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Abstract 

Background:  Selective breeding for genetic improvement is expected to leave distinctive selection signatures within 
genomes. The identification of selection signatures can help to elucidate the mechanisms of selection and accelerate 
genetic improvement. Fighting chickens have undergone extensive artificial selection, resulting in modifications to 
their morphology, physiology and behavior compared to wild species. Comparing the genomes of fighting chickens 
and wild species offers a unique opportunity for identifying signatures of artificial selection.

Results:  We identified selection signals in 100-kb windows sliding in 10-kb steps by using two approaches: the 
pooled heterozygosity (Hp) and the fixation index (FST) between Xishuangbanna fighting chicken (YNLC) and Red 
Jungle Fowl. A total of 413 candidate genes were found to be putatively under selection in YNLC. These genes were 
related to traits such as growth, disease resistance, aggressive behavior and energy metabolism, as well as the mor-
phogenesis and homeostasis of many tissues and organs.

Conclusions:  This study reveals mechanisms and targets of artificial selection, which will contribute to improve our 
knowledge about the evolution of fighting chickens and facilitate future quantitative trait loci mapping.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Domesticated chickens have long been bred for enter-
tainment and consumption [1]. Fighting chickens are 
a group of ancient breeds that have been bred for the 
purpose of cock fighting and have played an important 
role in the development of human culture [2]. The Xish-
uangbanna fighting chicken (YNLC) is a typical fighting 
chicken breed that has been subjected to strong artifi-
cial selection, which has led to remarkable phenotypic 
characteristics in morphology, physiology, and behavior. 
The YNLC represents an excellent model that can pro-
vide new insights into the influence of artificial selec-
tion on genetic variation and how this shapes phenotypic 
diversity.

Selection leads to specific changes in the patterns of 
variation among selected loci and in neutral loci linked 
to them. These genomic footprints of selection are 

known as selection signatures and can be used to iden-
tify loci that have been subjected to selection [3]. Vari-
ous statistical approaches have been proposed for the 
detection of selection signatures [4–7]. The pooled het-
erozygosity (Hp) statistic is a variability estimator based 
on allele counts across sliding windows of adjacent loci 
and can be used to identify regions that deviate from the 
norm [8]. The fixation index (FST) can be used to quan-
tify the degree of genetic differentiation among popula-
tions based on differences in allele frequencies [9]. Both 
Hp and FST statistics are useful for the detection of selec-
tion signatures [10]. In this study, we used two outlier 
approaches (Hp and FST) to detect signatures of selection 
in YNLC and provide insights into the mechanisms of 
evolution of this specific breed.

Methods
Re‑sequencing of chicken samples, mapping and SNP 
calling
We downloaded the genomic data for eight YNLC and 
six wild Red Jungle Fowl (RJF) from the EMBL-EBI 
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database (see Additional file  1: Table S1). Details about 
the sequenced samples and method of sequencing are 
in [11, 12]. As mentioned in these two papers, individual 
DNA libraries with an insert size of 500  bp were con-
structed and sequenced by using the Illumina HiSeq 2000 
platform. The samples were sequenced at a genome cov-
erage of 11.1X to 36.6X (see Additional file 1: Table S1) 
which is appropriate for analysis of selective sweeps [13, 
14]. All reads were preprocessed for quality control and 
filtered using our in-house script in Perl. Before aligning 
reads onto the reference genome, we performed the fol-
lowing quality checks [15]:

1.	 If there were more than 10 % unidentified nucleotides 
(N) or 10-nucleotide adaptors (<10  % mismatch) in 
either of the paired reads, the reads were removed.

2.	 If there were more than 50  % low-quality bases 
(Q ≤ 5) in either of the paired reads, the reads were 
removed.

3.	 Duplicated reads were also removed, only paired-end 
reads were kept for subsequent analyses.

High-quality paired-end reads were mapped to the 
chicken reference genome sequence (ftp://ensembl.org/
pub/release-67/fasta/gallus_gallus/dna/) using the BWA 
software [16] and the command ‘mem -t 4 -k 32 -M’. 
Duplicated reads were removed using the picard package 
[16]. After alignment, we performed single nucleotide 
polymorphism (SNP) calling on a population scale for the 
two groups (YNLC and RJF) using SAMtools [17]. The 
‘mpileup’ command was used to identify SNPs with the 
parameters ‘-m 2 -F 0.002 -d 1000’. Putative functional 
effects of SNPs were annotated using the ANNOVAR 
package [18]. To exclude SNP calling errors caused by 
incorrect mapping, only high-quality SNPs (root-mean-
square mapping quality ≥20, coverage depth ≥4 and 
≤1000, distance between adjacent SNPs ≥5 bp and rate 
of missing data within each group <50 %) were retained 
for subsequent analyses.

Analysis of selection signatures
We used allele frequencies at variable sites to identify sig-
natures of selection in 100-kb windows with a step size 
of 10 kb by using two approaches. For each window, we 
calculated Hp and FST. At each detected SNP position, we 
counted the number of reads corresponding to the most 
and least frequently observed allele (nMAJ and nMIN, 
respectively) for each breed pool (i.e. all eight samples for 
YNLC and all six samples for RJF were combined, respec-
tively). For each window, we calculated Hp as follows [6]:

Hp = 2
∑

nMAJ
∑

nMIN

/

(

∑

nMAJ
∑

nMIN
)2

.

Subsequently, individual Hp values were Z-transformed 
as follows:

FST was calculated from the allele frequencies (not the 
allele counts) using the standard equation according to 
the principles of population genetics [19]:

where Pi_within = (Pi_population1+ Pi_population2)/2, 
and Pi = 1− fA2

− fT2
− fC2

− fG2 with fN being the 
frequency of nucleotide N (i.e.A, T, C or G), Pi_total is 
the total Pi for which allele frequencies in both popula-
tions are averages and Pi is calculated as above.

The FST values were Z-transformed as follows:

where µFST is the mean FST, and σFST is the standard 
deviation of FST [20]. Hp and FST were calculated by 
using our in-house script in Perl. The major challenge 
of such analyses is to exclude signals caused by demo-
graphic events and population structure. It is difficult 
to assign strict thresholds to distinguish selection and 
drift. We surveyed published literature and used an 
empirical procedure according to previous studies [21, 
22]. Putatively selected regions were located in fully 
overlapping windows with an extremely low ZHp value 
(top 5 % level) and extremely high ZFST values (top 5 % 
level).

Functional enrichment analysis
The genes putatively under selection were submitted 
to g:profiler (http://biit.cs.ut.ee/gprofiler/. Version: 
r1488_e83_eg30.) for enrichment analysis of the Gene 
Ontology (GO) and KEGG pathways. All chicken genes 
that are annotated in Ensembl were used as the back-
ground set. Benjamini–Hochberg FDR (false discovery 
rate) was used for correcting the P values. Only terms 
with a P value <0.05 were considered as significant and 
listed.

Results
Detection of SNPs
A total of 16.40 ×  106 SNPs were identified from the 
genomes of 14 individuals, i.e. eight YNLC (13.15 × 106 
SNPs) and six RJF individuals (13.87 × 106 SNPs) (see 
Additional file  2: Table S2). Most SNPs identified for 
the YNLC individuals were located in intergenic and 
intron regions (57.16 and 38.77 %, respectively); 1.36 % 
of these 13.15 × 106 SNPs were predicted to be within 
protein-coding regions and 0.40 % as amino acid alter-
ing mutations (non-synonymous and stop gain/loss); 
1.30  % of the 13.15  ×  106 SNPs were within 1-kb 

ZHp =
(

ZHp − µZHp

)/

σZHp .

FST = Pi_total− Pi_within
/

Pi_within,

Z(FST) = (FST − µFST)
/

σFST,
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regions upstream or downstream of the transcription 
start or end sites, and thus may have a possible role 
in transcriptional regulation, with 510 SNPs of these 
residing within splice sites (Table  1; see Additional 
file 2: Table S2).

Genome‑wide selective sweep signals
To detect selection signatures, we searched the genome 
of the YNLC chicken for regions with reduced Hp and 
increased genetic distances to the RJF genome (FST). 
Putatively selected genes were located by extracting win-
dows that simultaneously presented extremely low ZHp 
(top 5  % level, ZHp = −1.75) and extremely high ZFST 
(top 5  % level, ZFST = 1.82). A total of 413 candidate 
genes (Fig. 1 , Additional file 3: Table S3, Additional file 4: 
Figure S1) were identified in the YNLC genome, which 
should harbor genes that underwent selection for fighting 
aptitude. We compared our results with those previously 
reported by Rubin et al. [6] and detected 91 overlapping 
genes between the two studies (see Additional file  3: 
Table S3). We searched for significantly overrepresented 
GO terms and KEGG pathways among the candidate 
genes that are specific to YNLC. The most enriched clus-
ters were related to immunity, disease resistance, organ 
development, response to stimulus, and metabolic pro-
cesses (see Additional file  5: Table S4, Additional file  6: 
Table S5).

Discussion
Four hundred and thirteen genes were discov-
ered in our study, of which 91 overlapped with those 
reported in [6] and among these, we identified several 

notable domestication-related genes i.e.: IGF1 (insulin-
like growth factor 1), which encodes a peptide that has 
a similar molecular structure to that of insulin and is a 
candidate gene for avian growth [6]; BCO2 (β-carotene 
oxygenase 2), which is associated with yellow skin in 
domestic chickens [23]; and NELL1 (NEL-like 1) which 
is assumed to be related to skeletal integrity in chickens 
[24]. Positive selection on these genes in the YNLC was 
expected since domestic chickens collectively share mor-
phology and physiology shifts that accompanied domes-
tication [25].

Many genes that were putatively under selection and 
identified in our study were not reported by Rubin et al. 
[6]. Functional enrichment analysis of genes that are spe-
cific to the YNLC breed revealed that many candidate 
genes are related to immunity and disease resistance (see 
Additional file  5: Table S4), which may reflect artificial 
selection for individuals with improved innate immunity 
and disease resistance.

Among the identified candidate genes, quite a few are 
involved in organ development (see Additional file  5: 
Table S4), e.g. CBFB (core-binding factor subunit beta) 
and GRHL3 (grainyhead-like 3), which are critical for 
growth and development of the craniofacial skeleton 
[26, 27]. These genes may explain why fighting chickens 
have a wider mandibular joint and frontal bone as com-
pared to other breeds [28]. Many of the genes identified 
are related to limb development, i.e. Gli3 (transcrip-
tional activator Gli3) and PTCH1 (patched 1), which are 
involved in the hedgehog (Hh) signal transduction path-
way that controls the patterning, growth, morphogenesis 
and homeostasis of many tissues [29], such as digit pat-
terning [30] and limb development [31]; EFNA5 (ephrin-
A5), a GPI-anchored ephrin-Aligand that binds to the 
Eph receptors, is pivotal in cell migration in the avian 
forelimb [32]. Compared with other breeds, fighting 
chickens exhibit larger hindlimb and forelimb muscles, 
especially for triceps surae and biceps brachii [33], which 
may reflect adaptation to running and jumping that are 
essential traits in this breed. The triceps surae muscles 
assist in extending the foot joints, while the large triceps 
surae muscles allow fighting chickens to have a high level 
of jumping performance. The biceps brachii muscles 
facilitate strong flapping of the wings and act as power-
ful flexors of the elbow joint to support both jumping and 
hitting actions. In addition, fighting chickens have long 
legs, an extended hip joint, and a curved knee joint [33, 
34], which indicate that they have adapted to running and 
upright posture.

Fighting chickens are bred specifically for cockfighting 
and fighting cocks possess congenital aggression towards 
all males of the same species. Several of the identified 
genes are related to aggressive behavior (Table  2). For 

Table 1  Summary and annotation of SNPs in YNLCa

a  YNLC: Xishuangbanna fighting chicken
b  Upstream: a variant that is located in the 1-kb region upstream of the gene 
start site; stop gain: a non-synonymous (ns) SNP that leads to the creation of a 
stop codon at the variant site; stop loss: a non-synonymous SNP that leads to 
the elimination of a stop codon at the variant site; splicing: a variant within 2 bp 
of a splice junction; downstream: a variant that is located in the 1-kb region 
downstream of the gene end site; upstream/downstream: a variant that is 
located in the downstream and upstream regions of two genes

Categoryb YNLC

Upstream 186,263

Exonic

Stop gain 379

Stop loss 51

Synonymous 126,014

Non-synonymous 51,933

Intronic 5,098,263

Splicing 510

Downstream 163,867

Upstream/downstream 6747

Intergenic 7,515,849
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example, the brain-derived neurotrophic factor (BDNF) 
gene (Fig. 2), a member of the nerve growth factor gene 
family, plays a major role in neuronal growth, prolifera-
tion, differentiation and neuronal survival [35]. A muta-
tion in the human BDNF gene has been reported to be 
correlated with aggressive behavior in humans [36]. Fur-
thermore, BDNF loss-of-function mice have been used as 
a model to study animal aggression [37]. Another gene 
neurotensin/neuromedin N precursor (NTS) encodes 
a common precursor for neurotensin (NT) and neu-
romedin N (NN). NT is involved in interactions with 

dopamine [38] and corticotropin-releasing factor (CRF) 
signaling [39], two neurotransmitter systems known to 
modulate aggressive behavior [40, 41]. Furthermore, NT 
mRNA levels were shown to be significantly reduced in 
high maternal aggression mice [42].

Cockfighting is a very toilsome and furious form of 
exercise. The ability to sustain and effectively allocate 
fuel substrates for oxidative metabolism is critical for 
cockfighting. Energy metabolism-related genes were 
found to be under selection in YNLC (see Additional 
file  5: Table S4). The RICTOR (RPTOR independ-
ent companion of MTOR complex 2) gene encodes 
an essential subunit of the target of the rapamycin 
(mTOR) complex (mTORC) 2. In fat cells, RICTOR/
mTORC2 plays an important role in whole-body energy 
homeostasis [44]. The SDHB (succinate dehydrogenase 
(SDH) subunit B) gene encodes a crucial metabolic 
enzyme that is involved in the respiratory chain and 
Krebs cycle [45]. Positive selection of these genes may 
represent adaptation of the energy metabolism in fight-
ing chickens.

Fig. 1  Distribution of ZHp and ZFST calculated for 100-kb windows sliding in 10-kb steps. Blue points identify Xishuangbanna game chicken (YNLC) 
genomic regions with both an extremely low ZHp value (top 5 % level) and an extremely high ZFST value (top 5 % level)

Table 2  Putative selected genes involved in  aggressive 
behavior

Gene ID Gene name References

ENSGALG00000012163 BDNF [36, 37]

ENSGALG00000027192 NTS [42]

ENSGALG00000003163 GNAO1 [43]
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Conclusions
In this work, we used two distinct methods to detect 
selection signatures across the genomes of YNLC and 
RJF chicken. Our analyses identified genes under posi-
tive selection in YNLC, which included genes related 
to aggressive behavior, immunity, energy metabolism 
and tissue and organ development. Our data will help 
improve our understanding of the mechanisms and iden-
tify the targets of artificial selection in fighting chick-
ens and facilitate future quantitative trait loci (QTL) 
mapping.
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