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Background: Coronary artery disease (CAD) is the leading cause of cardiovascular

death. The competitive endogenous RNAs (ceRNAs) hypothesis is a new theory that

explains the relationship between lncRNAs and miRNAs. The mechanism of ceRNAs

in the pathological process of CAD has not been fully elucidated. The objective of this

study was to explore the ceRNA mechanism in CAD using the integrative bioinformatics

analysis and provide new research ideas for the occurrence and development of CAD.

Methods: The GSE113079 dataset was downloaded, and differentially expressed

lncRNAs (DElncRNAs) and genes (DEGs) were identified using the limma package in the

R language. Weighted gene correlation network analysis (WGCNA) was performed on

DElncRNAs and DEGs to explore lncRNAs and genes associated with CAD. Functional

enrichment analysis was performed on hub genes in the significant module identified

via WGCNA. Four online databases, including TargetScan, miRDB, miRTarBase, and

Starbase, combined with an online tool, miRWalk, were used to construct ceRNA

regulatory networks.

Results: DEGs were clustered into ten co-expression modules with different colors

using WGCNA. The brown module was identified as the key module with the highest

correlation coefficient. 188 hub genes were identified in the brown module for functional

enrichment analysis. DElncRNAs were clustered into sixteen modules, including seven

modules related to CAD with the correlation coefficient more than 0.5. Three ceRNA

networks were identified, including OIP5-AS1-miR-204-5p/miR-211-5p-SMOC1,

OIP5-AS1-miR-92b-3p-DKK3, and OIP5-AS1-miR-25-3p-TMEM184B.

Conclusion: Three ceRNA regulatory networks identified in this study may play crucial

roles in the occurrence and development of CAD, which provide novel insights into the

ceRNA mechanism in CAD.
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INTRODUCTION

Cardiovascular disease (CVD) is one of the leading causes of
death in the world. Coronary artery disease (CAD) is the main
cause of cardiovascular death (1), which increases the morbidity,
mortality, and economic burden on societies worldwide (2).
The occurrence of CAD is associated with the interplay of
genetic and environmental factors (3). Diabetes, hypertension,
obesity, and smoking are significant risk factors for CAD (4,
5). Vascular stenosis caused by CAD is the main cause of
coronary atherosclerosis and ischemia. The sclerotic plaques
are at risk of rupture, leading to myocardial infarction and
eventually death (4, 5). Although considerable efforts have been
made, it remains a daunting task to prevent and cure CAD.
Therefore, further research is urgently needed to understand its
pathophysiological process.

Non-coding RNA (ncRNA), including lncRNA, circRNA, and
miRNA, is a kind of RNA that does not encode proteins, which
plays an essential role in the occurrence and development of
CAD. LncRNAs are transcripts with a length of>200 nucleotides
participating in a variety of critical biological processes (6). It was
reported that lncRNAs play a significant role in the core stages
of CAD, including lipid metabolism, inflammation, vascular
cell proliferation, apoptosis, adhesion and migration, and
angiogenesis (7). The competitive endogenous RNAs (ceRNAs)
hypothesis is a theory that explains the relationship between
lncRNAs and miRNAs. In this hypothesis, lncRNAs rich in
miRNA binding sites can bind miRNAs and act as a miRNA
sponge, leading to changes in expression levels of miRNA-target
genes (8, 9). Although a growing body of evidence demonstrated
that ncRNAs were associated with the development of CAD,
research on the role of ceRNAs in the pathological process of
CAD is still insufficient. Therefore, further efforts are warranted
to elucidate the ceRNA mechanism in CAD.

In this study, we aimed to explore the complex interaction
between lncRNAs, miRNAs, and mRNAs to investigate the
potential mechanism of ceRNAs in CAD. We performed
weighted gene correlation network analysis (WGCNA) on the
GSE113079 to screen out lncRNAs and mRNAs associated
with CAD. Then several online databases and tools were used
to construct the ceRNA regulatory networks. We hope this
study can provide potential targets and new research ideas for
understanding the ceRNA mechanism in CAD.

METHODS AND MATERIALS

Data Processing
The GSE113079 dataset was downloaded from the Gene
Expression Omnibus (GEO) database. The dataset was based on
the GPL20115 platform (Agilent-067406 Human CBC lncRNA+

mRNA microarray V4.0), containing 141 samples of peripheral
blood mononuclear cells (PBMCs) in 93 patients with CAD
and 48 healthy controls. The R language was applied to process
the dataset. The Linear Models for Microarray data (limma), a
package in the R language, was used to identify differentially
expressed genes (DEGs) and differentially expressed lncRNAs
(DElncRNAs) with the cut-off point of adj. p < 0.05.

WGCNA
DEGs identified by the limma package were imported for
WGCNA to construct the gene co-expression network. First, the
correlation network was constructed with an appropriate soft-
thresholding power β realizing the scale-free topology criterion
of R2 > 0.85. Second, the average linkage hierarchical clustering
method was applied to cluster DEGs into different modules
with different colors. The threshold for module merging was
set as 0.25, and the minimum number of genes in each module
was thirty. Hub genes correlation threshold was 0.9. Third, the
correlation between each module and CAD was calculated using
Pearson’s correlation method. The module with a p < 0.05 and
the highest correlation coefficient was screened out for further
analysis. Similarly, DElncRNAs were also imported for WGCNA
using the same parameters and procedures.

Functional Enrichment
The Database for Annotation, Visualization and Integrated
Discovery (DAVID, v6.8) was used to perform the GeneOntology
(GO) enrichment analysis, which revealed the biological
processes (BPs), cellular components (CCs), and molecular
functions (MFs) related to hub genes in the module identified
above. GO terms with a p < 0.05 were considered significant
enrichment. Metascape, a powerful online tool for gene function
annotation, was also applied for functional enrichment.

Construction of the ceRNA Network
The online tool miRWalk applies a machine-learning algorithm
to predict miRNA-target interactions, including those that have
been validated experimentally. Three online databases, including
TargetScan, miRDB, and miRTarBase, combined with miRWalk,
were used for the prediction of target miRNAs to ensure
the robustness of the interactions between miRNAs and hub
genes identified above. The Starbase is a public database that
can search for potential miRNA-lncRNA interactions through
high-throughput data. It was used to predict the relationships
between target miRNAs and DElncRNAs to identify potential
interactions. LncRNA-miRNA-mRNA regulatory network was
visualized utilizing the Cytoscape software (v3.8.1).

Quantitative Real-Time PCR (qRT-PCR)
Ten patients with CAD and ten without CAD confirmed by
coronary angiography were included in this study. This study
was in full compliance with the Declaration of Helsinki and
approved by the Medical Ethics Committee of Shanghai Tenth
People’s Hospital, Tongji University. Written informed consent
was obtained from all subjects participating in this study.
Blood samples were collected and total RNA was extracted
following the manufacturer’s instruction (QIAGEN, Frankfurt,
Germany). Briefly, mix one volume of whole blood with five
volumes of buffer in an eppendorf tube. After incubating for
15min on ice, centrifuge at 3,000 rpm for 10min at 4◦C
and discard supernatant. Transfer lysate to spin column to
centrifuge at 14,000 rpm and pipet 50 µl of RNase-free water.
The Complementary DNA (cDNA) was synthesized by reverse
transcription at 42◦C for 60min and then at 95◦C for 5min
with the PrimeScriptTM RT reagent Kit (Takara, Otsu, Japan).
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TABLE 1 | RNA primer sequences for quantitative real-time PCR.

RNA Sequences

OIP5-AS1 Forward: CCACCACGCTCAGCCTGATTTC

Reverse: TTTCCACGATGACCCAACCACAAG

DKK3 Forward: ACGAGTGCATCATCGACGAG

Reverse: GCAGTCCCTCTGGTTGTCAC

SMOC1 Forward: TCAGGTTCAGTCACCGACAAG

Reverse: TCCTGGTCACACGAATAGACTT

TMEM184B Forward: ACTACGTGTACTTCGGCACC

Reverse: CTGGACTCAATGGGTTTTCCTC

GAPDH Forward: GGAGCGAGATCCCTCCAAAAT

Reverse: GGCTGTTGTCATACTTCTCATGG

miR-204-5p Forward: CGCGTTCCCTTTGTCATCCT

Reverse: AGTGCAGGGTCCGAGGTATT

RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGC

ACTGGATACGACAGGCAT

miR-211-5p Forward: CGCGTTCCCTTTGTCATCCT

Reverse: AGTGCAGGGTCCGAGGTATT

RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGC

ACTGGATACGACAGGCGA

miR-92b-3p Forward: GCGTATTGCACTCGTCCCG

Reverse: AGTGCAGGGTCCGAGGTATT

RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCAC

TGGATACGACGGAGGC

miR-25-3p Forward: GCGCATTGCACTTGTCTCG

Reverse: AGTGCAGGGTCCGAGGTATT

RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGA

TACGACTCAGAC

U6 Forward: AGAGAAGATTAGCATGGCCCCTG

Reverse: ATCCAGTGCAGGGTCCGAGG

RT: GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCA

CTGGATACGACAAAATA

TB Green R© Premix Ex TaqTM II (Takara, Otsu, Japan) was
applied to perform qRT-PCR at the temperature of 95◦C for
30 s, followed by 40 cycles with the temperature of 95◦C for 5 s
and 60◦C for 34 s on QuantStudioTM 5 System (Thermo Fisher
Scientific, Waltham, MA, USA). The expression of RNA levels
was normalized byGAPDHandU6, and the 2−11CT methodwas
applied to calculate the relative expression levels. All sequences
for RNA primers (Sangon Biotech, Shanghai, China) are shown
in Table 1.

RESULTS

Identification of DEGs and DElncRNAs
A total of 20,128 DElncRNAs, including 6,103 upregulated
and 14,025 downregulated, which were differentially expressed
between CAD samples and healthy controls, were identified
in the GSE113079 dataset with the limma package. And
11,487 DEGs were identified, including 5,993 upregulated and
5,494 downregulated.

WGCNA
DEGs with |logFC| > 0.5 were selected for WGCNA, and
a scale-free co-expression network was established. The soft-
thresholding power β was nine with scale-free R2 > 0.85
(Supplementary Figure 1). Then DEGs were clustered into ten
co-expression modules through the average linkage hierarchical
clustering method to ensure that the number of genes in
each module is more than thirty. Different modules were
represented by different colors, including black, blue, brown,
greenyellow, pink, purple, red, tan, yellow, and gray (Figure 1).
Genes in the gray module were uncorrelated and excluded from
the subsequent analysis. We then calculated the correlation
betweenmodule memberships and the gene significance for CAD
(Supplementary Figure 2). Modules that meet the following two
conditions were selected: (1) the correlation coefficient between
the module and CAD was >0.5; (2) the correlation coefficient
betweenmodule memberships and the gene significance for CAD
was more than 0.7. According to the above criteria, 193 hub
genes in the brown and pink modules were identified for further
analysis. These genes were listed in Supplementary Table 1.

DElncRNAs identified by limma package with a p <

0.001 were selected for WGCNA. The soft-thresholding
power β was ten to ensure scale-free R2 > 0.85
(Supplementary Figure 3). The DElncRNAs were clustered
into sixteen modules with different colors, including
black, darkgray, darkmagenta, darkorange, darkred,
darkturquoise, lightgreen, lightyellow, midnightblue, orange,
paleturquoise, red, royalblue, salmon, sienna3, and steelblue,
excluding the gray module (Figure 2). The correlation
between module memberships and the gene significance
for CAD was also calculated (Supplementary Figure 4).
Same as the module selection criteria above, the salmon
and lightgreen modules were selected to construct the
ceRNA networks.

Functional Enrichment
193 hub genes in the brown and pink module were subjected
to perform functional enrichment analysis utilizing the DAVID
and Metascape online tool to investigate the biological effects.
The significant enriched GOBPs included regulation of ion
transmembrane transport, O-glycan processing, telencephalon
cell migration, positive regulation of glucose import, and
renal water homeostasis. In addition, golgi lumen, plasma
membrane, and extracellular region were significantly enriched
in GOCCs. For MF, the most significant entries were G-
protein coupled receptor binding, channel activity, and
passive transmembrane transporter activity (Figure 3). The
results of Metascape demonstrated that hub genes were
mainly enriched in the matrisome-associated pathway,
cell-cell recognition, regulation of cellular component
size, regulation of transmembrane transport, and cell-
cell adhesion via plasma-membrane adhesion molecules
(Figure 4).

The ceRNA Regulatory Network
The intersection of the online tool miRWalk and three databases,
TargetScan, miRDB, and miRTarBase was established to predict
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FIGURE 1 | Weighted genes correlation network analysis. (A) The dendrogram of differentially expressed genes. (B) The heatmap of module-trait correlations. Blue

represents negative correlation, and red represents positive correlation. (C) The clustering heatmap between modules. Red means closer similarity, and blue means

farther similarity.

the target miRNAs of hub genes in the brown module. A
total of seven miRNAs were screened out, including hsa-
miR-195-3p, hsa-miR-188-5p, hsa-miR-204-5p, hsa-miR-211-
5p, hsa-miR-526b-3p, hsa-miR-92b-3p, and hsa-miR-25-3p.
Among them, hsa-miR-195-3p and hsa-miR-188-5p regulate
UBE2I; hsa-miR-204-5p, hsa-miR-211-5p, and hsa-miR-526b-3p

regulate SMOC1; hsa-miR-92b-3p regulates DKK3 and has-
miR-25-3p regulates TMEM184B; has-miR-15b-5p and has-
miR-503-5p regulate C1orf21. The starbase database was used
to predict interaction relationships between miRNAs and
lncRNAs, and the intersection of the predicted lncRNAs and
DElncRNAs in modules identified above was established to

Frontiers in Cardiovascular Medicine | www.frontiersin.org 4 September 2021 | Volume 8 | Article 647953

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Ji et al. The ceRNA Networks in CAD

FIGURE 2 | Weighted genes correlation network analysis. (A) The dendrogram of differentially expressed lncRNAs. (B) The heatmap of module-trait correlations. Blue

represents negative correlation, and red represents positive correlation. (C) The clustering heatmap between modules. Red means closer similarity, and blue means

farther similarity.

search for lncRNAs which may play a potential role in the
pathophysiological process of CAD. The lncRNA OIP5-AS1
was identified to regulate hsa-miR-204-5p, hsa-miR-211-5p, hsa-
miR-92b-3p, and hsa-miR-25-3p. The ceRNA regulatory network
was then visualized using the Cytoscape software (v3.8.1)
(Table 2; Figure 5).

Validation Using qRT-PCR
The lncRNAs, miRNAs, and mRNAs identified above were
verified utilizing qRT-PCR. The results demonstrated that the
expression levels of OIP5-AS1, DKK3, SMOC1, and TMEM184B
were significantly higher in patients with CAD, while miR-
204-5p, miR-211-5p, miR-92b-3p, and miR-25-3p levels were
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FIGURE 3 | Gene Ontology enrichment analysis. (A) Biological process. (B) Cellular component. (C) Molecular function.

significantly lower, which were consistent with our bioinformatic
analysis (Figure 6).

DISCUSSION

In this study, we downloaded the GSE113079 dataset from the
GEO database for bioinformatics analysis. The limma package
in the R language was applied to identify the DEGs and
DELncRNAs between patients with CAD and healthy controls.
ThenWGCNA was performed to cluster DEGs and DELncRNAs
into different modules and calculate the relationships between
modules and CAD. The brown module of DEGs was identified
as the key module with the highest correlation coefficient.
188 hub genes in the brown module were selected for
functional enrichment analysis. The significant enriched GOBPs
included regulation of ion transmembrane transport, O-glycan
processing, telencephalon cell migration, positive regulation of
glucose import, and renal water homeostasis. The results of
Metascape showed that these hub genes were mainly enriched
in the matrisome-associated pathway, regulation of cellular
component size, and cell-cell recognition. Then three online
databases, including TargetScan, miRDB, and miRTarBase, and

the online tool miRWalk were used to predict the potential
target miRNAs. Nine miRNAs which may regulate hub genes
were identified, including hsa-miR-195-3p, hsa-miR-188-5p, hsa-
miR-204-5p, hsa-miR-211-5p, hsa-miR-526b-3p, hsa-miR-92b-
3p, hsa-miR-25-3p, has-miR-15b-5p and has-miR-503-5p. The
Starbase database was used to predict the relationships between
seven miRNAs and DElncRNAs in modules selected above
to identify potential interactions. The lncRNA OIP5-AS1 was
screened out to regulate hsa-miR-204-5p, hsa-miR-211-5p, hsa-
miR-92b-3p, and hsa-miR-25-3p. In all, we identified three novel
ceRNA networks, including OIP5-AS1 - miR-204-5p/miR-211-
5p - SMOC1, OIP5-AS1 - miR-92b-3p – DKK3, and OIP5-AS1
- miR-25-3p - TMEM184B, which have not been studied in CAD
before. In the previous study conducted by He et al. (10), they
also utilized the GSE113079 dataset to identify the DEGs and
DElncRNAs in CAD. However, we applied WGCNA, which can
explore the relationships between gene modules and the clinical
phenotypes and make results more reliable, to further analyze
DEGs and DElncRNAs in the present study and identified the
different regulatory nodes. Moreover, He et al. only verified five
miRNAs in ceRNA networks, whereas we verified all lncRNAs,
miRNAs, and mRNAs in the ceRNA networks using our clinical
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FIGURE 4 | Enrichment analysis using the Meatscape.

TABLE 2 | The regulatory networks between lncRNAs, miRNAs, and mRNAs.

lncRNA miRNA mRNA

OIP5-AS1 miR-204-5p SMOC1

OIP5-AS1 miR-211-5p SMOC1

OIP5-AS1 miR-92b-3p DKK3

OIP5-AS1 miR-25-3p TMEM184B

samples to make our results more credible and worthy of further
study in clinical application.

OIP5-AS1 is a long non-coding RNA located on human
chromosome 15q15.1, which is involved in regulating cell
proliferation (11). Some studies have shown that OIP5-AS1
is related to the pathophysiological process of atherosclerosis.
A previous study demonstrated that OIP5-AS1 contributed to
the progression of atherosclerosis by targeting miR-26a-5p, and
OIP5-AS1 knockdown could promote cell proliferation and
reduce apoptosis and inflammatory response (12). A recent
integrated analysis identified six key lncRNAs, including OIP5-
AS1, whose expression pattern was highly correlated with the

disease stage of atherogenesis (13). Another study showed that
OIP5-AS1 promoted oxidative low-density lipoprotein induced
endothelial cell injury, which may be involved in the pathological
process of atherogenesis (14).Moreover, OIP5-AS1 could activate
the SIRT1/AMPK/PGC1α pathway by sponging miR-29a to
attenuate myocardial ischemia/reperfusion injury (15). OIP5-
AS1 is also considered as a carcinoma-related lncRNA in many
types of cancer. It was proved to be overexpressed in lung
cancer (16, 17), breast cancer (18), osteosarcoma (19, 20), and
hepatoblastoma (21), which were related to later cancer stages
andmetastasis. However, in multiple myeloma and radioresistant
colorectal cancer, OIP5-AS1 was downregulated and played an
important role in anti-tumor effects (22). In addition, current
evidence suggested that OIP5-AS1 was related to osteoarthritis
(23), rheumatoid arthritis (24), primary open angle glaucoma
(25), and diabetes (26, 27).

The microRNA miR-204-5p and miR-211-5p were predicted
to regulate SMOC1. Down-regulation of miR-204-5p was proved
to attenuate endothelial cell dysfunction, which was associated
with atherogenesis (28, 29). Another study demonstrated that
the expression level of miR-204-5p was significantly lower
in atherosclerotic plaque tissues and blood samples than
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FIGURE 5 | The competitive endogenous RNA (ceRNA) regulatory networks.

FIGURE 6 | The relative expression levels. (A) The relative expression level of OIP5-AS1. (B) The relative expression level of DKK3. (C) The relative expression level of

SMOC1. (D) The relative expression level of TMEM184B. (E) The relative expression level of miR-204-5p. (F) The relative expression level of miR-211-5p. (G) The

relative expression level of miR-92b-3p. (H) The relative expression level of miR-25-3p. CAD, Coronary artery disease; HC, Healthy control. ***p < 0.001,

****p < 0.0001.
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in healthy controls. Further studies indicated that miR-204-
5p played a crucial role in the growth and migration of
human vascular smooth muscle cells by targeting MMP-
9 (30). Moreover, mir-204-5p was also involved in the
pathophysiological process of aortic valve calcification, which
shared many common characteristics of atherogenesis (31,
32). The microRNA miR-211-5p could inhibit cortical neuron
differentiation and survival and strengthen oxidative stress
in Alzheimer’s disease (33, 34). In osteoarthritis, miR-211-
5p contributed to chondrocyte differentiation by suppressing
Fibulin-4 expression (35, 36). Several previous studies showed
that mir-211-5p was also associated with many types of cancer,
including renal cancer, hepatocellular carcinoma, breast cancer,
and malignant melanoma (37–43). SMOC1 is a protein-coding
gene that may play an important role in ocular development
(44–47). Recent studies demonstrated that SMOC1 was also
associated with Alzheimer’s disease (48–50). However, the role
of miR-211-5p and SMOC1 in cardiovascular diseases has rarely
been studied.

MiR-92b-3p-DKK3 and miR-25-3p-TMEM184B were also
identified in our study. Compared with the peripheral venous
circulation, the level of expression was lower for miR-92b-
3p in the coronary sinus of patients with heart failure (51).
The expression level of miR-92b-3p was lower under the
hypoxic condition, and it can inhibit proliferation and cell cycle
progression in pulmonary arterial hypertension (52). Previous
research indicated that miR-92b-3p played a crucial role in
vascular smooth muscle cell proliferation by hypoxia (53).
Another study showed that it could inhibit cardiomyocyte
hypertrophy by targeting HAND2 (54). DKK3 is a member
of the Dickkopf family, which is decreased in a variety of
cancers serving as a tumor suppressor gene (55). In ApoE-
deficient mice, the expression of DKK3 was involved in the
pathogenesis of atherosclerosis via the Wnt/β-catenin pathway
(56). In a prospective population-based study, the expression of
plasma DKK3 was inversely related to the 5-year progression
of carotid atherosclerosis (57). Serum DKK3 level was also
inversely associated with coronary stenosis in a Chinese cohort
(58). Another study demonstrated that DKK3 might have a
therapeutic effect in reducing intraplaque hemorrhage related to
atherosclerotic plaque phenotype (59). These pieces of evidence
indicated that DKK3 might play an important role in CAD.
The miR-25-3p inhibited coronary vascular endothelial cell
inflammation through the NF-kappaB pathway in ApoE−/− mice
(60). It was reported that miR-25-3p could promote endothelial
cell angiogenesis in aging mice (61). TMEM184B is a protein-
coding gene that may activate the MAPK signaling pathway. The
role of TMEM184B in cardiovascular diseases has never been
reported, which is worth of further research.

Previous WGCNA studies in CAD all focused on the
expression of mRNA. To the best of our knowledge, it is the first
time that WGCNAwas used to analyze the expression of lncRNA

and mRNA between patients with CAD and healthy controls and
to construct the ceRNA regulatory networks. Nevertheless, there
are some limitations to our study. First, the data we acquired
was from the public database, lacking clinical trait data. Second,
although we identified three novel ceRNA networks in this study,
further mechanistic studies should be conducted for a better
understanding of the pathological process in CAD.

CONCLUSION

In this study, we identified three novel ceRNA regulatory
networks, including OIP5-AS1-miR-204-5p/miR-211-5p-
SMOC1, OIP5-AS1-miR-92b-3p-DKK3, and OIP5-AS1-
miR-25-3p-TMEM184B, using integrated bioinformatics
analysis, which were worthy of further study. Our research
might provide a novel insight into ceRNA mechanisms in
CAD progression.
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