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Our objective was to estimate the diagnostic accuracy of real-time polymerase chain reaction (RT-PCR) and
lateral f low immunoassay (LFIA) tests for coronavirus disease 2019 (COVID-19), depending on the time after
symptom onset.Based on the cross-classified results of RT-PCR and LFIA, we used Bayesian latent-class models,
which do not require a gold standard for the evaluation of diagnostics. Data were extracted from studies that
evaluated LFIA (immunoglobulin G (IgG) and/or immunoglobulin M (IgM)) assays using RT-PCR as the reference
method. The sensitivity of RT-PCR was 0.68 (95% probability interval (PrI): 0.63, 0.73). IgG/M sensitivity was
0.32 (95% PrI :0.23; 0.41) for the first week and increased steadily. It was 0.75 (95% PrI: 0.67; 0.83) and 0.93
(95% PrI: 0.88; 0.97) for the second and third weeks after symptom onset, respectively. Both tests had a high to
absolute specificity, with higher point median estimates for RT-PCR specificity and narrower probability intervals.
The specificity of RT-PCR was 0.99 (95% PrI: 0.98; 1.00). and the specificity of IgG/IgM was 0.97 (95% PrI:
0.92, 1.00), 0.98 (95% PrI: 0.95, 1.00) and 0.98 (95% PrI: 0.94, 1.00) for the first, second, and third weeks after
symptom onset. The diagnostic accuracy of LFIA varies with time after symptom onset. Bayesian latent-class
models provide a valid and efficient alternative for evaluating the rapidly evolving diagnostics for COVID-19,
under various clinical settings and different risk profiles.

Bayesian latent-class models; COVID-19; LFIA; RT-PCR; sensitivity; specificity

Abbreviations: BLCMs, Bayesian latent-class models; cdn, conditional covariance between the specificities; cdp, conditional
covariance between the sensitivities; COVID-19, coronavirus disease 2019; Ig G, immunoglobulin G; Ig M, immunoglobulin M;
LFIA, lateral f low immunoassays; RT-PCR, real-time reverse-transcriptase polymerase chain reaction; SARS-CoV-2, serious
acute respiratory syndrome coronavirus-2; SeIgG/M, sensitivity of IgG/IgM; SeRT-PCR, sensitivity of RT-PCR; SpIgG/M, specificity
of IgG/IgM; SpRT-PCR, specificity of RT-PCR.

Over the past few months, there has been a need for
rapid development of diagnostic tests that will efficiently
detect serious acute respiratory syndrome coronavirus-2
(SARS-CoV-2) infection. Real-time reverse-transcriptase
polymerase chain reaction (RT-PCR) tests, which detect the
RNA of SARS-CoV-2, are considered to be the reference
standard (1) for a coronavirus disease 2019 (COVID-19)
diagnosis. In addition, the development of serological assays
detecting SARS-CoV-2–specific immunoglobulin M (IgM)
and/or immunoglobulin G (IgG) started immediately and is
ongoing (2), with a large portion of them being lateral flow

immunoassays (LFIA). These immunoassays are evaluated
using RT-PCR as a gold standard (3–5). However, it is known
that RT-PCR is less than 100% sensitive (6), while false-
positive results can also occur (7). Thus, if a new diagnostic
test is evaluated assuming RT-PCR as a perfect reference
standard—although it is not—the evaluation of the new test
might be biased.

In the absence of a gold standard, Bayesian latent-class
models (BLCMs), which do not require a priori knowledge
of the infection status, are a valid alternative to classical
test evaluation. In a BLCM setting, none of the tests is
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considered as a reference method and the sensitivity and
specificity for each test is estimated from the analysis of
the cross-classified results of 2 or more tests in 1 or more
populations. Latent models for diagnostic accuracy studies
were introduced with the 2-test, 2-population model, which
is often referred to as the Hui and Walter paradigm (8).
The first thorough discussion on the applicability of these
methods in diagnostic accuracy studies was given by Walter
and Irwig (9), and their implementation within a Bayesian
framework has been evolving for over 20 years (10–12). A
meta-analytical alternative for the evaluation of diagnostics
from multiple studies in the absence of a reference test
has been proposed and can be used, if a sufficiently large
number of studies is available (13). Recently, guidelines for
the application and sound reporting of BLCMs in diagnostic
accuracy studies, the STARD-BLCM statement, have been
proposed (14, 15). STARD-BLCM is an adaptation of the
STARD statement (16) for the absence of a reference test
and the use of Bayesian estimation procedures. Currently,
an EU-funded initiative has brought together experts from
43 countries with the aim to further develop and expand the
application of BLCMs in biomedicine (17).

To the best of our knowledge, BLCMs (or latent-class
models) have not been used for the evaluation of COVID-19
diagnostics despite the obvious advantages arising from the
fact that there is no need for a gold standard. BLCMs can be
advantageous given that diagnostic processes for COVID-19
have been developed at an unprecedented pace and under-
standing of viral dynamics across the course of SARS-CoV-
2 infection is incomplete. The objective of this work was to
estimate the diagnostic accuracy of RT-PCR and LFIA tests
depending on the week after symptom onset with the use of
BLCMs. We followed the STARD-BLCM guidelines (Web
Table 1, available at https://doi.org/10.1093/aje/kwab093)
(15).

METHODS

Literature search and selection of studies—data sets

A flow chart for the selection process is in Web Figure 1.
We conducted the literature search using PubMed, medRxiv,
and bioRxiv without any language restrictions. The search
strategy and results for each database are presented in Web
Table 2.

The following search terms were used: (“SARS-CoV-2”
OR “SARS-CoV-2” OR “Coronavirus disease 2019” OR
“COVID-19”) AND (“IgM” OR “IgG” OR “antibodies” OR
“antibody” OR “serological” OR “serologic” OR “serology”
OR “serum” OR “lateral flow”).

The searches were concluded by April 30, 2020, and 2
researchers independently screened articles. Disagreements
in the initial evaluation were resolved by consensus.

Eligible articles were required to meet the following cri-
teria: 1) inclusion of COVID-19 cases (noncases) confirmed
(ruled out) by RT-PCR or by a combination of RT-PCR
and clinical findings; 2) results concerning IgM and/or IgG
antibodies using lateral flow immunoassay; 3) availability of
clinical information, in particular with respect to days from

onset of symptoms; 4) RT-PCR preceding IgG/M testing by
at least 7 days.

In order to construct the 2-by-2 contingency table and
obtain estimates for the sensitivity and specificity, we
obtained the numbers for antibody (Ab) and RT-PCR pos-
itive (Ab+/RT-PCR +); Ab positive and RT-PCR nega-
tive (Ab+/RT-PCR−); Ab negative and RT-PCR positives
(Ab−/RT-PCR +); Ab and RT-PCR negative (Ab−/RT-
PCR−).

Initially, 448 nonduplicated records were screened, and
28 full-text resources were scrutinized. Finally, 4 studies
(18–21) were identified that fulfilled criteria 1–4 and had
cross-classified results that could be extracted (patient char-
acteristics, study design, and diagnostic tests of these studies
are summarized in Web Table 3).

Bayesian latent-class model for sensitivity and
specificity estimation in the absence of a reference test

BLCMs do not use a gold standard (i.e., a reference test
with perfect diagnostic accuracy) to determine the disease/
infection status. For dichotomized test results, estimation of
the sensitivity and specificity of the tests is based on the
cross-classified results. With 2 tests in 2 populations, the
model is fully identifiable because there are 6 degrees of
freedom (i.e., 3 from each population) and 6 parameters to
be estimated: the sensitivity and specificity of each test and
the true prevalence of disease/infection in each population.
Here, we extend this model in a 2-test (i.e., RT-PCR and
IgG/IgM), 4-population model (i.e., each study is considered
a different population) and analyzed weekly with RT-PCR
test sensitivity (SeRT-PCR) and specificity (SpRT-PCR) being
constant across all weeks, while IgG/IgM test sensitivity
(SeIgG/M) and specificity (SpIgG/M) were allowed to vary
between weeks after symptom onset.

Briefly, we assume that for each of the i populations—in
our case the 4 different studies—the cross-classified results
of the 2 tests follow an independent multinomial sampling
distribution:

yi ∼ Multinomial
(
ni,

(
pi11 , pi12 , pi21 , pi22

))

with the multinomial cell probabilities being expressed as:

pi11 = piSeRT-PCRSeIgG/M + (1 − pi)(1 − SpRT-PCR)

(1 − SpIgG/M)

pi12 = piSeRT-PCR(1 − SeIgG/M) + (1− pi)(1 − SpRT-PCR)

SpIgG/M

pi21 = pi(1 − SeRT-PCR)SeIgG/M + (1 − pi)SpRT-PCR

(1 − SpIgG/M)

pi22 = pi(1 − SeRT-PCR)(1 − SeIgG/M) + (1 − pi)

SpRT-PCRSpIgG/M.

Within a fully Bayesian estimation framework, beta dis-
tributions Be (a, b), are used as priors for the parameters
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of interest: SeRT-PCR, SpRT-PCR SeIgG/M, SpIgG/M and the
prevalence pi in each population.

Assessing conditional dependence

Our model assumed that RT-PCR and LFIA are condi-
tionally independent, an assumption that is expected to be
valid because the 2 tests are based on a different biological
principle (10). Nevertheless, to account for the unlikely, yet
existent, possibility of conditional dependence between RT-
PCR and LFIA we also considered a model that captures
conditional dependences:

pi11 = pi(SeRT-PCRSeIgG/M + cdp) + (1 − pi)

((1 − SpRT-PCR)(1 − SpIgG/M) + cdn)

pi12 = pi(SeRT-PCR(1 − SeIgG/M) − cdp) + (1 − pi)

((1 − SpRT-PCR)SpIgG/M − cdn)

pi21 = pi((1 − SeRT-PCR)SeIgG/M − cdp) + (1 − pi)

(SpRT-PCR(1 − SpIgG/M) − cdn)

pi22 = pi((1 − SeRT-PCR)(1 − SeIgG/M) + cdp) + (1 − pi)

(SpRT-PCRSpIgG/M + cdn),

where cdp is the conditional covariance between the sensi-
tivities and cdn is the conditional covariance between the

specificities. Uniform priors were specified for cdp and cdn
with their limits being directly affected by the magnitude of
the sensitivity and specificity values (22):

cdp ∼ Uniform((SeRT-PCR − 1)(1 − SeIgG/M),

(min(SeRT-PCR, SeIgG/M) − SeRT-PCRSeIgG/M))

cdn ∼ Uniform((SpRT-PCR − 1 )(1 − SpIgG/M),

(min(SpRT-PCR, SpIgG/M) − SpRT-PCRSpIgG/M)).

Priors and sensitivity analysis

We have a 2-test, 4-subpopulation model, which is fully
identifiable because the numbers of parameters to be esti-
mated are 8 (i.e., the sensitivity and specificity of each
test and the prevalence of SARS-CoV-2 infection in each
population) for the independence model, and the degrees of
freedom available from the data are 12. In all alternative
prior combinations, a noninformative, uniform beta prior
distribution, Be (1), over the range from 0 to 1, was adopted
for the SeRT-PCR, SeIgG/M and the prevalence of SARS-CoV-
2 infection in each population pi.

For our primary analysis (prior set I) SpRT-PCR was
expected to have a median of 0.99, and it was thought to
be at least 0.98 with 95% certainty, which corresponds to a
Be (426.36, 4.64). For SpIgG/M the median was expected to
be 0.98, and it was thought to be higher than 0.95 with 95%
certainty. That is a Be (108.19, 2.53).

Table 1. Cross-Classified Results of the Real-Time Reverse-Transcriptase Polymerase Chain Reaction and the
Lateral Flow Immunoassay Tests Detecting Either Immunoglobulin G or Immunoglobulin M Antibodies Against
Coronavirus Disease 2019, Using Data From Multiple Studies

Study
PCR(+)

IgG/IgM(+)
PCR(+)

IgG/IgM(−)
PCR(−)

IgG/IgM (+)
PCR (−)

IgG/IgM (−)

Week 1

A (18) 1 7 0 0

B (19) 3 13 2 7

C (20) 3 24 4 5

D (21) 12 15 14 38

Week 2

A (18) 8 16 15 3

B (19) 6 0 1 1

C (20) 26 2 5 1

D (21) 28 8 14 38

Week 3

A (18) 17 6 41 4

B (19) 68 0 5 9

C (20) 30 1 5 2

D (21) 17 4 14 38

Abbreviations: IgG, immunoglobulin G; IgM, immunoglobulin M; PCR, polymerase chain reaction.
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Table 2. Medians and 95% Probability Intervals for the Sensitivity and Specificity of the Real-Time Reverse-Transcriptase Polymerase Chain
Reaction and the Lateral Flow Immunoassay Tests Detecting Immunoglobulin G or Immunoglobulin M Antibodies Against Coronavirus Disease
2019, Using Bayesian Latent-Class Models

Model Median PrI
Week 1 Week 2 Week 3

Median PrI Median PrI Median PrI

Aa

SeRT-PCR
b 0.68 0.63, 0.73

SpRT-PCR
b 0.99 0.98, 1.00

SeIgG/M 0.32 0.23, 0.41 0.75 0.67, 0.83 0.93 0.88, 0.97

SpIgG/M 0.97 0.92, 1.00 0.98 0.95, 1.00 0.98 0.94, 1.00

Ba

SeRT-PCR
b 0.70 0.65, 0.75

SpRT-PCR
b 0.99 0.98, 1.00

SeIgG/M 0.38 0.27, 0.48 0.78 0.70, 0.86 0.93 0.88, 0.97

SpIgG/M 0.98 0.94, 1.00 0.98 0.95, 1.00 0.98 0.94, 1.00

cdp −0.09 −0.15, −0.03 −0.04 −0.07, 0.00 0.00 −0.02, 0.02

cdn 0.00 0.00, 0.01 0.00 0.00, 0.01 0.00 0.00, 0.01

Abbreviations: cdn, conditional covariance between the specificities; cdp, conditional covariance between the sensitivities; SeIgG/M,
sensitivity of immunoglobulin G/immunoglobulin M; SeRT-PCR, sensitivity of RT-PCR; SpIgG/M, specificity of immunoglobulin G/immunoglobulin
M; SpRT-PCR, specificity of real-time reverse-transcriptase polymerase chain reaction.

a Model A assumes conditional independence while model B adjusts for the potential dependencies between the sensitivities and specificities
of the tests. Data are from multiple studies (18–21).

b SeRT-PCR and SpRT-PCR estimates are not week-specific.

Alternative prior combinations were: 1) fixing SpRT-PCR
equal to 1 and using the same prior for SpIgG/M (prior set II)
and 2) assuming for both SpRT-PCR and SpIgG/M an a priori
median of 0.95 and a lower value of 0.90 with 95% certainty.
This is a Be (76.63, 4.35). The latter prior specifies a range
of values that is rather wide given the values that the speci-
ficities that RT-PCR and LFIA tests are expected to have.

Convergence diagnostics and software

We used a combination of checks because convergence
diagnostics of the Markov chain Monte Carlo methods are
not foolproof. Specifically, the Raftery and Lewis method
(23), the Gelman-Rubin diagnostic (24), autocorrelation
checks and visual inspection of the trace plots, and summary
statistics were used as recommended (25). Parameter
estimates were based on analytical summaries of 60,000 iter-
ations of 3 chains after a burn-in adaptation phase of 10,000
iterations. All checks suggested that convergence occurred
and autocorrelations dropped off quickly (Web Figure 2).
Models were fitted using the freeware program JAGS (26)
through the rjags package (26) for R (R Foundation for
Statistical Computing, Vienna, Austria) (27). Priors were
generated with the PriorGen package (28). The code is avail-
able at https://github.com/paoloeusebi/BLCM-Covid19.

RESULTS

A total of 448 studies were initially identified as studies
of the evaluation of COVID-19 diagnostics, and 28 of them

provided access to full data that can be extracted. From these,
4 gave details on the cross-classified RT-PCR and LFIA
results for each week after symptom onset (Web Figure 1).

Cross classified results of the RT-PCR and the LFIA tests
for each week from the onset of COVID-19 symptoms are
presented in Table 1. Sensitivity and specificity estimates
for each week are in Table 2. SeRT-PCR was 0.68 (95%
probability interval: 0.63; 0.73), while SeIgG/M increased
week by week with nonoverlapping probability intervals.
Both tests were of high to absolute specificity that did not
differ, with point estimates for SpRT-PCR being consistently
higher. Further, SpIgG/Mestimates were similar for all weeks.

The same results were observed under the model that
adjusted for the potential conditional dependence between
the tests. There was no evidence of conditional dependence;
covariance parameters, cdp and cdn, had probability inter-
vals that included zero. Finally, alternative prior specifi-
cations—prior set II and III—gave similar results (Web
Table 4).

DISCUSSION

We used BLCMs to estimate the diagnostic accuracy of
RT-PCR and LFIA tests for SARS-CoV-2 infection depend-
ing on the time from the onset of symptoms. BLCMs do
not require the presence of a reference test and thus allow
for the simultaneous sensitivity and specificity estimation
of both tests. They provide a valid and efficient alternative
to classical test evaluation (8, 15). Importantly, the degrees
of freedom provided by the data (i.e., 12) exceeded the
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number of parameters that had to be estimated (i.e., 8 for
the conditional independence model), satisfying a neces-
sary condition for identifiability. Further, sensitivity anal-
ysis revealed that under alternative prior specifications our
results were similar (Web Table 4) without differences in
the estimates between the 2 model structures and alternative
prior sets. The assumption of constant sensitivity/specificity
across populations (i.e., the different studies) was assessed
by re-analyzing all possible dyads of populations. Sensitivity
and specificity for all dyads had overlapping probability
intervals, and point estimates were close except for 2 dyads
(Web Table 5). These results indicate no evidence against
the validity of this assumption. Even in cases of deviations
from the assumption of constant accuracy, sensitivity and
specificity estimates under BLCMs can be seen as average
sensitivity/specificity estimates across all populations, and
it is only in the case of distinct differences that such dif-
ferences must be accounted for (15). Finally, there was no
evidence that the assumption of conditional independence
was violated, because covariance estimates had, under any
prior combination, probability intervals that included zero.
Conditional independence is expected to hold when the tests,
as in our case, are based on a different biological principle
(10).

This is, to the best of our knowledge, the first study using
BLCMs for the evaluation of COVID-19 diagnostics. A
reason for this could be the absence of suitable data: Despite
the vast literature on the evaluation diagnostic tests for
SARS-CoV-2 (Web Figure 1), only 4 studies were identified
with adequate information. Diagnostic accuracy studies are
generally resource-intensive with limited funding and are,
most often, based on preexisting samples. However, we
scrutinized the literature to identify studies with tests that,
although not identical, are based on the same biological prin-
ciple, target the same biomarker (i.e., detection of IgG/IgM),
and follow the same technique (i.e., LFIA). Proper study
design with the aim to evaluate diagnostics by the use of
BLCMs will provide an efficient and valid framework for
sensitivity and specificity estimation under various clinical
settings and different target populations and will also allow
for a thorough and robust assessment of the validity of the
assumptions underlying these models.

BLCMs allowed for the derivation of diagnostic accuracy
estimates that were specific to the week after symptom
onset. Our SeRT-PCR estimate was moderate to high—0.68
(95% probability interval: 0.63; 0.73)—and in line with
current evidence (29). The SeIgG/M estimates were low for
the first week and showed a steep increase to moderate in
the second week that further continued, resulting in high
sensitivity values for the third week (Table 2). Importantly,
weekly SeIgG/M estimates had nonoverlapping probability
intervals. At the early stages of SARS-CoV-2 infection,
IgG/IgM assays are likely to have false-negative results and
miss cases due to the fact that a detectable antibody response
to SARS-CoV-2 infection can take more than 10 days after
the onset of symptoms (30). The subsequent increase is in
line with published findings (31). Further, an increase in
IgG and/or IgM during the first 3 weeks is also recorded
(21, 32–34). The median seroconversion time is expected
to occur 10 and 12 days after symptom onset for IgG and

IgM, with a rapid increase after day 6 that can be followed
by a decline in viral load (35). The latter observation of
increasing positive detection rate for IgG and/or IgM with a
steady and potentially slight decrease for SARS-CoV-2 viral
load has also been observed elsewhere (36, 37). SeIgG/M is
higher than SeRT-PCR after the second week, which is also
in line with recent evidence that the sensitivity of antibody
assays overtook the RNA test on day 8 after the onset of
symptoms (38). Further, other authors also found a steep
increase for antibodies, particularly in the second week, that
was accompanied by a slight decrease in the probability
of detection with nasopharyngeal swabs/bronchoalveolar/
sputum PCR over the first 3 weeks after symptom onset (39).

The SpRT-PCR estimate was close to unity but false-
positive results can occur (7). There is a scarcity of spec-
ificity estimates for RT-PCR methods because they are
considered to be the reference standard for the evaluation of
diagnostic tests for SARS-CoV-2 infection. False-positive
RT-PCR results are assumed to occur only as a result of
sample contamination or the high cycle threshold (Ct) values
(40). Nevertheless, we do not believe that the estimated
false-positive rate could only be due to contamination issues.
In studies comparing RT-PCR results with chest computed
tomography, a substantial number of samples were found to
be chest–computed tomography negative but RT-PCR pos-
itive (41, 42). Given that chest-computed tomography has
emerged as a valid test for early diagnosis of SARS-CoV-2
infection and its combination with RT-PCR is suggested
(40), the perfect specificity of RT-PCR is at best in question.
Undoubtedly, SpRT-PCR is close to unity, but the possibility
of false-positive results should not be ruled out. The latter
will be of great importance at the next steps in the fight
of COVID-19 pandemic and the case of screening healthy
or low-prevalence populations. In such instances, false-
positive results can occur and should be accounted for
to avoid unnecessary interventions (i.e., if a disease-free
population of 10,000 is screened, up to 100 false-positive
RT-PCR results should be expected).

Finally, SpIgG/M was also close to perfect, but with me-
dian estimates consistently lower than those for SpRT-PCR,
although not statistically different. False-positive results
can be due to cross-reactions, which have been observed in
diagnostic evaluation studies that were based on a reference
standard from healthy individuals or individuals that have
diseases unrelated to SARS-CoV-2 infection (43). Cross-
reactivity between SARS-CoV-2 IgM assays and rheumatoid
factor IgM (RF-IgM) has also been observed (44).

A point of criticism for our analysis might have been that
target variable bias can be a serious issue when BLCMs
are applied in acute infection data because the time period
during which the different targeted conditions (in our case,
presence of viral particles and IgG or IgM antibodies) are
both detectable is narrower (10, 15). In such cases, the
infection status that is detected by the BLCMs is limited
to the individuals with simultaneous presence of RNA viral
particles and IgG/M antibodies. Here, we expect such bias
to be low because we narrowed our selection of cases in a
period where both targets (i.e., viral particles for RT-PCR
and IgG/M antibodies for LFIA) coexist. This might not be
true earlier in the course of SARS-CoV-2 infection when
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viral particles are present, but antibodies have not yet been
produced, or later when the infection might be cleared out,
but antibody levels are high.

BLCMs provide a flexible and valid estimation frame-
work to readily evaluate tests for COVID-19 and provide
sensitivity/specificity estimates without the need for a ref-
erence method. This facilitates the rapid evaluation of diag-
nostics depending on the clinical setting and the duration of
SARS-CoV-2 infection, as in our case. In light of a contin-
uously evolving pandemic and the influx of new epidemio-
logic data, BLCMs can provide a framework for sensitivity/
specificity estimates that will be specific to different risk
profiles and will allow for the interpretation of test outcomes
according to the relevant epidemiologic situation in each
case.
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