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In recent years, multiple genome-wide association studies (GWAS) have identified numerous
susceptibility variants and risk genes that demonstrate significant associations with bone
mineral density (BMD). However, exploring how these genetic variants contribute risk to
BMD remains a major challenge. We systematically integrated two independent expression
quantitative trait loci (eQTL) data (N = 1890) and GWAS summary statistical data of BMD (N
= 142,487) using Sherlock integrative analysis to reveal whether expression-associated vari-
ants confer risk to BMD. By using Sherlock integrative analysis and MAGMA gene-based
analysis, we found there existed 36 promising genes, for example, PPP1CB, XBP1, and
FDFT1, whose expression alterations may contribute susceptibility to BMD. Through a
protein–protein interaction (PPI) network analysis, we further prioritized the PPP1CB as a
hub gene that has interactions with predicted genes and BMD-associated genes. Two eS-
NPs of rs9309664 (PeQTL = 1.42 × 10−17 and PGWAS = 1.40 × 10−11) and rs7475 (PeQTL =
2.10 × 10−6 and PGWAS = 1.70 × 10−7) in PPP1CB were identified to be significantly as-
sociated with BMD risk. Consistently, differential gene expression analysis found that the
PPP1CB gene showed significantly higher expression in low BMD samples than that in high
BMD samples based on two independent expression datasets (P = 0.0026 and P = 0.043,
respectively). Together, we provide a convergent line of evidence to support that the PPP1CB
gene involves in the etiology of osteoporosis.

Introduction
Osteoporosis is a common age-related complex disease. The disease leads to a huge economic burden on
health care systems with a cost of about $17 billion per year in the United States, and it is expected to
be $25.5 billion annually by the year of 2025 [1]. Bone mineral density (BMD) is the most commonly
used indicator to assess the increased risk of a fracture that is the characteristics of osteoporosis [2]. BMD
is highly influenced by genetic factors, and the narrow-sense heritability of BMD has been estimated to
be approximately 85% [3–5]. Consequently, there exists a considerable interest in identifying the genetic
basis of osteoporosis for developing effective methods for its treatment and prevention.

Genome-wide association study (GWAS) is a good approach that is capable of simultaneously exam-
ining the genetic links between millions of variants and phenotypes of interest. In the recent decade, nu-
merous GWASs of osteoporosis and BMD have successfully reported multiple genetic variants and related
susceptible genes that show robust associations [4,6–10]. These identified genetic loci from GWAS con-
tain a wealth of information with the potential to explore new risk genes and molecular pathways that
have critical roles in bone biology and inform drug discovery [6,11]. Nevertheless, it remains elusive on
how these genetic loci confer risk to osteoporosis and BMD. Additionally, many genetic loci with weak
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or modest effects were hard to be detected in a single GWAS study due to their genome-wide threshold of strict
statistical significance. Thus, more studies are warranted to uncover the underlying effects of the small-to-modest
GWAS association signals on BMD that may be conducive to understand the missing heritability of this trait.

Although more BMD-associated genetic loci warrant to be identified, growing evidence has strongly demonstrated
that the altered expression of gene has a crucial part in the pathogenesis of osteoporosis [12–14]. Furthermore, re-
cent studies [15–18] have employed systematically integrative approaches to integrate the GWAS summary data and
expression quantitative trait loci (eQTL) data to explore the potent regulatory effects of the risk variants in reported
GWAS. He et al. [15] introduced a Bayesian statistical approach of Sherlock to systematically reveal the cis- and
trans-regulatory effects of risk genes on complex diseases based on GWAS summary data and eQTL data. By using
this bioinformatics tool, numerous studies have identified many novel risk genes, which cannot be found with the use
of the GWAS approach alone, for different complex traits, such as schizophrenia [19], gout disease [20], and major
depressive disorders [21,22].

The primary goal of the current investigation is to explore whether genetic variants linked with gene expression
confer risk to BMD and identify BMD-associated genes based on combining both GWAS and eQTL data by using
a Bayesian method of Sherlock. To further validate the potent roles of these identified BMD-associated genes in
osteoporosis etiology, we re-performed the integrative analysis in an independent eQTL dataset and applied additional
genomic analyses based on RNA expression data.

Materials and methods
Bone mineral density GWAS data
We employed a large-scale GWAS summary statistics data on BMD [10] for searching risk genetic variants. Briefly, this
BMD-associated GWAS study was reported recently by the Genetic Factors for Osteoporosis (GEFOS) Consortium,
which comprises 142,487 individuals in total. All individuals have signed the informed consent and the ethical ap-
proval was obtained from the Northwest Multi-centre Research Ethics Committee. Data were imputed centrally based
on the UK10K/1000G combined imputation panel (hg19). Only SNPs down to a MAF of 0.1% and with an info-score
threshold of >0.4 were included for analysis. The association information of genetic variants in GWAS including the
name of each SNP and related P value was employed as input in Sherlock analysis and MAGMA analysis. There were
a total of 17,166,350 SNPs in the chosen GWAS employed as input in the current investigation. For more detailed
information, please refer to the original published article [10] and the GEFOS website (http://www.gefos.org/).

Discovery eQTL data
We used the monocyte eQTL data that were from a single-center cohort study of the Gutenberg Heart Study
(GHS) as discovery eQTL, including a number of 1490 unrelated study participants with both DNA and RNA
available. Informed consent was signed from all subjects. The Affymetrix Genome-Wide Human SNP Array 6.0
(http://www.affymetrix.com) was applied to conduct the genotyping for each sample. Based on the standard criteria
of quality control for SNPs in the Affymetrix SNP Array 6.0 including the P value for Hardy–Weinberg equilib-
rium >1 × 10−4, the calling rate of genotype >98%, and the frequency of minor allele > 0.01, we removed 225,042
low-quality SNPs and obtained 675,350 SNPs for further analysis. With the use of the Illumina HT-12 v3 BeadChip
(http://www.Illumina.com), genome-wide expression analysis was conducted based on RNA samples from mono-
cytes. There were a total of 37,804 genes included in the Illumina HT-12 BeadChip. Of these genes, a number of
22,305 genes were treated as being prominently expressed. We removed 8058 not well-characterized genes and used
12,808 well-characterized genes to carry out a subsequent eQTL analysis. For more information, please refer to the
original published article [23].

Independent validation eQTL data
We also employed an independent eQTL dataset published by Dixon and coworkers [24], which have created a global
map of the effects of polymorphism on gene expression. Ethical approval was given by the Multicentre Research
Ethics Committees (U.K.), and written informed consent was given by all participants. Whole-genome genotyping was
conducted according to manufacturers’ instructions using the Human Hap300 Genotyping BeadChip (Illumina) and
the Sentrix Human-1 Genotyping BeadChip in a BeadChip with full automation. Genome-wide expression analysis
was carried out on lymphoblastoid RNA samples using the U133 Plus 2.0 GeneChips (Affymetrix), according to the
manufacturers’ protocol. After strict quality control, genotypes and gene expression of 400 participants were used to
generate eQTL resources. Please refer to the original paper for more detailed information [24].
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Sherlock integrative analysis using discovery eQTL data
Given the vast majority of the GWAS-identified variants associated with traits of interest are located in non-coding
genomic regions [25], it is likely to infer that the identified susceptibility variants influence the expression level of
the relevant gene rather than the function of its protein. Based on the putative assumption that specific gene ex-
pression may convey susceptibility to BMD, we employed the approach of Sherlock integrative analysis to integrate
GWAS summary statistics on BMD from Kemp et al. [10] and circulating monocyte eQTL data from Zeller et al.
[23]. The statistical inference procedures of the Sherlock method are described as following: Sherlock first searches
expression-associated SNPs (as called eSNPs) in the human monocyte samples with the use of the eQTL data from the
study of Zeller et al. [23]. Second, Sherlock tool assesses the potent association of eSNPs with BMD using the GWAS
summary data from Kemp et al. [10]. There exists three scenarios: (1) A positive score would be recorded based on a
specific eSNP of a gene in the chosen GWAS shows a significant association with BMD; (2) A negative score would
be assigned based on a specific eSNP of this gene shows a non-significant association with BMD; (3) No score would
be assigned based on an SNP was not eSNP but shows a significant association with BMD. The summed score of a
specific gene was depended on the number of SNPs with the evidence combined from both GWAS and eQTL data.
Concerning each gene, Sherlock software conducted a Bayesian statistical inference with the use of the integrated data
of the potent eSNPs of the gene to examine whether the alteration in the expression of the specific gene has any influ-
ence on BMD risk. Through computing the logarithm of Bayes factor, Sherlock tool predicts BMD-associated genes
by combining the data from eQTL and GWAS summary statistics. With a comparison of existing traditional anal-
ysis, which commonly neglects moderate SNPs, Sherlock tool based on an effective Bayesian model employs SNPs
in GWAS with moderately and strongly genetic association signals. For Sherlock analysis, the method of Bonferroni
correction was applied to correct the P-values of genes.

Sherlock integrative analysis using independent eQTL data
Subsequently, to replicate whether these identified genes are genuine BMD-associated risk genes, we conducted a
further Sherlock integrative analysis based on an independent eQTL data (biological validation), which were reported
by a study of Dixon and his colleagues [24]. All the parameter settings of Sherlock analysis were the same with that
of discovery eQTL data. Consistently, the P-value of each gene was corrected by utilized the Bonferroni correction
method.

MAGMA gene-based analysis
We used the software of Multi-marker Analysis of GenoMic Annotation (MAGMA) [26] as an independent bioinfor-
matics tool to perform a gene-based enrichment analysis for technically validate the identified genes from Sherlock
Bayesian analysis. For the MAGMA tool, we could extract the name of each SNP with its P-value from BMD GWAS
summary statistics as input to identify the significant association signals at a gene level. SNPs mapped into a specific
gene or the genomic region extended +−20 kb downstream or upstream of the gene were chosen to identify multiple
variants convergent effects and collectively calculate the P-value of the gene risk to BMD. The linkage disequilibrium
(LD) information between chosen SNPs was computed based on the 1000 Genome European panel. The Bonferroni
correction method was used for multiple testing.

Null GWAS data
To make sure these identified BMD-associated genes because of genetic biology instead of random events, we carried
out a MAGMA gene-based analysis with the same parameters by using an artificial GWAS dataset (as a negative
control dataset). The control GWAS was derived from a real genetic dataset with a number of 3960 participants
published by Landi and colleagues [27]. We randomly assigned the phenotype of BMD to each participant to construct
a Null trait. In view of the Null GWAS was supposed to be no true genetic effect, the power of this analysis based on
relatively small sample size is not an issue.

Pathway enrichment analysis
To reveal the biological interpretation of these prioritized BMD-associated genes from the discovery eQTL data, we
used the ClueGO [28], an easy use Cytoscape plug-in [29], to create a functionally organized pathway term net-
work. We used gene-set data from the two most recent sources of KEGG [30] and GO [31] (including biological
process, molecular function, and cellular component), ensuring an up-to-date functional analysis. We also employed
the method of “GO Term Fusion”, which fusion of GO parent-child terms based on similar associated genes, to re-
duce the redundancies of GO terms. Based on the two-sided test of hypergeometric distribution, the P values were
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calculated by depletion or enrichment for groups and terms. The Bonferroni step down correction was applied to
correct P values for multiple testing.

Computer-based permutation analysis
To reveal whether Sherlock-identified risk genes in the discovery stage (corrected P < 0.05: N = 147 genes; raw P <

0.05: N = 2064 genes) were significantly overlapped with genes identified from Sherlock validation analysis (corrected
P < 0.05: N = 98 genes; raw P < 0.05: N = 2031 genes) or MAGMA analysis (corrected P < 0.05: N = 1106 genes),
respectively, we conducted a computer-based permutation analysis [32]. For this permutation analysis, we randomly
selected the number of genes as same as significantly identified genes from background genes for 100,000 times and
documented the overlapped rate with genes from the Sherlock discovery stage. Then, we counted how many times
the counts of overlapped genes were larger than the number detected from real data 100,000 times. The probability
of the observed number considered as the empirical P value.

Protein–protein interaction (PPI) network
Multiple lines of evidence have documented that genes associated with complicated disorders are more tend to be in-
teracted [14,33,34]. Thus, PPI network-based analysis has been extensively applied to search for groups of functionally
related genes that may collectively contribute risk to complex disease. We conducted a PPI network-based analysis
of these identified BMD-associated risk genes based on the GeneMANIA database (http://www.genemania.org) [35].
The GeneMANIA is a flexible and user-friendly tool for analyzing a list of genes to infer the functions of inputted
genes and narrowing down the number of genes for molecular experiments. If inputting a query list of genes, the
GeneMANIA tool extends the inputted genes with functionally similar genes based on current available proteomics
and genomics data.

Identification of BMD-associated genes expression profiles
Sherlock analysis identifies the disease-associated gene based on the assumption that risk gene abnormal expres-
sion may implicate in the pathogenesis of disease of interest. To reveal whether the identified susceptibility genes
are differentially expressed in low BMD compared with high BMD group, we obtained two existing RNA expression
datasets available in the NCBI’s GEO database (Accession Nos. GES2208 and GSE7429). GSE2208 contains transcrip-
tome data of 10 low BMD subjects and 10 high BMD subjects. GSE7429 contains RNA expression data of 9 low BMD
subjects and 10 high BMD subjects. For more detailed information on the sample collections and other procedures
of quality control, please find two original articles [24,36]. The R package of corrplot was utilized to show the differ-
ential co-expression patterns of these identified risk genes between high BMD and low BMD group. The difference
between high BMD and low BMD groups was compared for significance with the Student’s T-test. A P value < 0.05
was considered statistically significant.

Results
Prioritization of BMD-associated risk genes
The workflow of the present study design is shown in Figure 1. To determine whether these genes with abnormal
expression may convey risk to BMD, we applied the Sherlock tool to integrate GWAS summary data with a total of
17,166,350 SNPs (N = 142,487 samples) with eQTL data based on 1490 samples. The Sherlock integrative analysis,
which is often used to find disease-associated genes by matching patterns of GWAS and eQTL, was carried out for
the Bayesian statistical inference. Based on this Bayesian method, we identified 147 top BMD-associated genes whose
abnormal expression may influence BMD risk at the threshold of P < 1.57×10−6 (Bonferroni corrected P < 0.05;
Supplemental Table S1) and 2064 suggestive BMD-associated genes (P < 0.05). For each of these identified signif-
icant genes, for example, NR1H3, MVK, ACP2, EPB41L2, ZEP57, PBX1, and PPP1CB, at least one SNP showed
significant association with the expression of this gene and BMD risk simultaneously, inferring that these SNPs are
promising functional candidates with potential cis- and/or trans-regulatory effects on risk genes. Furthermore, we
performed a pathway-based analysis for these 147 significant genes and there were 11 pathways showing significant
enrichment (Table 1); such as the pathway of negative regulation of type 2 immune response (P = 0.00018), inacti-
vation of MAPK activity (P = 0.0011), and PPAR signaling pathway (P = 0.0021).

Validation of BMD-associated risk genes
To further validate our results in the discovery stage, we replicated the findings of Sherlock integrative analysis with
the use of an independent of Dixon et al. eQTL dataset (Replication dataset: N = 400). By using the same parameter
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Figure 1. The workflow of prioritizing the BMD-associated genes

settings, Sherlock integrative analysis based on independent eQTL data identified 98 significant genes (Supplemen-
tary Table S3; Bonferroni corrected P < 0.05) and 2031 suggestive genes (P < 0.05). Among these 147 significant
genes identified from the discovery stage, there were 48 genes validated in the replication stage (P < 0.05). In both
the discovery and validation stage, there were 11 BMD-associated genes reached Bonferroni correction significance,
namely CPT1A, CKB, MRPL21, ZFP57, ACP2, PPP1CB, ST7L, EPB41L2, PBX1, AMT, and VNN3 (corrected P
values < 0.05; Supplementary Figure S1). Multiple cis-SNPs in these identified genes convey risk to BMD (Supple-
mentary Tables S2 and S4).
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Table 1 Significant pathways enriched by identified BMD-associated genes based on discovery dataset

Pathway ID Pathway terms
Associated genes
proportion P value Corrected P value Associated genes

GO:0002829 Negative regulation of type
2 immune response

0.200 0.00018 0.0018 ARG2, SOCS5, STAT6

GO:1904294 Positive regulation of
ERAD pathway

0.200 0.00018 0.0018 ATXN3, EDEM2, XBP1

GO:0071498 Cellular response to fluid
shear stress

0.143 0.00050 0.0045 KLF2, SOCS5, XBP1

GO:0000188 Inactivation of MAPK
activity

0.111 0.00106 0.0085 DUSP1, DUSP12, DUSP3

GO:1901800 Positive regulation of
proteasomal protein
catabolic process

0.047 0.00122 0.0085 ATXN3, DAB2, EDEM2,
SOCS5, XBP1

KEGG:03320 PPAR signaling pathway 0.056 0.00210 0.0126 CPT1A, FABP7, FADS2,
NR1H3

KEGG:04142 Lysosome 0.041 0.00235 0.0118 ACP2, AP3D1, CTSB,
GUSB, IDUA

GO:0048246 Macrophage chemotaxis 0.079 0.00287 0.0115 LGALS3, MMP28, S100A8

GO:1904375 Regulation of protein
localization to cell
periphery

0.043 0.00529 0.0159 CIB1, DAB2, EPB41L2,
SPTBN1

GO:0030170 Pyridoxal phosphate
binding

0.050 0.01034 0.0207 GCAT, KYAT3, PYGM

GO:1901880 Negative regulation of
protein depolymerization

0.048 0.01131 0.0113 CIB1, SPTBN1, TRIOBP

MAGMA-based gene enrichment analysis of BMD
To ensure the reliability of these identified BMD-risk genes, we carried out an independent technical approach of
MAGMA gene-based analysis. We found a number of 1106 genes were significantly associated with the phenotype of
BMD based on Bonferroni correction for multiple testing (corrected P < 0.05). The top-ranked association signals
were of CPED1 (corrected P = 7.98 × 10−202), CCDC170 (corrected P = 1.78 × 10−182), and WNT16 (corrected
P = 3.96 × 10−137). There were 36 significant genes from MAGMA analysis overlapped with genes identified from
Sherlock analysis (correlated P < 0.05 of genes from the discovery stage; Figure 2A and Table 2). We observed that
none of these 36 identified genes show significant associations in the MAGMA analysis of Null GWAS (Table 2). In
addition, a number of 86 MAGMA-identified significant genes were overlapped with Sherlock-identified genes (P <

0.05 of genes from the discovery stage; Supplementary Figure S2).
Furthermore, we found that no matter significant or suggestive genes identified in the Sherlock discovery stage

were significantly higher overlapped with genes identified in the Sherlock validation stage and MAGMA validation
(permutation P < 1.0 × 10−5; see Figure 2B,C and Supplementary Figure S3A,B). More interestingly, comparing the
MAGMA results of Null GWAS, we observed that Sherlock-identified genes from the discovery and validation stage
have significantly high overlap rates with MAGMA-identified genes from BMD GWAS than that from Null GWAS
(Figure 3A,B).

PPI analysis of 36 BMD-associated risk genes identified by Sherlock
analysis
To determine whether these 36 BMD-associated risk genes identified by Sherlock and MAGMA analysis interact
with each other, we conducted a PPI network-based analysis using interactions of genetic interaction, prediction
links, co-expression, co-localization, and physical interactions based on the GeneMANIA database [35]. Figure 4
shows that these BMD-associated risk genes are constructed a biological network, indicating there exist highly bi-
ological connections between these identified genes. For example, the hub genes of PPP1CB, XBP1, FDFT1, and
SPTBN1 have the most number of interactions with both predicted genes and BMD-associated genes (Figure 4). Ad-
ditionally, the hub gene of XBP1 shows strong evidence of physical interactions with BMD-associated genes of H1F0
and predicted genes of ZNF440, SRSF1, and H1FX based on the interactions from BIOGRID and IREF databases
[37,38]. The hub gene of PPP1CB has genetic interactions with BMD-associated genes of SPTBN1, TRIOP, and
SSH2 (Figure 4) based on a genome-wide human genetic interaction map [39].
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Figure 2. Convergent evidence of BMD-associated genes from independent datasets

(A) Venn plot of BMD-relevant genes based on three datasets: Sherlock-identified genes from the discovery dataset (corrected

P<0.05); Sherlock-identified genes from the validation dataset (P<0.05); MAGMA-identified genes from the GWAS dataset (cor-

rected P<0.05). (B) Computer-based permutation analysis (100,000 times) of the counts of risk genes from Zeller eQTL dataset (cor-

rected P<0.05; discovery stage) overlapped with that from Dixon eQTL dataset (P<0.05; Replication stage). (C) Computer-based

permutation analysis (100,000 times) of the counts of risk genes from Zeller eQTL dataset (corrected P<0.05; discovery stage)

overlapped with that from MAGMA-based dataset (corrected P<0.05; technical validation stage).
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Table 2 Identification of BMD-associated risk genes from multiple omics datasets

Gene LBF

Sherlock-identified P
value (discovery
dataset; corrected
P<0.05)

Sherlock-identified P
value (replication
dataset; P<0.05)

MAGMA-identified P
value (BMD GWAS;
corrected P<0.05)

MAGMA-identified P
value (Null GWAS;
corrected P<0.05)

MSRA 10.59 7.87E-07 1.52E-06 5.29E-46 Non-significance

BLK 9.14 7.87E-07 9.26E-05 4.61E-35 Non-significance

ACP2 7.50 7.87E-07 7.59E-07 4.35E-14 Non-significance

EPB41L2 7.48 7.87E-07 7.59E-07 1.96E-18 Non-significance

ACSS2 6.84 7.87E-07 1.58E-03 6.81E-12 Non-significance

ZFP57 6.82 7.87E-07 7.59E-07 2.18E-06 Non-significance

MARK3 6.76 7.87E-07 1.82E-05 1.66E-37 Non-significance

FDFT1 6.66 7.87E-07 6.68E-05 5.00E-18 Non-significance

PPP1CB 6.62 7.87E-07 7.59E-07 4.01E-13 Non-significance

SPTBN1 6.61 7.87E-07 9.72E-05 9.60E-72 Non-significance

AMT 6.59 7.87E-07 7.59E-07 3.43E-11 Non-significance

MPHOSPH9 6.53 7.87E-07 8.81E-05 2.85E-09 Non-significance

CPT1A 6.49 7.87E-07 7.59E-07 1.92E-15 Non-significance

XBP1 6.43 7.87E-07 1.52E-06 1.49E-13 Non-significance

CLDN23 6.38 7.87E-07 1.67E-05 8.60E-23 Non-significance

H1F0 6.36 7.87E-07 4.28E-04 7.94E-08 Non-significance

SSH2 6.27 7.87E-07 9.11E-05 4.85E-16 Non-significance

LACTB2 6.27 7.87E-07 2.43E-05 2.19E-16 Non-significance

VNN3 6.25 7.87E-07 7.59E-07 8.52E-07 Non-significance

DGKQ 6.12 7.87E-07 6.83E-05 3.96E-16 Non-significance

LAMB2 6.08 7.87E-07 2.83E-02 6.99E-12 Non-significance

TRIOBP 5.96 7.87E-07 1.03E-04 2.42E-06 Non-significance

TPCN2 5.96 7.87E-07 1.52E-05 1.57E-21 Non-significance

BAG5 5.94 7.87E-07 1.52E-06 1.95E-25 Non-significance

MRPL21 5.84 1.57E-06 7.59E-07 1.67E-10 Non-significance

CTSB 5.79 1.57E-06 2.43E-05 8.22E-19 Non-significance

NME4 5.71 1.57E-06 2.58E-05 6.83E-13 Non-significance

TRIP11 5.70 1.57E-06 1.52E-06 1.11E-08 Non-significance

PIGN 5.55 1.57E-06 1.52E-06 2.99E-07 Non-significance

ATXN3 5.46 1.57E-06 4.56E-04 8.28E-09 Non-significance

ST7L 5.40 1.57E-06 7.59E-07 2.38E-17 Non-significance

WARS2 5.35 1.57E-06 1.52E-05 2.64E-11 Non-significance

CLMN 5.14 1.57E-06 2.38E-03 1.55E-08 Non-significance

CKB 5.14 1.57E-06 7.59E-07 9.61E-38 Non-significance

UBE2E3 5.06 1.57E-06 1.93E-04 2.85E-08 Non-significance

CIB1 5.06 1.57E-06 1.52E-06 5.56E-07 Non-significance

Differential expression analysis of identified genes in high BMD and low
BMD subjects
Furthermore, we tested the co-expression patterns of these identified genes between high BMD and low BMD subjects
based on two independent RNA expression datasets (i.e. GSE2208 and GSE7429). Based on the Pearson correlation
analysis, we found that the co-expression patterns of these genes showed obvious differences between high and low
BMD (Figures 5A,B and 6A,B). Subsequently, we first performed a differential gene expression (DGE) analysis to test
the expression level of these genes in high BMD and low BMD subjects in the GSE2208 dataset. We found the genes
of PPP1CB (P = 0.0026), FDFT1 (P = 0.0057), and XBP1 (P = 0.0023) showed significant up-regulated expression
in low BMD subjects compared with high BMD subjects (Figure 5C–E). Consistently, we found the PPP1CB gene
showed significantly higher expression in low BMD subjects than that in high BMD subjects with the use of an inde-
pendent dataset of GSE7429 (P = 0.043; Figure 6C). In the dataset of GSE7429, we also detected that LAMB2 (P =
0.022) and ATXN3 (P = 0.038) were significantly differential expressed between low BMD and high BMD subjects
(Figure 6D,E). In addition, several genes showed marginal evidence of differences between low BMD and high BMD
subjects in both datasets (Supplementary Figures S4 and S5).
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Figure 3. Genes identified from Sherlock Bayesian analysis validated by MAGMA-identified genes

(A) Sherlock-identified genes from Zeller eQTL dataset (discovery stage) were higher overlapped with MAGMA-identified genes

from BMD GWAS (Dataset #1) than that from Null-based GAWS (Dataset #2) at five different P-value thresholds of 0.05, 0.01,

0.001, 0.0001, and 0.00001. (B) Sherlock-identified genes from Dixon eQTL dataset (validation stage) were higher overlapped with

MAGMA-identified genes from BMD GWAS (Dataset #1) than that from Null-based GAWS (Dataset #2) at five different P-value

thresholds of 0.05, 0.01, 0.001, 0.0001, and 0.00001.

Replication and refinement of eQTL and GWAS results for PPP1CB
Furthermore, we concentrated our analysis on the hub gene of PPP1CB, which is a hub gene in our PPI network
analysis. There were two eSNPs of rs9309664 (PeQTL = 1.42 × 10−17 and PGWAS = 1.40 × 10−11; see Supplementary
Table S2) and rs7475 (PeQTL = 2.10 × 10−6 and PGWAS = 1.70 × 10−7; see Supplementary Table S4) in PPP1CB iden-
tified. To validate our results, we used the tool of HaploReg [40] to examine the association of two eSNPs (rs9309664
and rs7475) with the expression of PPP1CB in independent datasets. The result confirmed that rs9309664 is signifi-
cantly associated with PPP1CB expression in blood cells from two independent datasets (P = 6.19 × 10−6 and P =
3.4 × 10−26; Supplementary Table S5), as well as rs7475 showed significant association with PPP1CB expression in a
glioblastoma cell line from an independent dataset (P = 0.00024; Supplementary Table S5).

Discussion
Hitherto, more than 200 BMD-associated loci have been identified by GWAS studies [6–8,10]. However, the under-
lying biological mechanism of these risk SNPs and genes are still intractability.

Due to the influence of genetic LD among SNPs, these documented BMD-associated loci usually contain numerous
highly LD SNPs with similar significant association signals. Thus, to confirm the exact causal SNPs of BMD-associated
loci appeared to be a tough job. In view of a great number of detected susceptibility SNPs were mapped into the
non-coding genomic regions, we reasonably inferred that these reported SNPs confer susceptibility to BMD via reg-
ulation of gene expression level. To address this issue, an effective and powerful inference method is warranted to be
developed to combine the multi-omics information from genetic associations of existing GWAS summary data and
independent eQTL data. In the current investigation, we employed a Bayesian integrative approach to combine the
genetic associations from the large-scale GWAS of BMD (N = 142,487) and two independent eQTL datasets. In total,
we identified 36 promising genes with eSNPs potentially implicated in BMD risk. To further prioritize the most con-
vincing gene, we carried out several bioinformatics analyses, including MAGMA gene-based analysis, pathway-based
enrichment analysis, in silico permutation analysis, PPI network-based analysis, and DGE analysis. Our results re-
vealed that several genes, especially the PPP1CB gene, may represent authentic susceptibility genes for BMD.

The standard process of GWAS-based data analysis commonly uses millions of genetic SNPs to identify a number of
common SNPs that showed significant associations with traits of interest such as osteoporosis. Nevertheless, the power
of GWAS has been conspicuously limited by the enormous number of examined variants. GWAS may ignore the
comprehensively integrated effects of modest variants or genes, which not reach a genome-wide significance but still
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Figure 4. Protein–protein interactions between proteins encoded by 36 identified BMD-risk genes based on the application

of the GeneMANIA database

The 36 BMD-risk genes were provided as query (red nodes) and a number of additional genes were predicted to be linked

(green nodes). The predicted attributes included co-localization, genetic interactions, predicted links, co-expression, and phys-

ical interactions.

importantly implicated in the pathology of osteoporosis. Furthermore, only based on the findings of GWAS analysis
is impossible to infer whether the detected disease-associated SNPs contain regulatory functions. Thus, Sherlock
integrative analysis is a good and effective method for combining the information of GWAS with eQTL data and has
been applied to identify many novel risk genes of many complex diseases [15,19–22], which cannot be detected by
GWAS alone.

With the use of Sherlock integrative analysis and MAGMA gene-based analysis, there were 36 BMD-associated
risk genes identified with eSNPs at a genome-wide significance; for example, ACP2 (cis-rs11039035, PGWAS = 1.10
× 10−11; cis-rs2290148, PGWAS = 2.40 × 10−8), EPB4L2 (cis-rs9375797, PGWAS = 1.70 × 10−8; cis-rs4897473, PGWAS
= 2.40 × 10−15), VNN3 (cis-rs9402490, PGWAS = 9.40 × 10−67; cis-rs1856293, PGWAS = 2.30 × 10−10), and CKB
(cis-rs12894275, PGWAS = 7.20 × 10−9; cis-rs2071407, PGWAS = 1.70 × 10−12). Growing evidence indicates that
disease-related genes encode functional proteins, which commonly generate a high interaction network [14,33,34,41].

10 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 5. Differential expression profiles of 36 genes between high BMD and low BMD subjects in the GSE2208 dataset

(A) Co-expression patterns of 36 risk genes in low BMD subjects in the GSE2208 dataset. (B) Co-expression patterns of 36 risk

genes in high BMD subjects in the GSE2208 dataset. (C) Boxplot of the different gene expression of PPP1CB between high BMD

and low BMD subjects in the GSE2208 dataset. (D) Boxplot of the different gene expression of FDFT1 between high BMD and

low BMD subjects in the GSE2208 dataset. (E) Boxplot of the different gene expression of XBP1 between high BMD and low BMD

subjects in the GSE2208 dataset.

By conducting a PPI network-based analysis, we found that these 36 identified genes appeared to be highly connected
to each other. There were several genes of PPP1CB, XBP1, FDFT1, and SPTBN1 with the most number of interac-
tions as the hub genes of the enriched network. For the hub gene of PPP1CB, there were two significant eSNPs of
rs9309644 (PeQTL = 1.42 × 10−17 and PGWAS = 1.40 × 10−11) and rs7475 (PeQTL = 2.10 × 10−6 and PGWAS = 1.70 ×
10−7) identified. Consistently, these two eSNPs were reported to be significantly associated with PPP1CB expression
in the other three previous studies [42–44]. Furthermore, based on two independent expression datasets, we found
PPP1CB showed significantly higher expression in the low BMD group than that in the high BMD group. These
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Figure 6. Differential expression profiles of 36 genes between high BMD and low BMD subjects in the GSE7429 dataset

(A) Co-expression patterns of 36 risk genes in low BMD subjects in the GSE7429 dataset. (B) Co-expression patterns of 36 risk

genes in high BMD subjects in the GSE7429 dataset. (C) Boxplot of the different gene expression of PPP1CB between high BMD

and low BMD subjects in the GSE7429 dataset. (D) Boxplot of the different gene expression of FDFT1 between high BMD and

low BMD subjects in the GSE7429 dataset. (E) Boxplot of the different gene expression of XBP1 between high BMD and low BMD

subjects in the GSE7429 dataset.

findings indicate that the PPP1CB gene plays an important role in low BMD subjects, which is a strong risk factor
for osteoporosis and a key factor for its diagnosis and treatment [2].

The protein encoded by PPP1CB gene, which is located on the chromosome of 2p23.2, is one of the three catalytic
subunits of protein phosphatase 1 (PP1). Phosphoprotein phosphatase 1 (PPP1), a major type 1 serine/threonine
phosphatase, is ubiquitously expressed and regulates various cellular functions including glycogen metabolism, cell
division, and muscle contractility [45–48]. In recent, a study [49] showed a role for PPP1CB that it is the myosin light
chain phosphatase responsible for Ca2+-transient rise and enhanced cell shortening in cardiomyocytes. Additionally,
Cho et al. [45] have reported that PPP1CB regulates adipocyte differentiation partially by targeting the transcription
factor C/EBPδ. Protein phosphatases are pivotal enzymes in diverse eukaryotic physiological processes including

12 © 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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cell differentiation and proliferation, cell–cell communication, and regulation of transmembrane and intracellular
signaling pathways. Dysregulation of these proteins expression or activity has been documented to be linked with
numerous human diseases [45,50,51], including cancer, obesity, and osteoporosis.

In sum, our present study highlights 36 convincing genes associated with BMD risk and further provides strong ev-
idence to support that PPP1CB represents a genuine BMD-associated risk gene with eSNPs conferring susceptibility
to osteoporosis. Through integrating the GWAS-based genetic associations with gene expression data, we demon-
strated a plausible elucidation of the biological function of genetic variants on osteoporosis susceptibility. Current
integrative genomics analysis offers an effective pipeline for incorporating SNPs across the whole genome to genes
via cis- and/or trans-regulatory effects on transcriptional abundance, which is more powerful for interpreting the
biological mechanism of functional SNPs than a pure GWAS method. Identification of risk genes from our results
give a group of new molecular targets for subsequent functional experiments and therapeutic testing in future, which
will improve the translation of pharmacogenomics testing into clinical practice. Furthermore, more related molecular
studies are warranted to reveal the biological mechanism of PPP1CB gene implicated in osteoporosis.
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