these FA, indicated by the reduced levels of F2-IsoPs,
was confirmed by the improvement of rabbit sperm motility and track speed [55]. In this
model, F2-IsoP levels were higher in both epididymides and testes of the controls than
in those of the n-3 PUFA dietary groups [89]. The main regulators of FA metabolism are
the peroxisome proliferator-activated receptors (PPARs), transcription factors activated
by metabolic ligands. n-3 PUFA diets, by reducing the levels of F2-IsoP, proinflammatory
molecules linked to LPO, may also influence PPARγ expression and play a role in sup-
porting sperm maturation [89]. For this reason, the evaluation of F2-IsoP levels in both
epididymides and testes may indicate decreased inflammation after n-3 PUFA-enriched
diets. These data agree with the observation that n-3 PUFA could modulate FA composition
in cell membrane phospholipids, leading to a decrease in eicosanoids derived from AA,
such as prostaglandin E2 or leukotriene B4 [90].

An interesting observation on the role of F2-IsoPs in seminal fluid was provided by a
clinical study carried out on patients undergoing assisted reproduction techniques [91].

F2-IsoPs were measured in semen samples of 49 infertile men. Semen samples that
produced high-quality embryos showed a higher percentage of sperm with double-stranded
DNA and increased F2-IsoP levels, compared to those that generated low-quality embryos.
The amounts of F2-IsoPs were slightly increased but were still below the identified cut-
off point (29.96 ng/mL) [83] in the semen of men who provided good-quality embryos,
compared to the low-quality embryo group. Therefore, the relationship between a mild
increase in seminal F2-IsoP levels, DNA integrity and high embryo quality suggests that
low F2-IsoP levels in human semen do not indicate the presence of oxidative stress; rather,
they represent a physiological condition (Figure 3).

Concerning the physiological role of IsoPs, Signorini et al. [92] reported that definite
concentrations of F4-NeuroPs, derived from the oxidative metabolism of DHA, were able
to stimulate sperm capacitation.

The main limitation in oxidative stress assessment, due to analytical problems of speci-
ficity and sensitivity, resides in the selection of a marker with the highest possible accuracy.
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4.2. What Is the Role of Resolvins?

In several chronic human pathologies, among which cardiovascular disease, neu-
rodegenerative diseases and respiratory diseases can be counted, derangements of the
inflammatory responses are involved. Thus, if acute inflammation is a physiological defen-
sive process, the shift from an acute to a chronic (unresolved) inflammatory profile is linked
to the development of several diseases. Therefore, these conditions are grouped in the
classification of chronic inflammatory diseases, in which cellular and tissue matrix degener-
ative events and, finally, loss of functionality occur. Thus, the growing evidence in support
of the relevance of chronic inflammation in several diseases leads to speculation on the
so-called ‘inflammatory theory of disease’ [93,94]. In understanding the imbalance of the
inflammatory processes, the evaluation of inflammation resolution pathways is becoming
important. The inflammatory resolution phase is now widely recognized as a biosyn-
thetically active process, governed by a superfamily of endogenous chemical mediators,
specialized pro-resolution lipid mediators (SPMs) that induce resolution of inflammatory
responses. SPMs comprise a class of bioactive lipids and cell signalling molecules (referred
to above as pro-resolving inflammatory mediators) that act to re-absorb inflammatory
exudate, stop inflammation and remodel tissues. Tissue remodelling is a typical event in
the resolution of inflammation that aims to repair lesions caused by etiological agents and
to which the activity of inflammatory cells contributes [95].

The resolution of inflammation is an active process driven by unique signalling
molecules. An important group of these SPMs is derived from PUFA (AA, EPA and
DHA), which are released during the inflammatory process. In particular, SPMs include
(i) n-6 arachidonic acid-derived lipoxins; (ii) n-3 EPA and DHA-derived resolvins, pro-
tectins and maresins; (iii) cysteinyl-SPMs and (iv) n-3 docosapentaenoic acid (DPA)-derived
SPMs. Thus, lipid mediators have crucial roles in both the initiation of inflammation and its
timely resolution. Along the pathway from the initiation to the resolution of inflammation,
temporal lipid mediator class switching occurs. Thus, a correct balance and availability
of AA, DHA, EPA and other n-3 PUFA may provide tissue protection [96]. The different
involvement of PUFA in inflammatory and resolution processes of inflammation, through
the different lipid mediators of which they can be precursors, has already been indicated
(Figure 4).

Resolvins are classified as E-series and D-series resolvins, whose PUFA substrates are
EPA and DHA, respectively. T-series resolvins (RvTs) and RvD n-3 DPA, are classified as
n-3 DPA-derived resolvins [96].

In several pathological conditions, SPM biosynthesis impairment has been hypothe-
sized as a disease-causing agent. Moreover, the metabolic pathway and chemical structure
of SPMs has been validated in different human tissues [96]. Detailed clinical data on the
effect of supplementation with n-3 or marine oil on the production of SPMs in different
biological samples (tissues and fluids) have been reported [96].

In male infertility, the involvement of the inflammatory process is known and associated
with impaired spermatogenesis [97]. Increased levels of inflammatory cytokines, leukocyte
counts and oxidative stress are highly detrimental to sperm quality, thus compromising male
fertility [67,98,99]. In particular, our personal contribution indicated that resolvin D1 (RvD1),
a lipid mediator enzymatically derived from DHA able to elicit anti-inflammatory and
pro-resolving activities [100], was higher in the semen of patients with leukocytospermia,
varicocele and idiopathic infertility, compared to that of fertile men. It was positively
correlated with LPO (AA peroxidation, F2-IsoP production) and reduced sperm quality; in
addition, RvD1showed a relationship with membrane lipid composition, seminal ferritin
and F2-IsoP levels [101]. Therefore, RvD1 appears to be a promising biological indicator to
be included in a panel of seminal inflammatory markers for a more accurate diagnosis of
inflammatory male infertility and a better definition of personalized treatments.

The role of SPMs in pregnancy and fetal conditions has also been reported [102,103].
In the case of polycystic ovary syndrome, a pro-inflammatory state was detected, and a
high pro-inflammatory mediator/SPM ratio was documented in serum [104]. Interestingly,
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resolvin E1 (RvE1) has been proposed as a robust biomarker for oocyte selection. Actually,
RvE1 seems to play a role in improving oocyte quality in humans by increasing cell viability
and proliferation [105]. Thus, interest in resolvins in biomedical applications in the female
reproductive system is also increasing.
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In in vitro and in vivo studies related to chorioamnionitis, the anti-inflammatory role
of RvD1, which modulates the PPARγ/NF-κB pathway, was confirmed [106]. In addition,
pre-eclampsia is associated with deficient levels of RvD1 and maresin 1, the last one being
a further compound involved in the resolution of inflammation. Interestingly, reduced
levels of SPMs (i.e., RvD1 and maresin 1) were concomitant with the overproduction of the
proinflammatory mediator leukotriene B4 [107]. More details on the biological relevance of
resolvins to male and female infertility and to pregnancy complications are displayed in
Figure 4.

Thus, the evaluation of resolvins and pro-resolvin-related metabolic pathways could
be a promising field in which to investigate the role of inflammatory status, the persistence
of a pro-inflammatory status and the occurrence of clinical complications caused by a
persistent inflammatory status in infertility conditions. In parallel, investigations into the
modulation of the inflammatory pathway could represent a tool to identify the optimal
conditions for a successful in vitro fertilization outcome.

5. Conclusions

In this review, we have focused on the role of FA and their oxidation in male fertility.
Given their role, it has been suggested that isoprostanes derived from membrane LPO may
represent a new marker of oxidative stress, offering new targeted therapeutic possibilities
involving dietary regimes.
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The relevant evidence for FA and lipid mediators, as sound biomarkers of reproductive
efficiency, suggests that great attention should be paid to lipid molecules in the optimization
of assisted fertilization outcomes.
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