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Abstract
As people get older, age-related alterations occur that lead to increased susceptibility to disease. In the current COVID-
19 pandemic, older people are particularly susceptible to a SARS-CoV-2 infection developing into severe disease. The 
objective of this review was to examine the literature regarding factors that may explain the tendency of this population to 
develop severe COVID-19. Research articles considered in this review were searched for in EMBASE, PubMed, and Web 
of Science from December 2019 to December 2020. Citations were screened by two independent reviewers. Studies of the 
immune system in older individuals found alterations in both the adaptive and innate immune systems. The adaptive system 
is depressed in its functions, and the innate system is in a pro-inflammatory state that can lead to chronic disease. This pro-
inflammatory state may be related to a severe course of disease in COVID-19. This review shows that the level of evidence 
supporting an association between immune alterations in the elderly and susceptibly to severe progression of SARS-CoV-2 
infection is generally consistent. Preventive measures such as early antiviral treatment are of key importance for prevention 
of severe progression of COVID19.

Introduction

At the end of 2019, an epidemic of viral pneumonia was 
reported in the province of Hubei, China [1, 2]. Genomic 
analysis of samples taken from several patients identified a 
new coronavirus as the responsible pathogen. The genome 
sequence of this virus was approximately 79% identical 
to that of SARS-CoV-1 and matched closely with a bat 

coronavirus identified previously [2]. The virus, initially 
named 2019 novel coronavirus (2019-nCoV), was later 
named SARS-CoV-2 [3]. The World Health Organiza-
tion (WHO) designated this new coronavirus pneumonia 
as "COVID-19” (coronavirus 2019 disease), and it spread 
quickly beyond the borders of China and was declared a 
pandemic by WHO on March 11, 2020 [4]. Previous studies 
have shown that during COVID-19, SARS-CoV-2 affects 
several organs through both the action of the virus on the 
cell and the reaction of the immune system [5–7]. The sever-
ity of the disease is determined by several factors. In this 
regard, individuals with existing morbidity or advanced age 
are more susceptible to suffer a severe course of disease [8, 
9]. Therefore, the aim of this review was to analyze the link 
between the immune response of older individuals ("inflam-
matory aging", "immunosenescence") and the severity of 
disease caused by SARS-CoV-2 infection.

SARS‑CoV‑2 infection and pathogenesis

Regarding the immunopathogenesis of COVID-19, SARS-
CoV-2 uses the renin-angiotensin system (RAS) to enter, 
replicate, and produce damage in the cell. An important 
step in SARS-CoV-2 infection is the binding of the viral S 
protein to its receptor ACE2, a RAS component [5]. This 
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viral infection causes a disease with multiorgan dysfunctions 
involving the respiratory, renal, cardiovascular, central nerv-
ous, and gastrointestinal systems [6].

Structurally, SARS-CoV-2 is a spherical virus covered 
by a lipid envelope. Its genome, a positive-sense single-
stranded RNA molecule, is covered by a nucleocapsid. The 
virion surface contains proteins that are important for patho-
genesis: the S (spike) protein, which is important for bind-
ing to the ACE2 receptor, the M protein, which provides 
structural support, the E protein, which is necessary for the 
assembly of the virus particle, and a hemagglutinin esterase 
[10, 11]. Before binding to ACE2, the S protein is cleaved 
by several proteases, including TMPRSS2 (transmembrane 
serine protease 2), L-cathepsin, and B-cathepsin, but other 
proteases, such as trypsin, factor X, elastase, and furin may 
also be involved [12–14]. Binding of the modified S protein 
to ACE2 facilitates the entry of the virus into the cell and 
decreases the expression of ACE2 on the cell surface [15, 
16]. The ACE2-bound virus is taken into the cell by endo-
cytosis [17]. Initially ACE2 plays a protective role against 
the harmful effects of angiotensin II (Ang II) (inflammation, 
fibrosis, oxidative stress, vasoconstriction, cancer) by trans-
forming Ang II into Ang 1-7, which, acting on its receptor 
Mas, counteracts the effects of Ang II [18]. Internalization of 
the virus/ACE2 complex results in increased Ang II activity 

and stimulates expression of ADAM17 (disintegrator and 
metalloproteinase 17) on the cellular surface. ADAM17 is 
a protease that cleaves ACE2, decreasing the amount of this 
molecule on the cell surface [19]. As a result of the increased 
interaction of Ang II with its receptor AT-1, and through the 
nuclear translocation of NF-κB [20], Ang II induces the pro-
duction of pro-inflammatory cytokines, C-reactive protein 
(CRP), oxidative stress, fibrosis, and vasoconstriction, and it 
increases the activity of ADAM17 [21], among other harm-
ful effects. In addition, ADAM17 cleaves pro-TNF-alpha in 
the cell membrane, converting it to its active form, which, 
when released into the extracellular medium, interacts with 
its receptor, inducing the production of additional ADAM17 
[22, 23]. As a result of the increased ADAM17 activity on 
ACE2 and the internalization of the virus/ACE2 complex, 
there is a drastic reduction of ACE2 on the cell surface and 
an increase of this molecule in the extracellular space [19]. 
This process leads to an exaggerated function of Ang II due 
to a decrease in the conversion of Ang II to Ang 1-7, which 
leads to inflammatory effects and a drastic increase in the 
production of cytokines, with consequent deleterious effects 
[19, 24] (Fig. 1).

SARS-CoV-2 infection and the destruction of cells trig-
ger a local immune response, recruiting macrophages and 
monocytes that release cytokines, initiating adaptive T- and 

Fig. 1  Involvement of the renin angiotensin system (RAS) in the 
pathogenesis of SARS-CoV-2 infection. The viral S protein binds to 
angiotensin I converting enzyme 2 (ACE2) after proteolytic cleavage 
by TMPRSS2 (serine transmembrane protease 2) and cathepsin L. 
The binding of the ACE2-cleaved S protein facilitates the entry of the 
virus into the cell and decreases the expression of ACE2 on the cell 
surface. The internalization of the virus/ACE2 complex decreases 
ACE2 levels and increases the activity of angiotensin II (Ang II) 
and the expression of ADAM17 (disintegrator and metalloprotein-
ase 17) on the cell surface, which, when acting on ACE2, decreases 
the expression of this molecule on the cell surface. The increased 
activity of Ang II on the AT1 receptor induces the production of 

pro-inflammatory cytokines, oxidative stress (ROS), fibrosis, vaso-
constriction, production of C-reactive protein (CRP), and increased 
activity of ADAM17. ADAM17 also acts on pro-TNF-alpha in the 
membrane, producing an active molecule that interacts with its recep-
tor and induces the production of additional ADAM17. The activ-
ity of ADAM17 on ACE2 and the internalization of the virus/ACE2 
complex reduce the amount of ACE2 on the cell surface and increase 
the amount of the soluble form of this molecule (sACE2) in the extra-
cellular space. This process induces an increase in Ang II activity by 
inhibiting the conversion of Ang II to Ang 1-7, leading to a drastic 
increase in cytokine production with consequent deleterious effects
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B-cell immune responses. In most cases, this process can 
resolve the infection; however, in other cases, it results in 
a dysfunctional immune response, which can cause serious 
pulmonary, and even systemic, pathology [5–7].

Immune system in the elderly

With advancing age, changes occur in multiple biological 
systems [25], including the immune system. Alterations in 
both the innate and adaptive immune systems have been 
observed in the elderly [26, 27]. The effects of age on the 
innate immune response include a decrease in pathogen 
recognition, chemotaxis, and phagocytosis, and in adaptive 
immunity, a decrease in the number of virgin T-lymphocytes 
and reduced cytotoxicity, as well as in the quality and quan-
tity of antibodies [26]. In general, these immune defects, 
collectively referred to as "immunosenescence", make the 
elderly less resistant to infections than young individuals. 
Immunosenescence occurs due to continual infections or 
exposure to antigens that affect immunological memory 
and the pro-inflammatory status (inflammatory aging) [28, 
29]. The cytokine-mediated inflammatory process, oxidative 
stress, and changes in the induction of apoptosis predispose 
the elderly to chronic disease. In addition, this inflammatory 
process can alter the adaptive immune system by decreas-
ing the production of virgin T cells. In this regard, there is 
a combination of a reduction in virgin  CD8+T cells with 
clonal expansion of  CD8+ T cells and a reduction in  CD4+ 
T cells and  CD19+ B cells, leading to a weakening of the 
immune system [30]. At the chromosomal level, one of the 
main causes of immune depletion is telomere shortening in 
memory  CD8+ T cells, which induces cellular senescence 
and promotes a state of cell cycle arrest and hyperinflam-
mation that prevents clonal expansion after reinfection [31]. 
This can also occur in senescent  CD4+ T cells, thus associat-
ing inflammation with immunosenescence [32, 33].

Despite the impaired immune response in advanced age, 
persistence of the pro-inflammatory status results in a con-
stant state of low-grade inflammation, characterized by the 
production of inflammatory mediators above basal levels 
[28]. It has been reported that senescent cells have a secre-
tory phenotype associated with senescence and secrete high 
levels of inflammatory mediators such as IL-6, IL-1β, TNFα, 
IL-18, IL-8, CCL2, CCL11, growth factors, and proteases 
[28, 34, 35]. This status during older age may have local 
and systemic consequences for the individual. Therefore, 
an increase in the levels of circulating pro-inflammatory 
cytokines and other factors is an important factor in the 
development and maintenance of immunosenescence [36, 
37] and contributes to chronic diseases of the lung and 
other organs [28, 38]. In the elderly, innate immune cells 
are in a sustained state of activation. The increased pro-
inflammatory activity in these cells, especially monocytes/

macrophages, induces a constant state of alert and hyper-
reactivity. Paradoxically, in old age, while some immune 
functions are diminished, others are increased [28, 36, 39].

There are multiple theories about the origin and perpetu-
ation of inflammation due to aging. (1) Some reports sug-
gest that increased oxidative stress, DNA damage, and mito-
chondrial damage induce cellular changes that are detected 
by cells of the immune system. These alterations, called 
"damage-associated molecular patterns" (DAMPs), stimu-
late leukocytes and other cells to secrete pro-inflammatory 
cytokines [34]. (2) It has been reported that intestinal bacte-
ria may play an important role in inflammation during older 
age. It has been suggested that changes in intestinal perme-
ability allow bacteria and their products (for example, endo-
toxins and peptidoglycan) to be transferred to the lymphatic 
system and finally to the bloodstream, where they can trigger 
low-intensity systemic inflammation in older individuals. In 
this regard, the changes in the aging bowel include dysbiosis 
of the intestinal microbiota in animal models of aging and in 
elderly humans [40–43] and a decrease in intestinal epithe-
lial cell barrier integrity in both mice and humans [44–46]. 
(3) The NLRP3 inflammasome could also be involved in 
the altered inflammatory status in older individuals. Dur-
ing aging, there is a constant increase in the expression 
and activity of NLRP3 in immune cells, including alveolar 
macrophages, which, after chronic stimulation, contribute to 
lung fibrosis [47]. NLRP3 activity is regulated by sirtuin 2 
(SIRT2), an  NAD+-dependent deacetylase [48], and during 
aging, levels of  NAD+ decrease, resulting in reduced sir-
tuin activity [49]. Accordingly, older mice, especially those 
deficient in SIRT2, develop a pro-inflammatory state [50] 
(Fig. 2).

SARS‑CoV‑2 pathogenesis in the elderly

SARS-CoV-2 infection has been shown to have distinctive 
features in elderly adults, who tend to develop more-severe 
disease than children and young adults. The proportion of 
older patients among those admitted to the intensive care 
unit (ICU) is larger than in the group of patients who do not 
require intensive care [8]. Adults over 65 years old represent 
80% of the hospitalizations and have a 23 times higher risk 
of death than those under 65 [9]. The reason why the disease 
is particularly dangerous to older people is not known, but 
it is clear that age is a risk factor for death by COVID-19 [8, 
51]. Zhou and collaborators described the clinical course 
and risk factors in older adults with COVID-19 in Wuhan, 
China. Half of the hospitalized patients had a comorbidity: 
hypertension, 30%; diabetes, 19%; and coronary disease, 8% 
[52]. The fatality rate was high among patients with pre-
existing comorbidities: cardiovascular diseases, 10.5%; dia-
betes, 7.3%; chronic respiratory disease, 6.3%; hypertension, 
6.0% and cancer, 5.6% [53]. Diabetic patients infected with 
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SARS-CoV-2 had higher levels of IL-6, IL-8, and TNFα in 
their peripheral blood than patients without diabetes [54]. 
Here, it is important to emphasize that cardiovascular dis-
ease, hypertension, and diabetes are diseases related to aging 
and are associated with a chronic inflammatory state [55]. 
Older adults are generally more prone to dysregulation of 
immune responses [56–58], and it has been speculated that 
immunosenescence, a term used to describe the changes and 
alterations of the immune system related to age [59], is a 
key determinant in the evolution of SARS-CoV-2 infection.

When SARS-CoV-2 infects the alveolar cells in older 
adults, a vigorous and uncontrolled pro-inflammatory 
immune system occurs. There is also an altered anti-inflam-
matory response in these patients that correlates with the 
increased pro-inflammatory activity [60]. Older adults with 
severe COVID-19 cannot "turn off" their pro-inflamma-
tory response. These patients can quickly enter in a state 
of shock involving hyperactivation of the immune system 
and hypercoagulation in small blood vessels [61, 62]. This 
cascade of rapid and uncontrolled inflammatory signaling 
typically occurs in the last stages of infection and is known 
as a "cytokine storm". This immune response exacerbates 
dyspnea and hypoxia and triggers an intense inflammatory 
reaction in the lungs, kidneys, heart, liver, and brain [63]. 
Autopsies of elderly patients who died of COVID-19 have 
revealed spleen atrophy and necrosis, lymph node necrosis, 
kidney bleeding, hepatomegaly, and neuronal degeneration 
in the central nervous system. The number of immune cells 
also changes during SARS-CoV-2 infection [64, 65]. In fact, 
lymphopenia with reduced  CD4+ T,  CD8+ T, B, and NK cell 
counts is a common feature in patients with severe infection 
[66].

The initial trigger of the cytokine storm is not yet known, 
but it probably involves detection by the immune system 
of various viral antigens that are released from dying cells. 
It is also not clear why some people are particularly prone 
to a cytokine storm. As mentioned above, aging is asso-
ciated with elevated systemic levels of pro-inflammatory 
cytokines, including IL-6, IL-8, TNF-α, IL-13, and IFN-γ, 

as well as acute-phase proteins. In addition to the cytokine 
storm, the viral particles of SARS-CoV-2 can also cause 
multiple organ dysfunction directly due to the viral cyto-
pathic effect [64, 67]. Several studies have shown that most 
patients with severe COVID-19 exhibit markedly increased 
concentrations of pro-inflammatory cytokines in their serum, 
including IFN-α, IFN-γ, IL-1β, IL-6, IL-12, IL-17, IL-18, 
IL-33, TNF-α, G-CSF, GM-CSF, IP10, MCP1, MIP1α, and 
C-reactive protein (CRP) [68, 69], suggesting a combina-
tion of the pre-existing pro-inflammatory status observed 
in older individuals with an additional virus-induced pro-
inflammatory status. Both the increased generation of pro-
inflammatory markers and aging play a fundamental role in 
the process of cytokine storm development in severe cases 
of COVID-19 with higher mortality risk [62, 70, 71]. One 
out of two patients with fatal COVID-19 develops a cytokine 
storm, and 82% of these patients are over 60 years old [72]. 
There are probably many simultaneous storm triggers, but 
the evidence indicates that inflammation is an important fac-
tor [73, 74]. It has been shown that inflammation increases 
the risk of cytokine storm syndrome in rodents [75], and in 
humans, age correlates with high circulating levels of pro-
inflammatory cytokines [76, 77]. It is not clear whether the 
cytokines, the direct effects of viral infection, or a combina-
tion of both is the major cause of multiple organ failure in 
patients with severe COVID-19 [78].

Older age is also associated with a higher viral load in 
the nasopharynx, suggesting that the virus is able to rep-
licate at a higher rate in these patients, or more likely, that 
the immune system is not efficient enough to limit infection 
[79–81]. Differences in the level of expression of the ACE2 
molecule between young and old individuals might also 
contribute to the higher viral loads in older adults; however, 
there are discrepancies in this regard. Some studies have 
found higher levels of ACE2 in the lungs of elderly people 
than in young people [79], but others have found no differ-
ence [82].

The NLRP3 inflammasome has been reported to play 
a possible role in the pathogenesis of COVID-19. The 

Fig. 2  Pro-inflammatory status 
in the elderly. During old age, 
there is decrease in the activ-
ity of the immune system in 
general. This occurs especially 
in the adaptive immune system. 
However, through different 
mechanisms, a pro-inflamma-
tory status is established in 
the elderly, known as "inflam-
matory aging", which causes 
chronic and systemic inflamma-
tion that contributes to diverse 
diseases
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activity of NLRP3 is a central factor that could explain the 
predisposition to cytokine storms [83]. Older people have 
a constantly elevated level of expression and activity of 
NLRP3 in immune cells, including alveolar macrophages, 
which, after chronic stimulation, contribute to lung fibrosis 
[47]. Therefore, in older people, NLRP3 may be poised for 
hyperactivation by SARS-CoV-2 antigens. NLRP3 activity 
is regulated by  NAD+-dependent deacetylases [48], and 
in older individuals,  NAD+ levels are lower, resulting in 
hyperactivity of NLRP3 [49]. Overstimulation by SARS-
CoV-2 could promote the hyperactivation of NLRP3, trig-
gering a cytokine storm in patients with COVID-19 [84] 
(Fig. 3).

Possible role of vitamin D in older people 
with COVID‑19

Vitamin D is a steroid hormone that is produced endog-
enously by the effect of ultraviolet radiation on the skin but 
is also available from exogenous food sources or dietary 
supplements. It is produced in the skin after exposure to 
sunlight through a process involving photolysis of cutane-
ous 7-hydrocholesterol (provitamin D) to pre-vitamin D, 
followed by isomerization [85]. Vitamin D must be met-
abolically activated. In this process, the vitamin is first 
hydroxylated in the liver to 25(OH)D3 by the action of the 
enzyme CYP2R1 (a 25-hydroxylase), and then in the kid-
neys to the hormone metabolite 1,25(OH)2 D3 (calcitriol) by 
the action of the enzyme CYP27B1 (α-1-hydroxylase) [86].

Most of the effects of vitamin D are due to calcitriol, 
and its mechanism of action involves the regulation of gene 
expression in specific tissues. This activity is mediated by 
the vitamin D nuclear receptor (VDR), a DNA-binding pro-
tein that interacts directly with regulatory sequences near the 
target genes. VDR is expressed by several types of immune 
cells, including monocytes, macrophages, B and T lym-
phocytes, and dendritic cells [87]. In addition, the enzyme 
α-1-hydroxylase is expressed in most immune cells [88] in 
response to inflammatory conditions [89]. Several studies 
have addressed the importance of vitamin D in the regula-
tion of immune responses to infectious processes [90, 91]. 
Vitamin D exerts immunomodulatory effects, decreasing 
the expression of proinflammatory genes in immune cells 
by suppressing the excessive production of ROS, increas-
ing the levels of intracellular glutathione, and suppressing 
the expression of MAP kinase, NF-κB, and p38 [92]. Vita-
min D can also induce the production of anti-inflammatory 
cytokines such as IL-10 [93]. Increased expression of VDR 
and α-1-hydroxylase can occur in response to activation of 
pattern recognition receptors such as Toll-like receptors 
and NOD-type receptors. This can affect the production of 
pro-inflammatory cytokines by macrophages, increase the 
autophagic activity of macrophages, and induce the genera-
tion of antimicrobial products, including cathelicidin and 
β-defensin [94]. Vitamin D may also suppress differentiation 
and migration of human dendritic cells and decrease the 
expression of class II molecules of the main histocompat-
ibility complex in these cells [95, 96]. Therefore, vitamin D 
deficiency can result in impaired immune cell function and 
an imbalance in cytokine production [97, 98].

Older people have a tendency to suffer from vitamin D 
deficiency, and it has been proposed that this can be attrib-
uted to a decreased concentration of 7-dehydrocholesterol 
in the epidermis, reduced response to ultraviolet light, a 
lack of exposure to sunlight, or poor dietary intake [99]. 
On the other hand, it has been shown that there is decreased 
production of vitamin D in the kidney as kidney function 

Fig. 3  SARS-CoV-2 pathogenesis in the elderly. The immune system 
of older individuals tends to remain in a constant pro-inflammatory 
state that worsens upon infection due to the hyperactivity of angioten-
sin II induced via the renin angiotensin system. The previous inflam-
matory status and viral-induced inflammation, together result in an 
excessive inflammatory immune response that leads to a cytokine 
storm. In addition, the cellular damage caused by the virus can, in 
conjunction with the action of cytokines, result in severe disease
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declines with age, accompanied by decreased activity of 
renal 1-α-hydroxylase [100]. Vitamin D deficiency has 
been associated with several age-related inflammatory 
diseases, including rheumatoid arthritis, inflammatory 
bowel disease, multiple sclerosis, cardiovascular disease, 
hypertension, diabetes mellitus, and cancer [101]. Lack of 
vitamin D in elderly subjects is associated with the pro-
inflammatory phenotype of immune cells, which is likely 
to contribute to an increased risk of developing a serious 
infection in older individuals. In addition, an association 
between vitamin D deficiency and the risk of respiratory 
tract infection in COVID-19 has been described [102, 103]. 
As discussed above, SARS-CoV-2 binds to host cells via 
the ACE2 receptor. Previous studies have shown vitamin 
D to be an endocrine negative modulator of RAS and an 
inhibitor of renin expression and generation. Vitamin D can 
activate the ACE2/Ang-1-7/MasR axis and inhibit the ACE/
Ang II/AT1R axis, which increases the expression and con-
centration of ACE2, MasR, and Ang-1-7 with a potential 
protective role against acute lung injury and acute respira-
tory distress syndrome [104]. This protective role would be 
lacking in individuals with vitamin D deficiency (Fig. 4).

Conclusions

With increasing age, the immune system seems to remain in 
a mild sustained inflammatory state (inflammatory aging). 
This can be induced by phenomena such as oxidative stress, 
mitochondrial damage, and the generation of DAMPs, which 
activate the NLRP3 inflammasome. Constant antigenic stim-
ulation, probably due to dysbiosis or increased intestinal 
mucosa permeability, can also contribute to inflammatory 
aging. Since regulation by anti-inflammatory molecules is 
impaired in some older adults, this chronic inflammation 
becomes harmful. The immune response decreases with 

aging. Reduced production of B and T cells in the bone 
marrow and the thymus, decreased function of mature 
lymphocytes in secondary lymphoid tissues, altered func-
tion of B cells, and compromised communication between 
innate and adaptive immunity are age-related changes that 
together affect the immune system and are called "immu-
nosenescence". Senescent cells secrete high levels of 
inflammatory mediators. In addition, a lack of vitamin D in 
elderly individuals is associated with the pro-inflammatory 
phenotype of immune cells, which is likely to contribute to 
an increased risk of developing a serious infection. Inflam-
matory aging and immunosenescence are two phenomena 
that promote and reinforce each other. Therefore, stimula-
tion by a pathogen such as SARS-CoV-2 can result in an 
exaggerated immune response in older individuals, favoring 
the induction of a cytokine storm and death in severe cases 
of COVID-19. Clinically, SARS-CoV-2 infection may be 
asymptomatic, produce mild symptoms, or cause severe dis-
ease, with elderly patients being at high risk of developing 
severe disease. Since it is difficult to predict the progression 
of SARS-CoV-2 infection, it is reasonable to adopt measures 
to inhibit the virus to prevent severe illness. Antiviral treat-
ment at the onset of SARS-CoV-2 infection may be impor-
tant for preventing severe disease in elderly patients, patients 
at high risk, and in the general population to allow a more 
effective response by the immune system [105].
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