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Multiple myeloma is a plasma cell blood cancer with frequent chromosomal translocations

leading to gene fusions. To determine the clinical relevance of fusion events, we detect gene

fusions from a cohort of 742 patients from the Multiple Myeloma Research Foundation

CoMMpass Study. Patients with multiple clinic visits enable us to track tumor and fusion

evolution, and cases with matching peripheral blood and bone marrow samples allow us to

evaluate the concordance of fusion calls in patients with high tumor burden. We examine the

joint upregulation of WHSC1 and FGFR3 in samples with t(4;14)-related fusions, and we

illustrate a method for detecting fusions from single cell RNA-seq. We report fusions at MYC

and a neighboring gene, PVT1, which are related to MYC translocations and associated with

divergent progression-free survival patterns. Finally, we find that 4% of patients may be

eligible for targeted fusion therapies, including three with an NTRK1 fusion.
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Fusions are a type of somatic alteration leading to cancer
associated with up to 20% of cancer morbidity1,2. Translo-
cations, copy number changes, and inversions can lead to

fusions, dysregulated gene expression, and novel molecular
functions. Fusions occur and have oncogenic roles in hematolo-
gical, soft tissue, and solid tumors. Fusion rates differ across
cancer types, and fusions may define some cancer types, such as
BCR--ABL1 in chronic myeloid leukemia. A balanced transloca-
tion t(9;22) leads to BCR--ABL1, producing a hybrid protein with
constitutive ABL1 kinase domain activation, signaling cell divi-
sion, and avoiding apoptosis. Imatinib inhibits the BCR--ABL1
protein hybrid and in 2001 became the first FDA-approved drug
to specifically target a fusion protein2.

Multiple myeloma (MM) is the second most common blood
cancer (10% of blood cancers, 1–2% of all cancers) and involves
the clonal proliferation of bone marrow (BM) plasma cells, which
are fully differentiated B cells. B cells produce a diverse repertoire
of antibodies through genomic alterations at immunoglobulin
(Ig) loci, including VDJ recombination, somatic hypermutation,
and class switch recombination. Aberrant class switch recombi-
nation may result in translocations upregulating oncogenes. Ig
enhancers get repurposed to drive oncogene expression, myeloma
tumorigenesis, and clonal expansion3.

Tumor initiating genomic changes may already be present at
the pre-malignant stages of MM include monoclonal gammo-
pathy of undetermined significance and smouldering MM. Pri-
mary genomic events in MM distinguish patient groups having
hyperdiploidy (HRD, ~50%) and non-hyperdiploidy (non-HRD).
Non-HRD patients typically have a different primary event, like
an Ig translocation. CCND1 (chr11) and WHSC1 (chr4) are the
two most common translocation partners of IGH (chr14).
Patients may have both HRD and translocation events, and sec-
ondary events like t(8;14) dysregulating MYC are associated with
progression4,5.

Previous studies used RNA-seq to catalog fusion events from
over 9000 patients and 33 cancer types from The Cancer Genome
Atlas (TCGA)6–8. False positives due to library preparation or
bioinformatic errors must be filtered. Overlapping fusion calls
from multiple tools can establish concordance. Low expression or
low quality RNA may cause false negatives, and translocations
may affect expression but not produce detectable fusion tran-
scripts. In myeloma, plasma cell Ig gene expression dominates the
transcriptome and masks lower expression fusions. Multi-omic
approaches with DNA and RNA resolves some limitations2.

Large-scale sequencing efforts to understand multiple myeloma
have demonstrated genomic heterogeneity beyond primary copy
number and translocation events9–12. Several fusion detection
studies show complementary results. Cleynen et al. detected gene
fusions from 255 newly diagnosed MM patients, finding sig-
nificant relationships between fusions and gene expression,
hyperdiploidy, and survival, and identifying recurrent fusion gene
partners13. Nasser et al. analyzed MMRF CoMMpass RNA-seq
data, reconstructed Tophat-Fusion transcripts, and validated
fusions with WGS14. Lin et al. used targeted RNA-seq in 21 MM
patients, finding several novel fusions with disease relevance15.
Morgan et al. used targeted sequencing of kinases to understand
how translocations dysregulate kinase activity in MM16.

Here, we extend previous efforts by focusing on the clinical
implications and evolution of fusions across multiple time points.
We leverage RNA and DNA sequencing as well as clinical data
types to analyzed fusion genes we detected from the Multiple
Myeloma Research Foundation (MMRF) CoMMpass Study. We
analyze fusion genes and gene expression patterns from 742
multiple myeloma patients (806 samples). Patient samples from
serial clinic visits enable tumor evolution profiles using fusions and
mutations. Further, from patients with both BM and peripheral

blood samples collected at the same time, we quantify the con-
cordance of their fusion profiles. We demonstrate fusion event
detection at single cell resolution using barcoded scRNA-seq data,
pointing to future development of fusion methods. We explore the
prognostic relevance of fusions by analyzing progression-free sur-
vival and find that those with IGH--WHSC1 or PVT1--IGL fusions
have significantly worse outcomes. 4% of patients have a fusion
annotated as a drug target in a public database.

Results
Fusion calling pipeline and clinical characteristics. We detected
gene fusions from 742 patients from the MMRF CoMMpass Study
(see Data availability), combining RNA and DNA sequencing data
with clinical information to form a landscape of fusion events
(Fig. 1, Supplementary Fig. 1, Supplementary Data 1–3). We ran
five fusion detection tools, implemented strict filtering criteria, and
quantified gene expression to correlate with gene fusions (see
“Methods”). We used WGS to detect structural variants and copy
number changes potentially related to fusions. Sequencing-based
FISH (seq-FISH) results showed major translocations and copy
number changes such as hyperdiploidy17. We defined a primary
sample for each patient as the earliest available sample and favored
BM over peripheral blood (PB) (740 BM, 2 PB). For 97.2% of
patients (721/742 patients), the primary sample corresponded with
the pre-treatment clinic visit. 53 patients had RNA-seq from
multiple samples (BM and PB from the same visit or data from
serial visits), for a total of 806 RNA-seq samples. Results come
from primary samples only, unless otherwise stated.

The cohort ranged from 27 to 93 years old (median 63)
(Supplementary Data 1). Patients were spread evenly across ISS
Stage, with 34.7% of patients from Stage I (247/711 patients with
annotated stage), 35.7% Stage II (254/711), and 29.5% Stage III
(210/711). Follow-up for progression-free survival ranged from
8 days to 5.7 years (median 2.23 years) with 60.3% of patients
progressing (402/667 patients with PFS). Follow-up for overall
survival ranged from 8 days to 6.43 years (median 3.19 years)
with 27.4% of patients dying (182/665 patients with OS). ISS
Stages I, II, and III patients had median PFS of 3.85 years, 2.47
years, and 1.76 years, respectively. 58.1% of patients showed a
hyperdiploidy (373/642 patients with annotated HRD status).
77.1% of patients had ancestry reported as White (512/664
patients with annotated ancestry), 15.8% Black (105/664), and
7.1% Other (47/664). Most patients were treated initially with a
proteasome inhibitor (bortezomib or carfilzomib) and an
immunomodulatory drug (IMID) (68.4%). Others received a
proteasome inhibitor-based regimen (25.9%) or an IMID (5.7%).
41.4% of patients received a BM transplant (305/737 with
transplant annotated) during first-line therapy. Supplementary
Data 1 summarizes clinical information.

Immunoglobulin gene fusions are most frequent. IGH--
WHSC1 was the most common fusion reported; it results from t
(4;14) typically observed in 15% of patients4. IGH--WHSC1 or
WHSC1--IGH were found in 12.4% of samples (92/742 samples).
79.7% of IGH--WHSC1 fusions showed WGS support (47/59
patients with WGS data) (see “Methods”). Fig. 1b shows the top
recurrent fusions with at least one fusion supported by WGS. Ig
fusions (IGH, IGK, or IGL) were reported frequently (35.6%,
1102/3094 fusions) with upregulated partner genes.

Our pipeline reported fusions between Ig loci and MYC or its
downstream neighbor PVT1. MYC or PVT1 was usually the 5′
gene and paired with IGH, IGK, or IGL, including 18 samples with
MYC--IGL, 11 with PVT1--IGL, 6 with PVT1--IGH, and 3 with
PVT1--IGK (Fig. 1b). One sample had IGH--MYC and one had
IGL--PVT1. Past reports show MYC translocations with all three
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Ig loci18. However, previous multiple myeloma fusion studies
hypothesized that MYC fusions with Ig would not be detected
from RNA-seq if there were no hybrid transcript generated after
the translocation13. Further study is necessary to determine
whether these reported fusions are true events, biological by-
products, or bioinformatic artifacts, and whether they confer
functional or clinical significance. This will complement recent
work showing the dysregulation of both MYC and PVT1 in the
presence of super-enhancer translocations19,20.

The number of fusions reported per sample ranged from 0 to
62 (median 3) (Fig. 1c, Supplementary Fig. 1a), similar to breast,
glioblastoma, ovarian, and prostate cancers from TCGA8.
Hyperdiploid samples had significantly fewer fusions reported
than non-HRD samples (HRD mean 3.4, non-HRD 4.7,
Mann–Whitney U test two-sided p value 6.71 × 10−3). There
were also significantly fewer Ig fusions between those groups
(HRD mean 0.9, non-HRD 1.9, Mann–Whitney U test two-sided
p value 7.88 × 10−8). We required two or more tools to agree
upon a particular fusion call. We removed 18 highly recurrent
IGL fusions with low WGS support (see “Methods”). After
filtering, the overall WGS support rate was 22.3% (comparable to
a previously reported pan-cancer support rate of 32.5% from
samples with similar WGS coverage)8. Most fusions were called
by two tools (73.3%, 2269/3094), while 17.9% (555/3094) were
called by three or four tools, and 8.7% were called by all five tools
(270/3094) (Supplementary Fig. 1b).

Fusion gene expression highlights multiple myeloma biology.
Fusions may be associated with expression changes of the partner
genes. We defined a sample′s expression percentile for each gene
as their expression level relative to primary samples at that gene
(see “Methods”). The median fusion expression percentile of a
gene is the median expression percentile of samples with a fusion
involving that gene. We identified 51 genes significantly over-
expressed in fusion samples (FDR < 0.05 or median fusion
expression percentile >0.9) (Supplementary Data 4). Of those,
nine are cancer-related genes from any cancer type annotated as a
driver, drug target, kinase, oncogene, or tumor suppressor
(Fig. 2a), including FGFR3 (12 samples), MAPKAPK2 (5), MYC
(19), NTRK1 (3), PAX5 (3), PIM3 (3), RARA (3), TXNIP (7), and
WHSC1 (97)21. Expression levels may also identify samples with a
false negative fusion call. 12 samples have outlier WHSC1 over-
expression but no WHSC1 fusion reported, representing false
negative IGH--WHSC1 fusions or indicating samples with t(4;14)
but no fusion product formed. Of those 12 samples, 50% (5/10
with seq-FISH) have a WHSC1 translocation with expression
percentile over 0.87. The tumor etiology of samples with high
gene expression but no fusion calls may still involve upregulated
gene activity. Since gene expression is itself relevant to cancer
biology and drug targeting, fusion analysis should always be
paired with gene expression.

Samples with fusions involving kinases, oncogenes, and tumor
suppressors show different trends in expression levels of those
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genes (Fig. 2b). Gene expression of fusion oncogenes tended to be
higher relative to other samples, fitting the biological context of
oncogenes being deleterious when upregulated. Tumor suppres-
sors, which may be disrupted in cancer in many different ways,
displayed no trend of up- or downregulation. Kinases showed a
skewed preference toward upregulation and are an important
type of gene with implications for cancer development and drug
targeting. We investigated the correlation between 5′ and 3′
partner gene expression when the 3′ partner gene is a kinase and
contains an intact kinase domain (see “Methods”) (Fig. 2c,
Supplementary Data 5). In this subset of fusion partners, the

positive correlation between 5′ and 3′ gene expression is
somewhat higher than that of the overall background (0.454 vs.
0.352), indicating a pattern of selection for overexpressed kinase
fusion partners. Recurrent 3′ kinases with intact domains
included: MAP3K14 (13 patients), CSNK1E (7), NTRK1 (3),
ADK (2), BRAF (2), DGK1 (2), and NEK7 (2).

We tested for associations between clinical data (including age,
sex, ancestry, ECOG performance, ISS stage, bone lesions,
plasmacytoma, BM plasma cell percentage, and LDH) and fusion
genes observed in three or more samples (see “Methods”). After
FDR correction and assessment of model fit, no clinical measures
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were significantly associated with fusion events. To understand
the relationship between fusion events and prognosis in this
cohort, we analyzed survival in patients with and without
particular fusions or fusion genes. We created baseline PFS
multivariate Cox proportional hazards models, including disease
stage and patient age as covariates. For each fusion or fusion gene
observed in ten or more samples, we added the event as a
covariate and tested for significant improvement in model fit
using a chi-squared test. WHSC1 and PVT1 fusions were
significantly associated with worse prognosis (Supplementary
Fig. 2a–c). The estimated hazard ratio (HR) for a WHSC1 fusion
was 1.43 (95% CI 1.07–1.90; two-sided z-score p value 0.0157).
For PVT1 fusions, the estimated HR was 2.01 (95% CI 1.17–3.46;
two-sided z-score p value 0.0114). For PVT1--IGL specifically, the
HR estimate was 3.42 (95% CI 1.75–6.69; two-sided z-score
p value 0.000324). After including R-ISS and common transloca-
tions as covariates in the model, no fusion events or fusion genes
were significantly associated with PFS, likely due to confounding
introduced by translocation events directly associated with
fusions. Total fusion burden was associated with worse prognosis;
each additional fusion was associated with a slight decrease in
PFS (HR estimate 1.02; 95% CI 1.00–1.04; two-sided z-score
p value 0.0178), after controlling for disease stage and patient age
(Supplementary Fig. 2d).

Patients are stratified into risk groups by genomic events like
amp(1q), del(17p), t(4;14), t(14;16), and t(14;20) using mSMART
criteria22. Patients with multiple high-risk events have worse
prognosis23. Walker et al. identified a subgroup of patients with
especially poor outcomes having biallelic TP53 inactivation (for
example, del(17p) and inactivating mutation) or Stage III disease
and high copy number of CKS1B (1q21)24. In our data, we
defined a double hit group of patients with both amp(1q) and
del(17p). The median PFS time for this group was 581 days (19
patients, 14 progressed). Five patients with an additional t(4;14)
event and IGH--WHSC1 fusion had median PFS of 142 days
(5 patients, 4 progressed). Ongoing research with larger sample
sizes and longer follow-up will enable more robust survival
modeling utilizing genomic events to define progression and
overall survival risk25.

Fusions from multiple time points highlight tumor evolution.
In total, 53 patients had additional samples allowing for within-
patient comparisons across time (serial visits) or from different
tissue sources (bone marrow, BM; peripheral blood, PB). In total,
45 patients had BM samples from serial visits, and we compared
fusions from the first two visits (Fig. 3a, Supplementary Fig. 3).
When initiating clonal fusion IGH--WHSC1 was detected at the
earlier visit, it was always detected at the later visit (6/6 patients).
In one patient (1/39 patients), IGH--WHSC1 was observed only at
the later visit, butWHSC1 expression at the earlier visit was above
the 98th percentile, indicating a likely t(4;14) and false negative
fusion call.

For some samples with sufficient PB tumor burden, such as
patients with plasma cell leukemia, both BM and PB samples had
RNA-seq. In this subset, we compared fusions detected from both
samples from the same visit (Fig. 3b) (10 patients, 11 visits).
IGH--WHSC1 events were always detected in both or neither
sample. Overall, more fusions were reported from BM samples
than PB samples. We calculated the normalized Hamming
distance between each pair of samples to quantify their overlap.
Values ranged from 0.33 in pairs sharing 2 out of 3 fusions to 1 in
completely discordant pairs. Previous studies have shown that
tumor cells derived from peripheral blood have highly similar
somatic mutation and copy number profiles26. Our comparison,

limited to a subset of patients with high tumor burden, quantifies
the fusion landscape consistency between BM and PB samples.

Next, we considered the evolution of the fusion and muta-
tion landscape between earlier and later clinic visits, especially
in four patients illustrating different patterns of clonal
changes (Fig. 3c–d). Analyzing the genetic changes and clonality
structures that promote relapse remains important for under-
standing treatment response27. MMRF 1433 had many more
fusions reported at Visit 2 compared with Visit 1 (Fig. 3c), and
the appearance of ATM and other mutations at Visit 2 indicates a
shift in clonal architecture (Fig. 3d). Low fusion expression at
Visit 2 could indicate tumor heterogeneity or correspond to low
tumor purity (66%). In MMRF 1496, the NRAS mutation at Visit
1 (VAF 0.673 with copy number loss) was not detected at Visit 3
(no mutation call or read-level evidence), meaning the NRAS
mutant subclone was lost between visits. The CDC42BPB and
MNAT1 fusions remained present, implying the hemizygous
NRAS mutant subclone arose after or independently of those
fusions. In MMRF 1656, there was one clonal missense mutation
in kinase BCR and one important fusion event, TPM3--NTRK1.
The absence of a known oncogenic driver mutation at Visit 1 may
mean the NTRK1 fusion played a tumorigenic role and could
have been an ideal drug target high on the tumor evolutionary
tree. By Visit 4, mutations in FAM46C, FGFR3, and KRAS were
detected at or above 50% VAF, indicating a strong clonal
expansion of the new mutations after diagnosis. In contrast,
another patient with an NTRK1 fusion, MMRF 2490, had clonal
mutations in well-known myeloma tumor suppressors EGR1 and
DIS3, meaning that targeting the NTRK1 fusion alone may not
have been sufficient. Those mutations as well as expression levels
of the fusion gene indicate tumor stability. Measures of fusion
allele frequency useful for tracking clonal dynamics remain
complicated by lower detection power and consistency compared
with mutations; confident assessment of fusion VAF from
expression data is an area of ongoing research and may benefit
from cross-platform data integration. Further, the clonal resolu-
tion possible from bulk RNA-seq can be improved by methods
that detect fusion events from scRNA-seq data.

Chimeric transcripts in scRNA-seq reveal single cell fusions.
Fusion detection from bulk RNA-seq returns a fusion list but little
further resolution. To detect fusions in single cells or, more
broadly, present in tumor subclones, we analyzed barcoded
scRNA-seq data from in-house MM patients generated on the
10x Genomics Chromium platform 3′ scRNA-seq protocol. Pre-
vious MM studies utilized scRNA-seq to investigate variation in
heterogenous tumors, and AML mutations in single cells illu-
strated tumor specificity and subclonality28,29. Our method
detects chimeric transcripts associated with cell and molecule
barcodes and map those to their cell of origin (see “Methods”).
We analyzed scRNA-seq data from 5 MM patients (eight sam-
ples). Patients had known translocations that guided our dis-
covery, including one t(4;14), one t(8;14), and three t(11;14). The
results reflect trends learned from bulk analysis but with addi-
tional, informative detail (Supplementary Fig. 4). In samples with
an initiating t(4;14), fusion events are readily detected and map to
specific malignant plasma cell subclones. In the patient with a
secondary t(8;14) event, the t(8;14) subclone appears to be lost at
relapse, emphasizing patterns of tumor heterogeneity and treat-
ment response. Finally, although evidence of t(11;14) events is
often observed in RNA and scRNA-seq due to upregulation of
CCND1, actual IGH--CCND1 fusion transcripts may not be
present or reported at the RNA level, and we find a similar low
detection rate of chimeric transcripts in scRNA.
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Quality control steps identified regions with high transcript
overlap (see “Methods”). In these regions, true positive chimeric
transcripts from real fusions may be detected in addition to
chimeric transcripts attributed to high expression of certain
genes. We confidently mapped one sample′s IGH--WHSC1 fusion
events from non-overlapping genomic regions to single cells. This
sample (Patient 27522, primary) comprised plasma cells (54.5%,
2477/4543 cells), monocytes (29.8%), B cells (6.6%), and CD4+
T cells, CD8+ T cells, and dendritic cells, each under 5% (Fig. 4a).
We defined a high-confidence subpopulation of tumor cells
harboring del(chr13) to evaluate the sensitivity of our approach.
In that subpopulation, our non-overlap detection rate was 4.6%

(54/1166 tumor cells) (Fig. 4b). Furthermore, no fusions mapped
to non-plasma cells. The expression pattern of WHSC1 and
FGFR3 indicates upregulation across all plasma cells, although
there is subregional variation (Supplementary Fig. 5a-b). Since
t(4;14) and IGH--WHSC1 are often clonal, our method showed
overall low detection power, possibly reflecting the sparsity and
positional bias of 3′ scRNA-seq sequencing or the stringency of
our quality control.

Fusion-support reads from bulk and scRNA-seq reads mapped to
similar exonic locations along the IGH region and WHSC1 gene
body (Fig. 4c) and illustrate some transcript heterogeneity. After
t(4;14), transcription proceeds from chr14 (negative strand) (IGH
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region) to chr4 (positive strand) (WHSC1) (Fig. 4d). Reads
mapping to the right of the t(4;14) breakpoint (vertical dotted
black line) on both chromosomes (chr1) support IGH--WHSC1.
Reads mapping to the left are transcribed in the opposite direction
and support WHSC1--IGH. Reads from non-overlapping regions
mapped to the IGHM, IGHJ, and IGHD regions of the IGH
superlocus, precisely where IGH--WHSC1 and t(4;14) were detected
from bulk sequencing. (Supplementary Fig. 5c).

Despite the resolution gained from single end scRNA-seq, we
lose the benefits of paired reads used for fusion detection from
bulk data. Our method demonstrates the potential utility and
feasibility of mapping fusions to individual cells. Long-term
implications include better understanding of tumor heterogene-
ity, subclonality, and the relationship of fusion events with gene
expression and somatic alterations. Continued methods develop-
ment, both in sample sequencing and fusion detection, building
upon this early work is necessary to improve single cell fusion
mapping accuracy and sensitivity. Future methods and data,
especially full-length transcript scRNA-seq data, will elucidate
complex expression changes due to MM translocations and
fusions, which have only been analyzed in bulk RNA-seq.

IGH translocations lead to dysregulated WHSC1 and FGFR3.
MM translocations juxtapose highly expressed immunoglobulin
loci (IGH, IGK, and IGL) with oncogenes such as WHSC1 and
MYC, leading to upregulation and tumor selective advantage.

Neighboring genes may also be dysregulated through this process,
like when WHSC1 and FGFR3 are both dysregulated with t(4;14).
Typically, the t(4;14) translocation breakpoint on chr4 occurs
between WHSC1 and its upstream neighbor FGFR3. Previous
studies showed that WHSC1 and FGFR3 are both upregulated in
around 70% of patients while the remaining 30% only have high
WHSC1 expression30. In our data, 93 patients had a reported
IGH--WHSC1, IGH--FGFR3, or reciprocal fusion; all had high
WHSC1 expression and 72.0% (67/93 patients) had FGFR3
overexpression (Fig. 5a). No samples had FGFR3 overexpression
without t(4;14). Of patients with high FGFR3 expression and
mutation calls, 15.3% (9/59 patients) had somatic mutations in
FGFR3 (see “Methods”), all of which were copy number neutral at
FGFR3. Interestingly, when we compared the DNA and RNA
VAF of each FGFR3 mutation, the RNA VAF was always 2–4
times higher than the DNA VAF, indicating a strong pattern of
allele specific expression in all nine cases. We hypothesize that the
FGFR3 mutant allele expression is driven by the 3′ enhancer of
IGH located on the same allele as the mutation. In this scenario,
expression of the translocation allele dominates the expression
landscape, and the RNA VAF reflects the proportion of translo-
cation alleles with the FGFR3 mutation.

We then used available WGS translocation breakpoint and CNV
data available from 34 samples with a reported IGH--WHSC1 fusion.
We observed no relationship between FGFR3 expression status
and the location of genomic or fusion breakpoints (Supplementary
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Fig. 6a). Fusion samples with low FGFR3 expression had distinctly
lower FGFR3 copy number (Fig. 5b) while corresponding WHSC1
copy number tended to remain neutral (Supplementary Fig. 6b),
suggesting a loss of FGFR3 after t(4;14) translocation31. Genomic
breakpoints near IGH ranged over 0.27Mb on chr14, while the chr4
genomic breakpoints ranged over 0.07Mb, occurring both upstream
of and within the gene body of WHSC1. As expected, IGH--WHSC1
fusion breakpoints always occurred downstream of the genomic
breakpoints on chr4, with three fusion breakpoint groups coalescing
in the documented MB4-1, MB4-2, and MB4-3 regions of WHSC1
(Supplementary Fig. 6c)32.

Patients with pre-treatment IGH--WHSC1 showed poorer PFS
in a multivariate Cox proportional hazards model compared with
patients with the same ISS stage and age (HR 1.42; HR 95% CI
1.02–1.98; two-sided z-score p value 0.035880) (Fig. 5c). Among
patients with IGH--WHSC1, there was no difference in PFS

between those with high and low FGFR3 expression (Fig. 5d,
Supplementary Fig. 2e). For the few patients with pathogenic
FGFR3 mutation and available survival data (7 patients, 4 events),
mutation status was not a significant model predictor, although
the small sample size after stratification precludes any robust
conclusion.

MYC translocations lead to MYC and PVT1 fusions. Samples
with MYC mutations or Ig fusions involving MYC or its down-
stream neighbor PVT1 showed elevated MYC expression (Fig. 6a).
Ten samples had a MYC mutation. MYC fusion breakpoints
occurred across theMYC gene body while PVT1 fusion breakpoints
were located mostly at its 5′ end; Ig breakpoints ranged across each
Ig region (Supplementary Fig. 7).

IGL translocations predict decreased survival in MM18.
Kaplan–Meier curves for PVT1--IGL and MYC--IGL show that
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curve. Significance p value was calculated by two-sided log-rank test and uncorrected for multiple comparisons. Source data and scripts are available at
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patients with PVT1--IGL had worse survival than the background
(median PFS 190 days), while patients with MYC--IGL showed
better survival with more censoring (median PFS not reached)
(Fig. 6b). Further, only 18.2% of PVT1--IGL patients were ISS
Stage I, while 43.8% of MYC--IGL patients were ISS Stage I. In a
Cox model including ISS Stage and patient age, PVT1--IGL status
had an estimated HR of 3.90 (95% CI 1.91–7.95; two-sided z-
score p value 0.000181), while the MYC--IGL HR estimate was
0.26, (95% CI 0.06–1.05; two-sided z-score p value = 0.059018)
(Supplementary Fig. 2f). Of the 15 patients with complete seq-
FISH data and MYC--IGL or PVT1--IGL, 8 had MYC--IGL and 7
had PVT1--IGL. One of eight with MYC--IGL had t(8;22). Six of
seven with PVT1--IGL had t(8;22). Thus, fusions annotated as
PVT1--IGL may be more closely associated with t(8;22) than
fusions annotated as MYC--IGL. PVT1--IGL has prognostic value
to the extent that it is a proxy for t(8;22). Follow-up is needed to
evaluate the source and relevance of these reported events. The
MYC/PVT1 relationship and its role in tumorigenesis remains an
area of ongoing research.

MYC and MYC paralogs can be dysregulated through copy
number amplification, viral integration, and translocation33. MM
Ig translocations dysregulating MYC predict poor survival, and
MYC can be downregulated by BET domain inhibitors18,34. One
oncogenic role of lncRNA PVT1 is to stabilize and upregulate
MYC protein, promoting tumorigenesis35. In contrast, the PVT1
promoter may compete with the MYC promoter, acting as a
tumor suppressor36. PVT1 promoter mutations may disrupt that
MYC downregulation. Future studies will determine how genomic
variation affects MYC/PVT1 interactions. The MYC region is a
hotbed of genomic rearrangement and instability. The underlying
mechanisms contributing to the tumor evolutionary advantage of
this complex pattern could be elucidated by ongoing and future
studies, especially with haplotype-resolved copy number and
translocation calls37.

Fusions are potential drug targets with prognostic relevance.
MM treatment often involves combination therapies, including
alkylating agents, histone deacetylase inhibitors, immunomodu-
latory agents, monoclonal antibodies, proteasome inhibitors, and
steroids5. Patients with actionable mutations in BRAF, KRAS,
NRAS, FGFR3, or upregulation of CCND1, CCND3, and MYC
may be eligible for targeted therapies5.

We discovered 11 fusion genes reported in the Database of
Evidence for Precision Oncology as potentially sensitive to drug
treatment in other cancer types (Supplementary Fig. 8a)38. 4.0%
of patients had a fusion annotated as druggable. We observed two
patients with BRAF fusions, and BRAF fusions have shown some
evidence of sensitivity to MEK pathway inhibitors in the absence
of other drivers39. We found direct overlap of potentially
druggable fusions in six cancer types (Supplementary Fig. 8b),
pointing toward opportunities for tissue-agnostic clinical trials.

Kinase fusions are important across cancer types, especially
since they may be sensitive to kinase inhibition. In our cohort,
common kinase pathways with fusion genes included the NIK,
MAPK, and RAS pathways. We compared intact 3′ kinase fusions
from our cohort to those reported from a TCGA pan-cancer
analysis (Supplementary Fig. 9) and found the same 3′ kinase
fusions reported across 22 cancer types8. Fusions with ADK,
BRAF, and NTRK1 were reported repeatedly both in our cohort
and in multiple cancer types.

NTRK genes, including NTRK1, encode cell surface neuro-
trophin receptor tyrosine kinases. TRK fusions are a drug target
in solid cancers, although TRK inhibition may lead to resistance
mechanisms40. TRK fusions from hematological cancers were
responsive to inhibition in cell culture and mouse modeling41.
We found three patients with 3′ NTRK1 fusions, each with an
intact kinase domain (Supplementary Fig. 8c), and two had the
same fusion detected at a later clinic visit (Supplementary Fig. 3).
All three primary samples had strong WGS support for their
fusion event. NTRK1 fusion 5′ partners all came from the
opposite strand of the same chr1, indicating that an inversion
event may have brought the two genes together. There is also
evidence of chr1 1q copy number amplification in these samples,
highlighting overall genomic instability in the region. Each
partner gene had expression in the 90th percentile or above,
potentially driving NTRK1 activity higher (Fig. 2c), and NTRK1
was overexpressed in each case (Fig. 2a), leading to upregulation
of downstream pathways.

APOBEC signature is associated with MAF and MAFB
translocations in multiple myeloma, and such translocations are
markers of poor prognosis42,43. Of three samples with MAF--IGL,
each had outlier APOBEC signature scores and high MAF
expression, lending further evidence to the relationship between
APOBEC and dysregulated MAF (see “Methods”).
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Discussion
Our study forms an MM gene fusion landscape and explores
clinical relevance. We analyzed the gene expression patterns of
fusions, fusions involving kinase genes, druggable targets, evolu-
tion of tumor fusion profiles, and translocation and fusion
breakpoints of events. We also compared fusions from serial clinic
visits and from different tissue sources. We developed methods to
map scRNA-seq fusion events to single cells. Our results represent
a resource for future studies involving gene fusions in multiple
myeloma and other cancer types and highlights several fusion
analysis methods. We have built upon prior studies and hope our
resource and strategies can be useful for future research and
clinical translation.

Targeted sequencing can generate cost-effective reports with
clinical utility, including somatic mutations, indels, translocations,
and gene expression profiles44. Including fusions will require tool
development to meet clinical standards, although methodological
and study design improvements are being made in this direc-
tion45. scRNA-seq and long read sequencing will further delineate
genomic changes during tumor progression, elucidating subclonal
heterogeneity and contextualizing common patterns observed
from bulk sequencing.

MM immunotherapies, including checkpoint inhibition,
monoclonal antibodies, and chimeric antigen receptor T cells,
represent the forefront of targeted therapy. Pan-cancer studies
showed reduced mutational load in patients with driver fusions,
meaning they would not be ideal candidates for neoantigen-based
immunotherapy8,46. However, dramatic responses to immu-
notherapy have sometimes been observed using gene fusions as
neoantigens47.

In multiple myeloma, fusions represent an area for continued
study, especially as they relate to gene expression, disease pro-
gression, tumor evolution, and targeted therapy. Ongoing
research to improve fusion detection tools and pipelines that
leverage information from multiple data types will enable more
complete pictures of patient tumors as bioinformatics analyses
become more deeply integrated into clinical decision making.

Methods
Alignment. Paired RNA-seq fastq files were aligned to GRCh37 using STAR
version 2.5.3a_modified48. BAM files were sorted and analyzed with flagstat using
Samtools version 1.549. Quality control was conducted using FastQC version 0.11.5.
(See http://bioinformatics.babraham.ac.uk/projects/fastqc/).

Association testing and correlation. Association testing was done using Student′s
t test (two-sided) (continuous expression) and Fisher′s Exact Test (two-sided)
(categorical expression). Clinical associations with fusions and fusion genes were
calculated using Fisher′s Exact Test (two-sided) for categorical variables and
Mann–Whitney U Test for continuous variables. Expression and clinical testing
p values were corrected using the Benjamini and Hochberg false discovery rate
(FDR) method50. All correlations are calculated as Pearson correlations unless
otherwise stated.

Copy number variation detection. We detected copy number variation from
WGS data using BIC-seq251 (BICseq2-norm version 0.2.4; BICseq2-seg version
0.7.2). In scRNA-seq, we used inferCNV (version 0.8.2) to calculate single cell copy
number profiles52.

Fusion analysis scripts. Fusion results were analyzed by scripts written in Python
(version 3.7.2) and R (version 3.5.3). Python packages included numpy, os, and
pysam. R packages included ggrepel, gridExtra, readxl, RColorBrewer, Seurat
(version 3.0.0), survival, survminer, tidyverse, and UpSetR. (Please see github.com/
ding-lab/griffin-fusion/tree/master/mmrf_fusion for fusion analysis scripts.)

Fusion detection. We used five fusion detection tools including EricScript53

(version 0.5.5), FusionCatcher54 (version 1.00), INTEGRATE55 (version 0.2.6,
using RNA-seq samples only, not paired RNA and WGS), PRADA56 (version 1.2),
and STAR-Fusion57 (version 1.1.0). Gene names from immunoglobulin super-loci
were condensed to IGH, IGK, and IGL (including IGLL5).

Fusion filtering. Fusions were required to be called by at least two tools. Fusions
called by any combination of EricScript, FusionCatcher, or INTEGRATE must also
have been called by STAR-Fusion or PRADA in another sample (soft filter tag EFI).
Fusions were removed if: partners are the same gene; genes appear on blacklist or
are paralogs; fusion comes from list of normal panel fusions (non-cancer cell lines,
GTEx, TCGA normal samples)8,58; one partner is promiscuous with 25 or more
partners (soft filter tag Many Partners); or partner genes are within 300 Kb (soft
filter tag within 300 Kb). In addition, across all samples for a particular fusion pair,
we required at least one sample to have two or more junction reads or one sample
to have one or more spanning reads, or that fusion pair was removed from all
samples (soft filter tag Low Count). Finally, fusions with a low WGS support rate
compared with the background rate were removed if the binomial test two-sided
p value was less than 0.15 (soft filter tag Undervalidated). See Supplementary
Data 6 for a list of all soft filtered fusions and why they were filtered.

Gene expression. Transcripts per million (TPM) was calculated using kallisto59

(version 0.43.1).
Gene level TPM was calculated as the sum of TPM values from each of that

gene′s transcripts.
Log transformation of TPM values was calculated as log10(TPM+ 1).

Kinase domain analysis. Kinase domain status was determined based on reported
gene fusion breakpoints using AGFusion60 (version 1.231). (See http://github.com/
murphycj/AGFusion). Following manual review, 15 out of 19 MAP3K14 fusions
were found to possess an intact kinase domain after initially being reported as
having disrupted kinase domains due to a lack of annotation.

Mutation signature profiling. We used SignatureAnalyzer61 to quantify mutation
signatures.

Outlier detection. Gene expression outliers were defined as having values greater
than 75th+ 1.5*IQR or less than 25th–1.5*IQR, where 75th and 25th represent the
75th and 25th percentile, respectively, and IQR is the interquartile range, defined as
the 75th percentile minus the 25th percentile.

Single cell fusion detection–Fuscia. Given an aligned BAM file, barcode infor-
mation for each read mapping to fusion gene regions was extracted using the
Python module pysam (version 0.15.2), which wraps Samtools49 (version 1.7).
When two reads map to different genes or regions and share the same cell and
molecular barcode, we labeled that transcript as a “chimeric transcript”. Multiple
reads could originate from the same chimeric transcript. We eliminated reads with
length >128 and then selected one representative read from each side of the chi-
meric transcript by picking the reads mapping closest to the known WGS break-
point. Transcript overexpression makes false positive detection of chimeric
transcripts more likely. We reduced this risk by purposefully looking for chimeric
transcripts that may be detected due to overexpression. In plasma cells with IGH
translocations, we specifically looked for chimeric transcripts linking IGH and
plasma cell markers SDC1, SLAMF7, and TNFRSF17. We called those regions
“overlap” regions because chimeric transcripts from genes not associated with
fusions overlap with those from legitimate fusions. (Please see http://github.com/
ding-lab/fuscia).

We used R (version 3.5.3) and the Seurat62 package (version 3.0.0) to analyze
cell type and gene expression from individual data. Dimensional reduction was
performed using UMAP63.

Single cell RNA-sequencing data collection. Additional multiple myeloma
patients not related to the MMRF CoMMpass Study were enrolled at Washington
University in a longitudinal study. The Washington University Institutional Review
Board approved the study protocol, and all relevant ethical regulations, including
obtaining informed consent from all participants, were followed.

Five patients (8 samples) from the Washington University IRB-approved study
were included in this analysis based on having a translocation relevant to single cell
fusion detection (t(4;14), t(8;14), or t(11;14)). Single cell RNA sequencing was
conducted using the 10x Genomics Chromium Single Cell 3′ v2 or 5′ Library Kit
and Chromium instrument. Approximately 17,500 cells were partitioned into
nanoliter droplets to achieve single cell resolution for a maximum of 10,000
individual cells per sample. The resulting cDNA was tagged with a common 16nt
cell barcode and 10nt Unique Molecular Identifier during the RT reaction. Full
length cDNA from poly-A mRNA transcripts was enzymatically fragmented and
size selected to optimize the cDNA amplicon size (approximately 400 bp) for
library construction (10x Genomics). The concentration of the 10x single cell
library was accurately determined through qPCR (Kapa Biosystems) to produce
cluster counts appropriate for the HiSeq 4000 or NovaSeq 6000 platform
(Illumina). 26 × 98 bp (3′ v2 libraries) or 2 × 150 bp (5′ libraries) sequence data
were generated targeting between 25K and 50K read pairs/cell, which provided
digital gene expression profiles for each individual cell. For all the samples included
in this study, only Patient 27522 Relapse-2 was processed with the 5′ Library Kit.
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Somatic mutation calling. MMRF exome bams were aligned to hg19, and somatic
variants were called by our in-house pipeline SomaticWrapper, which includes four
established bioinformatic tools (Mutect64 (version 1.1.7), Pindel65 (version 0.2.54),
Strelka266 (version 2.9.2), and VarScan267 (version 2.3.83)). (See github.com/ding-
lab/somaticwrapper.) We kept SNVs called by at least two out of three tools
(Mutect, Strelka, VarScan2). Likewise, we kept INDELs called by at least two out of
three tools (Pindel, Strelka, VarScan2). We required 14X coverage for somatic
mutation calls and only kept mutations with tumor variant allele frequency (VAF)
>= 0.05 and normal VAF <= 0.02.

Structural variant detection. Structural variants were detected from paired nor-
mal and tumor WGS samples using Delly68 (version 0.7.6) and Manta69 (version
1.1.0). To be analyzed, tumor and normal WGS samples must have had matching
sequencing assays and a corresponding RNA-seq sample.

Survival analysis. We performed survival analysis using progression-free survival
as the outcome using the survival (version 2.44-1.1) and survminer (version 0.4.6)
packages in R. To test for significant improvements in model fit with additional
covariates, we implemented a chi-squared test using the anova function and
compared the new model to the baseline model. Only patients whose primary
sample corresponded to the pre-treatment clinic visit were included for survival
modeling.

Tumor purity. We used the R package estimate70 (version 2.0) to quantify tumor
purity from RNA-seq data. Tumor purity of peripheral blood (PB) samples was not
quantified.

WGS support of fusion events. We used WGS data to determine if reported
fusions also had genomic support. We defined a breakpoint window centered at
each fusion breakpoint. If there were three or more discordant read pairs mapping
to within 100 Kb of each breakpoint, we determined the fusion to be supported by
WGS. Reads were filtered by Samtools49 (version 1.5) with flags -F 1920 -f 1 -q 20.
We removed fusions from all samples if the fusion-specific support rate differed
significantly from the background support rate of all fusions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data was provided by The Multiple Myeloma Research Foundation (MMRF) CoMMpass
(Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile) Study
(NCT01454297). dbGaP Study Accession: phs000748. Data types analyzed in this study
were RNA-seq, whole exome sequencing, whole genome sequencing, and clinical
information. The MMRF CoMMpass study can be accessed at https://www.ncbi.nlm.nih.
gov/projects/gap/cgi-bin/study.cgi?study_id=phs000748.v7.p4. Single cell RNA-seq data
used in this study can be accessed at the NCBI under accession code PRJNA627897
[https://www.ncbi.nlm.nih.gov/bioproject/627897].
The source data and scripts underlying all figures are provided at https://doi.org/

10.6084/m9.figshare.11941494 (for everything except scRNA data) and https://doi.org/
10.6084/m9.figshare.11941506 (for scRNA data).
The remaining data are available in the Article, Supplementary Information, or are

available from the author upon reasonable request.

Code availability
Data analysis scripts and single cell fusion detection methods are available under the MIT
license at github.com/ding-lab/griffin-fusion/tree/master/mmrf_fusion and github.com/
ding-lab/fuscia.
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