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Multi-region exome sequencing reveals the
intratumoral heterogeneity of surgically resected
small cell lung cancer
Huaqiang Zhou1,7, Yi Hu2,7, Rongzhen Luo3,7, Yuanyuan Zhao1,7, Hui Pan4,7, Liyan Ji5,7, Ting Zhou1,

Lanjun Zhang6, Hao Long6, Jianhua Fu6, Zhesheng Wen6, Siyu Wang6, Xin Wang6, Peng Lin6, Haoxian Yang6,

Junye Wang6, Mengmeng Song5, Xin Yi5, Ling Yang5, Xuefang Xia5, Yanfang Guan5, Wenfeng Fang1,

Yunpeng Yang1, Shaodong Hong1, Yan Huang1, Pansong Li 5, Yaxiong Zhang 1✉ & Ningning Zhou 1✉

Small cell lung cancer (SCLC) is a highly malignant tumor which is eventually refractory to

any treatment. Intratumoral heterogeneity (ITH) may contribute to treatment failure.

However, the extent of ITH in SCLC is still largely unknown. Here, we subject 120 tumor

samples from 40 stage I-III SCLC patients to multi-regional whole-exome sequencing. The

most common mutant genes are TP53 (88%) and RB1 (72%). We observe a medium level of

mutational heterogeneity (0.30, range 0.0~0.98) and tumor mutational burden (TMB, 10.2

mutations/Mb, range 1.1~51.7). Our SCLC samples also exhibit somatic copy number varia-

tion (CNV) across all patients, with an average CNV ITH of 0.49 (range 0.02~0.99). In terms

of mutation distribution, ITH, TMB, mutation clusters, and gene signatures, patients with

combined SCLC behave roughly the same way as patients with pure SCLC. This condition

also exists in smoking patients and patients with EGFR mutations. A higher TMB per cluster is

associated with better disease-free survival while single-nucleotide variant ITH is linked to

worse overall survival, and therefore these features may be used as prognostic biomarkers for

SCLC. Together, these findings demonstrate the intratumoral genetic heterogeneity of

surgically resected SCLC and provide insights into resistance to treatment.
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Lung cancer is the most prevalent cancer in the world, with
15% of patients diagnosed with the highly aggressive and
metastatic malignancy small cell lung cancer (SCLC)1.

About one-third of SCLC patients present with limited disease
(LD) and the remaining patients are diagnosed with extensive
disease (ED) SCLC at the time of initial diagnosis. The 5-year
overall survival (OS) rate for ED SCLC is below 7%2. For SCLC
patients, there has been no significant progress in the treatment
modalities over the past decade. While the vast majority of
patients are sensitive to chemotherapy and radiotherapy at the
time of the initial treatment, all patients inevitably face the
dilemma of chemoresistance and disease progression3. Recently,
immunotherapy was approved for the comprehensive treatment
of ED SCLC4–8. Yet, recurrence, drug resistance, and cancer as
the cause of death are still common in the course of SCLC. How
to improve a patient’s prognosis remains an unmet need for this
recalcitrant malignancy.

An important factor in the failure of anticancer treatment is
intratumor heterogeneity (ITH), which refers to distinct tumor
cell populations (with different molecular and phenotypic pro-
files) within the same tumor specimen, resulting in differences in
the tumor growth rate, invasion ability, drug sensitivity, and
prognosis9. Next-generation sequencing (NGS) technology has
been widely used for tumor genome variation research and has
shown excellent capabilities in ITH research. For example, in the
TRACERx (TRAcking Cancer Evolution through therapy (Rx))
lung study, multi-region sampling of lung cancer tissues from 100
early stage non-small cell lung cancer (NSCLC) patients using
multi-region whole-exome sequencing (MRS) revealed ubiquitous
ITH in patients and copy number variation (CNV). ITH was
associated with prognosis, which provides a reference for sub-
sequent cancer genome research10. Elucidating the heterogeneity
of SCLC could help better our understanding of disease man-
agement. A recent study found that chemotherapy caused
increased ITH, leading to the development of multiple

mechanisms of drug resistance in ED SCLC11. However, the ITH
of LD SCLC patients without chemotherapy remains unknown
due to a lack of tumor samples.

In this study, we aim to provide the intratumoral genetic
heterogeneity landscape of surgically resected SCLC, by analyzing
the whole-exome sequencing data of 120 samples from 40
patients with SCLC. We characterize their mutational burden,
heterogeneity, evolution, and potential biomarkers. Considerable
intratumoral genetic heterogeneity is present among SCLC. We
further identify several heterogeneity-related prognostic
biomarkers.

Results
Patients’ characteristics. We included 40 surgically resected
SCLC patients in this study, among them, 6 were diagnosed with
combined SCLC (C-SCLC). Most SCLCs (34/40) were pure SCLC
(P-SCLC). Table 1 shows the patients’ clinical characteristics. The
median age was 62 years old. Most patients were male (35, 87.5%)
and had a history of smoking (31, 77.5%). All patients underwent
surgery, with a median tumor size of 22.5 mm. About 65% of
patients received further treatment after surgery. Fifteen patients
(15, 38%) died after a median follow-up time of 22.82 months.

Mutation landscape of 40 SCLC patients using multiple-
regional sequencing. We subjected 120 formalin-fixed paraffin-
embedded (FFPE) SCLC samples (3 regions per patient) to MRS.
In total, 33,153 non-silent somatic mutations were identified with
an average 252× sequencing depth (Supplementary Data 1). We
found an average of 340 mutations (range 33–1552) from multi-
region for each patient. The median multi-region based tumor
mutation burden (TMB) of SCLC was similar with single-region
based TMB in our cohort and The Cancer Genome Atlas (TCGA)
cohort (Supplementary Fig. 1a, Mann–Whitney–Wilcoxon test,
both p > 0.05). There was a positive correlation between TMB and
tumor neoantigen burden (TNB) (Spearman’s correlation coeffi-
cient, r= 0.59, p < 0.001; Supplementary Fig. 1b). The most fre-
quent mutant genes were TP53 (88%) and RB1 (72%), which were
clonal mutations; while LRP1B (22%), PCLO (15%), and KMT2D
(15%) were subclonal mutations (Fig. 1a, Supplementary Fig. 2c,
Supplementary Data 2). The C > T and C > A transversions were
enriched in these patients (Supplementary Fig. 1c, d). The age-
associated, BRCA1/2-associated, tobacco-associated, and
aflatoxin-associated signatures were also major mutational sig-
natures in these patients (Fig. 1a). The age-associated, aflatoxin-
associated, and DNA repair-associated signatures were the top
signatures in the branch, while the age-associated and smoking-
associated signatures were major ones in the trunk (Supplemen-
tary Fig. 1e, f).

Non-silent mutation distribution showed ITH in patients with
SCLC varied significantly (Fig. 1b). Percentages ranged from 17 to
100% (Fig. 1c). We found a medium mutational heterogeneity
(0.30, quartile 0.12–0.56) in our SCLC cohort, and the SNV ITH
of P-SCLC and C-SCLC were not significantly different with
NSCLC of TRACERx study (p= 0.065 and p= 0.32)10 (Fig. 1c
and Supplementary Fig. 2b). We also showed the distribution of
mutations in ten common oncogenic signaling pathways12

(Supplementary Fig. 2g) and identified that mutations in the
TP53 and RTK-Ras-ERK signaling pathways were predominantly
clonal mutations.

Intratumoral heterogeneity in CNV. SCLC exhibited somatic
arm-level CNV alterations including amplification at chromo-
somes 1, 12, 18, 19, 20, 3q, 5p, 6p, and 8q, and deletions at
chromosomes 4, 10, 3p, 5q, 13q, 15q, 16q, 17q, 21p, and 11q
(Fig. 2a, Supplementary Data 3–5). Significantly amplified regions

Table 1 Clinical characterization of our SCLC cohort.

Characteristics Total (n= 40) P-SCLC
(n= 34)

C-SCLC
(n= 6)

Median age in years
(range)

62 (23–76) 64 (23–75) 63 (50–76)

Sex (%)
Male 35 (87.5%) 31 (91%) 4 (66%)
Female 5 (12.5%) 3 (9%) 2 (33%)

Smoking (%)
Non-smoker 8 (20%) 5 (15%) 3 (50%)
Smoker 31(77.5%) 28 (82%) 3 (50%)
NA 1 (2.5%) 1 (3%) 0 (0%)

Drinking (%)
Never 17 (42.5%) 13 (38%) 4 (66%)
Drinking 22 (55%) 20 (59%) 2 (33%)
NA 1 (2.5%) 1 (3%) 0 (0%)

Median tumor size
(range)

22.5 (1.6–420) 22.5 (1.6–420) 22.83 (2.4–54)

Stage (%)
I 15 (37.5%) 12 (35%) 3 (50%)
II 7 (17.5%) 5 (15%) 2 (33%)
III 18 (45%) 17 (50%) 1 (16%)
IV 0 (0%) 0 (0%) 0 (0%)

Treatment after surgery (%)
Yes 26 (65%) 23 (68%) 3 (50%)
No 14 (35%) 11 (32%) 3 (50%)

Status (%)
Alive 25 (62%) 20 (59%) 5 (83%)
Dead 15 (38%) 14 (41%) 1 (16%)
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included 1p34.2 (HEYL), 1q21.3 (APH1A), 2p24.3 (MYCN), 3q29
(PIK3CA), 5p13.2 (IL7R), 6p22.3 (E2F3), 8q24.21 (MYC), and
9p24.1 (CD274, PDCD1LG2) as well as deleted regions 3p12.1,
4q13.2, 5q35.3, 9q21.11(CBWD3), 10q23.31 (PTEN), 13q14.2
(RB1), 14q11.2, 15q25.3 (NTRK3), 19p12 (ZNF429), and 22q11.1
(Fig. 2b, c). Using CNV ITH, a median of 0.485 (range 0.02–0.99
per sector) was found in SCLC (Fig. 2d). Among them, IL7R,
PIK3CA, SETDB1, TERT, SEPT9, MYC, CEBPA, and CD274
genes were amplified as frequently recurring clonal genes, while
the clonal depleted genes like CBWD3, RB1, and PTEN were
identified in our patients (Supplementary Fig. 2e).

Clonal evolution and pathway enrichment. We also constructed
phylogenetic trees based on somatic mutations detected in
multiple regions. Figure 3a shows the phylogenetic tree for each
patient according to their disease stage. In particular, TP53,
EGFR, and CREBBP mutations were common early clonal
events involved in the evolution of SCLC (Fig. 3b), while RB1

and other mutations were late clonal events. Generally, among
clonal and subclonal mutations, passenger mutations were
proportionally higher than driver mutations (oncogene and
TSG, Fig. 4e).

Correlation between genetic alterations and clinical char-
acterization. No significant relationship was observed between
ITH and other clinical variables, including pathology, smoking
history, EGFR mutation status, and tumor stage (Fig. 4a, b,
Supplementary Fig. 2d). Among the EGFR mutations, three
patients carried non-classic EGFR mutations (p.G652W,
p.E114Q, p.Q701L|p.R108K; Supplementary Data 6) and four had
classic mutations (p.L858R and EX19del). Classic EGFR muta-
tions were found in two (5.9%, 2/34) P-SCLC and two (33%, 2/6)
C-SCLC patients, respectively. In our cohort, we found that all
EGFR mutations co-occurred with TP53 inactivation and RB1
inactivation (mutation and/or loss) (Supplementary Data 6). The
TP53/RB1/EGFR mutations were independent of clinical (tumor
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stage and tumor size), and genomic features (TMB, ITH, and
WGD) in SCLC (Supplementary Fig. 6a). Intriguingly, EGFR/
RB1/TP53-mutant patients exhibited higher ploidy than those
with wild-type (p= 0.017). And WGD occurred in all of the
EGFR/RB1/TP53 mutant patients (Supplementary Fig. 6a).
Besides, these mutations were not associated with disease-free
survival (DFS) or OS in the absence or presence of treatment after
surgery (Supplementary Fig. 6b, c).

Supplementary Fig. 3 and Fig. 5a show the basic clinicopatho-
logical information in this cohort. Patients with P-SCLC/C-SCLC,

smoker/non-smoker, EGFRmutant/wild type had similar levels of
ITH, TMB, and mutation clusters, and they exhibited no
discrepancy in their gene signature and mutation landscape
(Fig. 4, Supplementary Fig. 4b, c). Remarkably, a higher TMB/
cluster correlated with better DFS using univariate analysis, while
the SNV ITH was correlated to OS (Fig. 5b, c). However, no
significant correlation was observed among DFS or OS and TMB,
mutation cluster, or tumor stage (Fig. 5b, c, Supplementary
Fig. 6d, e). In a multivariate analysis adjusted for age, tumor size,
tumor stage, and smoking status, only TMB/cluster were
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associated with better DFS, and SNV ITH is also linked to worse
OS of SCLC (Fig. 5d, e).

All the cases with recurrence received systemic chemother-
apy in our cohort. No ITH discrepancies were observed in
patients according to the recurrence status and systemic
chemotherapy (Supplementary Fig. 6f). ITH and TMB/cluster

were not associated with survival outcomes in the recurrent
cases (p > 0.05, n= 11, Supplementary Fig. 6g). Cases that
received systemic chemotherapy had a superior overall out-
come (Supplementary Fig. 6g), suggesting the favorable role
of chemotherapy after surgery in the treatment of
SCLC.
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Discussion
Many SCLC patients are sensitive to initial treatment, but all
patients inevitably face the dilemma of chemoresistance. It has
been speculated that ITH is common in treatment-naive SCLC,
with many drug-resistant subclones13. Yet, because of the lack of
available tumor samples, this gap is still vacant in the field of
SCLC research. Moreover, research in the field has mainly utilized
traditional genomic sequencing of a single site which is unable to
capture the full genomic landscape14. Whereas MRS is superior in
evaluating the ITH of SCLC. Therefore, we performed MRS in a
cohort of surgery resected SCLC patients. There was widespread
ITH in SNV and CNV in SCLC, with a medium ITH score among
different patients. Such universal ITH indicates a complex
genomic landscape of SCLC even at the early stage and illustrates
the dilemma of current treatment, such as rapid disease pro-
gression and relapse with refractory disease.

For the somatic mutations, TP53 and RB1 had the highest
mutation frequency15. This corresponds with current research.
Previous single-region sequencing revealed extensive common
cancer-specific genomic alterations in SCLC, such as TP53 and
RB116–18. They are also the most common clonal mutations
identified in the MRS data, namely, somatic genetic alterations of
TP53 and CREBBP, which were almost exclusively early clonal
events. Most of the patients in our cohort carried subclonal
mutations, including LRP1B, KMT2D, and PCLO, which
appeared randomly in different regions. The same phenomenon
occurred in the CNV events, however, not all CNV events existed
in every tissue from the same sample. This highlights the lim-
itations of single-region sequencing and emphasizes the advan-
tages of MRS for better understanding the genomic landscape in
precision medicine.

EGFR mutations are a rare occurrence in either de novo
SCLC or in cases of transformed EGFR-mutant (EGFR-mt)
adenocarcinoma19. In our study, the frequency of classic EGFR
mutations in P-SCLC was 5.9%. These data were comparable with
previous reports of 2.6% in Taiwanese and 2.0% in a Chinese
cohort19,20. Our EGFR-mutant SCLC patients did not receive
EGFR-TKI therapy, and EGFR mutation status is not associated
with recurrence after surgery (Supplementary Fig. 3d). An EGFR
mutation is considered an early clonal event in our analysis
(Fig. 3b). However, a lower driver dominant EGFR score did not
support its role as a driver gene in SCLC, which is distinct from
common NSCLC (Supplementary Fig. 4a). In other words, an
EGFR mutation was not a predominant driver gene in SCLC.
Currently, there is no targeted therapy in EGFR-mutant SCLC.
The majority of de novo EGFR-mt SCLC are resistant to EGFR-
TKI therapy, compared with EGFR-mt NSCLC21, which may be
due to focusing much more on the driver gene “EGFR” and
neglecting of passenger mutations’ effect. EGFR passenger
mutations may also collaborate synergistically with driver muta-
tions to trigger tumorigenesis in SCLC. Previous researchers have
shown that EGFR/RB1/TP53 are key events that transform
NSCLC to SCLC after EGFR-TKI treatment22,23. In our
treatment-naive SCLC cohort, we also found that all EGFR
mutations co-occurred with TP53 and RB1 mutations. EGFR/

RB1/TP53 mutant patients had WGD events and exhibited higher
ploidy than those with wild-type (Supplementary Fig. 6a). Yet, the
TP53/RB1/EGFR mutations were independent of clin-
icopathologic features and not associated with prognosis. Based
on the tumor evolutionary algorithm model proposed by Swanton
et al.10, we conferred that TP53 and EGFR mutations were early
events in the evolution of SCLC, while the RB1 mutation and loss
occurred later, indirectly suggesting a key role of RB1 inactivation
in SCLC evolution. However, this hypothesis needs validation in
further studies.

We sought to explore the relationship between ITH scores and
clinicopathological features. We were particularly interested in
the six patients with C-SCLC in this study cohort. Comprehensive
research showed that this group of patients behaved much in the
same way as P-SCLC patients, both in terms of mutation dis-
tribution, ITH, TMB, mutation clusters, and gene signatures. This
condition is also present in patients with EGFR mutations and
those with a history of smoking. Among diagnosed SCLC
patients, most patients have a history of smoking. We paid special
attention to the evolutionary tree of non-smoking SCLC patients
and found there was no obvious difference compared with
smoker patients (Supplementary Fig. 5). To some extent, the
intratumoral heterogeneity of the SCLC genome is independent
of common clinicopathological features, such as pathological
types, smoking history, and driver gene mutation status, but there
is still a relatively uniform moderate level of intratumoral het-
erogeneity. A previous study reported widespread ITH in
chemotherapy-treated SCLC and found that it may lead to poor
treatment response and prognosis. We observed the same per-
formance of SNV ITH in treatment-naïve LD SCLC patients.
Multivariable COX analysis supported the independent prog-
nostic role of SNV ITH for OS. We turned our perspective to
another tumor heterogeneity assessment algorithm, TMB per
cluster, which seems to be another potential prognosis biomarker.
We found that more TMB per cluster is linked to early disease
recurrence and progression. It indicated complex mutations
inside the tumor may lead to the failure of anti-cancer treatment.
Further research on its relationship with treatment sensitivity and
resistance is needed.

Although our study presents several findings, there are sev-
eral limitations. First, our results would have been more reliable
with more patients from other centers. Related to our limited
sample, we did not perform dynamic genome monitoring for
each patient. We also did not provide a better understanding of
the tumor microenvironment of SCLC. In addition, we should
notice that the presence of technical noise in sequencing data is
common, and genuine intratumor genetic heterogeneity is hard
to distinguish from these sequencing artifacts24. It may lead to
the overestimation of ITH. Therefore, we used two mutation
calling algorithms and strict criteria to filtering out these pri-
vate artifacts, and to minimize the impact of artifacts25,26. Due
to the unavailability of the samples, we could not validate our
results in the same sample. Nevertheless, further studies with
high depth sequencing are required to accurately
quantifying ITH.

Fig. 5 The relationship between heterogeneity and clinical characterization in SCLC. a A heatmap displaying the clinical information and genomic
features for each patient (n= 40). The Kaplan–Meier plot depicts the estimation of disease-free survival (b) and overall survival (c) with parameters
including SNV ITH, CNV ITH, mutation cluster, and TMB per cluster. The p value and hazard ratio were determined using the two-sided log-rank test. The
forest plot showing multiple covariate Cox regression analysis of disease-free survival (d) and overall survival (e) by subgroups including age, smoking,
tumor size, stage, and ITH in SCLC. A two-sided, unpaired, Wilcoxon rank test was performed for the statistical comparison among subgroups. WGD,
whole-genome duplication; GII genome instability index, MSI microsatellite instability, SNV single-nucleotide variant, CNV copy number variation, ITH
intratumoral heterogeneity, P-SCLC pure small cell lung cancer, C-SCLC combined small cell lung cancer, TMB tumor mutation burden, HR hazard ratio, CI
confidence interval.
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We demonstrated the ITH landscape of surgically resected
SCLC. Despite a moderate mutation burden, SCLC showed a
medium intratumoral heterogeneity with high SNV and CNV
ITH at the early stage, which may explain the difficult treatment
dilemma faced by SCLC patients.

Methods
Patients and samples. Forty enrolled SCLC patients underwent thoracic surgery
at Sun Yat-Sen University Cancer Center between September 2009 and September
2018. The diagnosis of SCLC was confirmed by two pathologists via immunohis-
tochemistry. None of the patients received any previous systematic anti-cancer
therapy. We collected 120 surgically resected FFPE tumor tissues from 40 patients
(3 tumor regions in different quadrants for each patient). A paired peripheral blood
sample was obtained during the surgery. The study protocol was approved by the
institutional review board of Sun Yat-Sen University Cancer Center. We have
complied with all relevant ethical regulations for work with human participants,
and that written informed consent was obtained.

Multi-region whole-exome sequencing. For each region of the patient, DNA was
extracted from the FFPE kit (Promega) according to the manufacturer’s instruc-
tions. We constructed the sequencing libraries from native DNA using the xGen®

Exome Research Panel (Integrated DNA Technologies, Iowa, IA, USA) and the
NEB Next Ultra DNA Library Prep Kit (Lot: NEB-0311611, NEB, UK) with a
KAPA polymerase (KapaBiosystems, Wilmington, MA, USA). Whole-exome
sequencing was performed using GeneSeq-2000 (Geneplus-Suzhou, Suzhou,
China), with 100-bp paired-end sequencing. The data preprocessing and variant
callings were based on the Sentieon-genomics pipeline (version sentieon-genomics-
201808)27 with parameters as follows (sentieon driver -t 16 -r hs37d5.fa -algo
VarCal -v SNP.vcf -resource 1000 G_phase1.snps.high_confidence.b37.vcf -resour-
ce_param 1000G,known= false,training= true,truth= false,prior= 10.0 -resource
1000G_omni2.5.b37.vcf -resource_param omni,known= false,training=
true,truth= false,prior= 12.0 -resource hapmap_3.3_b37_pop_stratified_af.vcf
-resource_param hapmap,known= false,training= true,truth= true,prior= 15.0
-resource dbsnp_138.b37.del100.vcf.gz -resource_param dbsnp,known=
true,training= false,truth= false,prior= 2.0 -annotation QD -annotation MQ
-annotation MQRankSum -annotation ReadPosRankSum -annotation FS -var_type
SNP -plot_file SNP.varcal.plotfile -tranches_file SNP.varcal.tranches SNP.varcal.recal
&& sentieon driver -r hs37d5.fa -algo ApplyVarCal -v SNP.vcf -tranches_file
SNP.varcal.tranches -var_type SNP -recal SNP.varcal.recal SNP.vqsr.vcf). We
removed the terminal adapter sequences and low-quality reads from the raw data
with these filters (paired-end reads were removed if anyone read meet one of the
three criteria: (a) half of bases with base quality ≤ 5; (b) the ratio of N bases
exceeding 5%; (c) the average base quality below 0). The clean reads were aligned
with the human reference genome (hg19) using BWA MEM (v0.7.17–r1188).
LocusCollector and Dedup were used to mark and remove PCR duplicates. Rea-
lignment and recalibration were performed using a Sentieon-genomics Realigner.
The peripheral blood monocyte cell DNA served as a control (germline).

Somatic variant detection. Single nucleotide variants (SNVs) were called by
Sentieon-genomics Tnscope (https://support.sentieon.com/appnotes/out_fields/
#tnscope-reg) and MuTect2 software. Small insertions and deletions (indels) were
identified by the Sentieon-genomics VarCall algorithm. High-quality reads were
selected with a Phred score ≥30, a mapping quality score ≥30, and without paired-
end reads bias. The candidate somatic mutations underwent the following filtering
strategies: (i) the mutation was detected in at least five high-quality reads and
supported by at least ten normal reads and the total depth was greater than 30 × at
the loci in the tumor. (ii) the mutant allele had to be present in ≥3% of the variant
allele frequency (VAF) identified by TNscope. (iii) the mutation was not present in
>1% of the population in the 1000 Genomes Project (version phase 3), dbSNP
databases (The Single Nucleotide Polymorphism Database, version dbSNP 138),
and (iv) the local blacklist database. For somatic tumor mutations, if mutations
were identified in one or two regions, we rescued these mutations in the rest region
for each tumor. And the VAF of rescued mutations with greater than 1% was
supported by fewer than five mutant reads in normal tissues. All these mutations
were further filtered by the “PASS” output of MuTect2. The final overlapped
variants were annotated using Ensembl Variant Effect Predictor (VEP v93.3)
software28. The candidate variants were all manually verified in the Integrative
Genomics Viewer (v2.3.66). Microsatellite instability (MSI) was calculated using a
published MSIsensor tool (v0.2)29.

Somatic CNV identification and tumor purity estimation. Somatic CNV was
identified with FACETS (v0.5.11)30. Significant somatic CNVs were obtained using
GISTIC2.0 with the output from FACETS31. CNVs gain was defined as segments
with copy number/ploidy ≥ log2(2.5/2), while CNV loss was segmented with copy
number/ploidy < log2(1.5/2). Whole-genome doubling was detected using modified
McGranahan’s method32. Specifically, p values that were defined as the ratio of
10,000 simulated copy number events to the observed CNVs, then the whole
genome doubling events were considered if p ≤ 0.001 for haploid or diploid or

triploid; p ≤ 0.05 for tetraploid; p ≤ 0.5 pentaploid, and p ≤ 1 for multi-ploidy
greater than six. The genome instability index (GII) was determined by the total
length of gain plus the loss region divided by chromosome size33. Clonal gain
demonstrated all regions of the tumor harbored CNVs gain. At least one sample
had a gain that was defined as a subclonal gain. If all sample showed a loss or loss
of heterozygosity (LOH), the tumor was considered as a clonal loss. Otherwise, the
tumor was determined as a subclonal loss. The tumor purity for each sample was
estimated by ABSOLUTE (v1.2)34.

Tumor neoantigen detection. Tumor neoantigen was identified via netMHCpan
(v4.0)35. Missense and nonsense mutations were correlated with the TNB counts
using Spearman’s coefficient.

Mutational signature analysis. The mutational signatures were analyzed using
deconstructSigs (v1.8.0) and MutationalPatterns (v2.0.0)36. The mutational
signature contribution for each patient was compared with COSMIC SBS signa-
tureV2 (https://cancer.sanger.ac.uk/cosmic/signatures_v2.tt).

Classification of driver genes, oncogene, and tumor suppressor genes. Genes
in the COSMIC cancer gene census (https://cancer.sanger.ac.uk/cosmic) were
defined as driver genes. The oncogene and tumor suppressor genes (TSG) were
classified based on the driver gene list.

Phylogenetic tree construction. All nonsilent somatic mutations excluding those
co-localized within the LOH were used to construct phylogenetic trees via tools
“ape” (v5.4-1), “phangorn” (v2.5.5), and “ggtree” (v2.2.4)37. Phylogenetic trees were
built on the basis of the binary presence/absence matrices obtained from the
regional distribution of variants within the tumor. Trunk mutations occurred in all
regions of the tumor. The length of each tree’s branch was calculated according to
the number of mutations on each branch.

Cluster and timing of genomic alterations. All nonsilent somatic mutations were
clustered by PyClone-VI (https://github.com/Roth-Lab/pyclone-vi)38 and corrected
by copy number and purity. The number of clusters identified by PyClone was
defined as mutation clusters. The average TMB in each mutation cluster identified
by PyClone-VI was calculated as TMB/cluster.

The timing of SNVs was determined by EstimateClonality (v1.0)10. Briefly, we
estimated the cellular prevalence of somatic mutations based on tumor purity and
CNV and mutation copy number. Early mutations were defined as a mutation copy
number of >1, whereas, late ones were classified as a mutation copy number of
<= 1. The mutations in neutral copy numbers were clustered by sciClone
(v1.1.0)39, then the results were used for evolution estimation through ClonEvol
(v0.99.11)40 and plotted by fishplot41.

CNV gain was timed by the average mutation copy number of at least five
mutations within each segment. The CNV gain was defined as “early” if the average
mutation copy number was >1, and “late” if it was <= 1. Regarding CNV loss,
clonal CNV loss coupled with genome doubling was classified as “early”, whereas,
CNV loss unrelated to genome doubling was classified as “late”.

ITH evaluation. Clonal SNV/indels were defined as mutations in the PyClone-VI
cluster with a maximum cellular prevalence, while other SNV/indels in each tumor
were defined as subclonal ones. SNV ITH was calculated by the number of sub-
clonal mutations to all mutations.

CNV ITH was evaluated for each patient based on the presence of each CNV in
different tumor regions with more than one variation and presented as the mean
Jaccard distance among variation sets of each three regions42. ITH ranged from 0
to 1 (all branch events to all trunk events).

Comparison with published multi-regional whole-exome sequencing data. To
compare the genomic heterogeneity between SCLC and NSCLC, the multi-regional
WES data for NSCLC of the TRACERx study was downloaded10, and the SNV ITH
was recalculated for each sample using the same algorithm.

Driver dominant score calculation. We calculated the driver dominant score,
which measures the number of co-occurring drivers for each defined driver gene
per tumor as Eq. (1)33. The ratio of patients carrying driver genes to the total
number of patients was defined as an occurrence as Eq. (2). We downloaded the
significant mutations for lung adenocarcinoma cancer (n= 10) and lung squamous
cancer (n= 44)43,44. The driver genes were obtained from the mutation genes in
lung adenocarcinoma and lung squamous cancers with q value < 0.1 by MutSig2CV
results.

Dominant score ¼ ð∑i
11=ðFrequencyÞ ´ 1=Frequency ð1Þ

Occurrence ¼ Frequency=n ð2Þ
where nmeans the total number of patients of the cohort. The frequency represents
the number of patients with the driver gene. i mean the number of driver genes.
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Statistical analysis. The Mann–Whitney–Wilcoxon test was used to compare
the continuous numbers in different groups. Fisher’s exact test was performed
to analyze differences between proportional data. The Kaplan–Meier curve
between clinical features and survival was performed using “survminer”
(v0.4.7) and “survival” (v3.2-10) packages. The cutoff values for the two groups
were determined by the best cutoff point for each parameter, excluding TMB.
TMB was classified by an upper quantile value in all patients (n= 40). The
statistical significance was calculated using the Cox proportional hazards
regression model and log-rank test for DFS and OS. All statistical analyses were
performed with R v4.0.0 software. Statistical significance was defined as a two-
sided p < 0.05.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study have been deposited in the GSA-Human
(Genome Sequence Archive for Human in BIG Data Center, Beijing Institute of
Genomics, Chinese Academy of Sciences, http://gsa.big.ac.cn/gsa-human) under the
accession code HRA000441. The data are available under controlled access. Access to the
data may be requested by completing the application form via GSA-Human System and
is granted by the corresponding Data Access Committee. The approximate response time
for accession requests is about 10 working days. Additional guidance can be found at the
GSA-Human System website [https://ngdc.cncb.ac.cn/gsa-human/document/GSA-
Human_Request_Guide_for_Users_us.pdf]. Public data used in this study include 1000
Genomes Project [https://www.internationalgenome.org/data-portal/data-collection/
phase-3], HapMap3, dbSNP, and ExAC. TCGA mutation data were downloaded from
https://www.cbioportal.org/datasets. TRACERx data can be obtained from https://
www.cbioportal.org/study/summary?id=nsclc_tracerx_2017. The supplementary data of
lung adenocarcinoma and lung squamous cancer can be obtained from https://
www.nature.com/articles/nature13385 and https://www.nature.com/articles/nature11404,
respectively. A complete list of somatic mutations and copy number variation can be
found in Supplementary Data 2–5. Source data are provided with this paper. The data
supporting Figs. 1, 2, 4, and 5 and Supplementary Figs. 1–4 of this study are available in
the Source Data files. Source data are provided with this paper.

Code availability
All custom code used in this work is available from https://github.com/LiyanJi-code/
SCLC_MRS.
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