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A pan-CRISPR analysis of mammalian cell
specificity identifies ultra-compact sgRNA
subsets for genome-scale experiments
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A genetic knockout can be lethal to one human cell type while increasing growth rate
in another. This context specificity confounds genetic analysis and prevents reproducible
genome engineering. Genome-wide CRISPR compendia across most common human cell lines
offer the largest opportunity to understand the biology of cell specificity. The prevailing view-
point, synthetic lethality, occurs when a genetic alteration creates a unique CRISPR dependency.
Here, we use machine learning for an unbiased investigation of cell type specificity. Quantifying
model accuracy, we find that most cell type specific phenotypes are predicted by the function of
related genes of wild-type sequence, not synthetic lethal relationships. These models then
identify unexpected sets of 100-300 genes where reduced CRISPR measurements can
produce genome-scale loss-of-function predictions across >18,000 genes. Thus, it is possible to
reduce in vitro CRISPR libraries by orders of magnitude—with some information loss—when we
remove redundant genes and not redundant sgRNAs.
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ARTICLE

arge-scale transcriptomics atlases have identified thousands of

ubiquitously expressed mammalian genes!. Single-cell tran-

scriptomics can rapidly enumerate the differential expression
of the genome across a tissue>3. Yet this unprecedented resolution
in transcriptomics fails to tell us how genes function in different cell
types. Importantly, while transcriptomics easily scales to measure
thousands of transcripts in a single cell, functional genomics can
only measure the phenotypic effect of a single genotype in a single
cell. The knockout of a single gene can cause lethality in one cell
and no discernible phenotype in another*. This diversity is even
known to exist across KRAS mutant cell lines. Some G12X mutated
cells are sensitive to loss of KRAS while others aren’t>. Moreover, in
biotechnology applications, strategies to engineer mammalian cell
lines to withstand the stress of stirred-tank bioreactors are not
reproducible across cell types®®. These phenotypic differences
constitute a poorly understood, but a well-recognized phenomenon
called context specificity that is important in cell biology, genetics,
biotechnology, and medicine!?. Context-specific observations are a
classic problem in mammalian cell biology and genetics that dates
to the origins of the field!l. Understanding them aids our under-
standing of basic biological and genomic processes. It also improves
our potential to guide those processes rationally.

However, understanding cell specificity means contending with
the fact that mammalian cell lines span an incredible diversity of
potentially relevant contexts that include; nucleotide mutations,
chromosomal abnormalities, copy number alterations, transcrip-
tional profiles, and tissues of origin'2. Together, these contexts
drive the richness and the confusion of mammalian cell biology/
genetics. CRISPR screening efforts by the Sanger and Broad
institutes have performed genome-wide loss-of-function studies
in ~1000 unique mammalian cell lines®!3. These studies have
identified extensive phenotypic diversity (as measured by differ-
ences in CERES scores) in many genes!>14. Synthetic lethality has
been the dominant paradigm that has been used to explore cell-
type-specific sensitivity to loss-of-function in mammalian cell
lines. Classic synthetic lethality occurs when a specific somatic
mutation confers sensitivity to genetic or chemical-genetic loss-
of-function!®. This is best exemplified by the loss-of-function
mutations in BRCA1/2 that predict exquisite sensitivity to the loss
of PARP1/2. This relationship has led to the clinical application of
PARP inhibitors in cancer!®. Beyond this paradigmatic example,
a number of interesting versions of synthetic lethality have been
suggested, including; dosage lethality, paralog lethality, and
lineage-specific sensitivities!o=21, All of these have been useful
ideas to investigate the origins of cell-type specificity and to create
potential biomarkers for cancer therapy. However, the number of
new and exciting synthetic lethality relationships discovered
appears to be smaller than the phenotypic diversity observed in
large-scale cell-line studies!'?, indicating that there is room for
improvement in current association datasets, especially when we
broaden our view to consider all applications of mammalian cell
lines in basic science and biotechnology.

One likely additional explanation for context specificity is
that some molecular markers remain unmeasured. For instance,
a yet unmeasured predictive marker is a potential explanation
for any selective essential phenotype without a clear explana-
tion. A second explanation is a lack of statistical power to
identify rare variants or variants with modest effect sizes across
large and heterogeneous groups of cells. Both explanations can
be tested and addressed by examining more data across more
cell lines. But, beyond these typical explanations, we posit that
the static genomic features of unperturbed cell lines may not be
sufficient to predict context specificity. CRISPR knockouts
create dynamic measurements of cellular responses to gene loss.
This dynamic information may be useful to understand context
specificity.

In this study, we explore the origins of cell-type specificity as a
question of basic mammalian cell biology and genetics to enable
rational genome editing. We seek basic genetics understanding
and an enhanced ability to design cells for biotechnology appli-
cations. To do this, we take a data-driven approach that focuses
on predicting cell-type specificity with machine-learning models.
We carefully build thousands of machine-learning models that
incorporate the effects of millions of CRISPR knockout pheno-
types in addition to mutations, copy number, lineage, and RNA-
seq to predict cell-type-specific phenotypes. Our analysis reveals
that the best models of cell-type-specific CRISPR loss-of-function
phenotypes are composed of other CRISPR loss-of-function
phenotypes in a pooled library. Furthermore, predictive CRISPR
features fall into highly clustered and cross-predictive subnet-
works. Inspired by the ideas behind data compression and
previous work in transcriptomics22, we propose an approach for
dramatically compressing genome-scale CRISPR functional
genomics experiments. In lossy compression, orders of magnitude
reductions in file sizes are exchanged for some acceptable tradeoff
in data quality. Instead of in silico data, our models can compress
in vitro CRISPR library composition. They identify reduced sets
of CRISPR constructs that can predict the loss-of-function effects
of unmeasured genes at tunable scales.

Results

Cell-type-specific loss-of-function phenotypes are predictable
with machine learning. Recent efforts at the Broad and Sanger
institutes have created an unprecedented resource to investigate
the origins of context-specific dependencies across mammalian
cell lines. Context-specific behavior in CRISPR loss-of-function
phenotypes can be defined across cell lines using CERES
scores!3. Briefly, a CERES score measures the size of the fitness
difference that is observed in a pooled screen from a single gene
in a single mammalian cell line. CERES scores are calculated
for every gene in the library and they account for multiple
confounding effects that bias the direct measurements of
individual sgRNA enrichment and depletion. Negative CERES
scores denote slower growth, and positive scores denote faster
growth. Thus, the set of CERES scores for a given gene across
all cell lines provides a high-resolution measurement of cell-
type specificity.

In considering how to model cell-type-specific phenotypes, we
consider the possibility that genes could follow two distinct
models of cell specificity. For example, in one widely used model,
CERES scores are thought to belong to two distinct probability
distributions that are simply “essential” or “not essential” for
growth in an individual cell line. This first model suggests that
individual cell lines can be assigned one of these two classes for
any gene. However, CERES scores in common essential genes can
harbor large variation across cell lines?3-26, Moreover, some
genes that are labeled “common essential”, “selective essential”,
and “non-essential” have large ranges of continuous variation in
CERES scores that appear to be biologically meaningful (Fig. 1a,
b). Thus, an alternative explanation is that CERES scores are
continuous outputs of a single-cell type-specific function across
cell lines that represent the degree to which gene loss-of-function
changes cell growth rates?’.

To be agnostic to these two models, we examined standard
deviation and range filters across the CERES scores for all genes
in all cell lines. This allowed us to identify the genes with the most
context specificity across cell lines (ie., increasing standard
deviation and range). Interestingly, these genes tended to have
continuously correlated non-paralogous genes in the dataset
(Fig. 1b). This relationship was not simply a function of increased
variation because permutation tests failed to observe similar
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Fig. 1 Multivariate machine-learning models predict context specificity. a Examining the largest and most cell-type-specific genes in the DepMap dataset
identified genes for whom CERES scores were highly correlated with a biologically related gene in the same pathway or complex. This was true in common,
selective, and nonessential DepMap genes. This suggested that continuous variation in CERES scores can have biological meaning. b Scatter plots (left,
middle) have 18,333 unique genes as data points. On x axis, the standard deviation of CERES score for each gene; on y axis, the maximum correlation from
all pairwise Pearson correlations for each gene to all other genes. The point size is proportional to the range of CERES scores across all cell lines. The most
cell-type-specific genes tend to have the strongest correlations with CERES scores in other genes. This is measured via a linear model (red line), and the P
value of this model coefficient (based on two-sided t test) is <2e-16 in the true data (left) for common, selective, and nonessential genes. To assess the
significance of the relationship between standard deviation within a gene and biological correlations with the CERES scores of another gene, one example of
a permuted CERES dataset and its linear model is shown in the middle. In total, 163 permutations of the CERES scores and the P values from their
respective linear models are shown in the histogram to the far right. Permuted P values rarely drop below 0.001 and are never below 10~ while the real
data had a P value of <2e-16. The more context-specific a gene is, the more likely it is to be highly correlated to a second gene. Correlation with a second
gene is an indicator that CERES score variation has biological meaning. ¢ Different variables can be used to predict cell type specific genes. d The
distribution of the number of features per data source. e gprofiler2 plots reveal the landscape of enriched biological processes in highly context-specific
genes. The P values are based on hypergeometric tests with multiple testing corrections using the g:SCS method. f Comparisons in model scores (R2s)
between the multivariate versus univariate models across different essentiality classes (n=3648, 164, 22 for selective essential, common essential,
common nonessential, respectively). Boxplots are broken down by gene classification, score is based on performance during cross-validation. Box shows
the quartiles, whiskers indicate the maximum/minimum non-outlier observations, dots indicate outliers falling outside of 1.5 times interquartile range, and
center is the median. g After cross-validation and validation of test set predictive power, models for each context-specific gene are plotted as individual
points. 1 data point is 1 gene. Multivariate models (x axis) are more predictive than univariate models (y axis), across all gene essentiality classes. h Bar plot
of Pearson correlations between model predictions and actual CERES scores, compared between the final modeling approach and a baseline model that
simply predicts CERES score values by retrieving the CERES score from the closest cell line (by genomic profile similarities that are measured with
Cellector). Source data are provided as a Source Data file.

trends in resampled data. Thus, we decided that a regression- and the most expansive ranges of CERES scores across all cell
based approach to cell-type specificity is reasonable because many  lines. (Supplementary Fig. la). These highly context-specific
highly context-specific genes have continuous CERES values that  genes were enriched for functions in the cell cycle, metabolic
appear to be biologically meaningful. We visualized distributions  processes, and membrane-bound organelles (Fig. le and Supple-
and identified 583 genes out of 18,333 total genes using a cutoff —mentary Data 1) and they form the basis for our initial analysis of
(see “Methods™) that identified the largest standard deviations cell-type specificity.
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There are multiple potentially predictive data types (and
millions of data points) assayed in the DepMap project that
could be used to infer the origins of context-specific loss-of-
function phenotypes (Fig. 1c, d). All of the datasets (mutation,
RNA-seq, CNV, and lineage) that we examined from the CCLE
contained a large dynamic range of measurements (Supplemen-
tary Figs. 1b and 2). This suggested that variation in any/all
the data types could be useful for making context-specific
predictions of CRISPR loss-of-function phenotypes and infer-
ring predictive features of interest.

Traditional definitions of synthetic lethality in cell lines
examine univariate genetic predictors that include copy number
and mutation context. Beyond classic definitions of synthetic
lethality, lineage and transcriptional data have also been used to
mine large genetic datasets. Because we aim to understand the
nature of context specificity and how predictable it is, we took a
fundamentally different approach from recent impressive work
that ranked potential univariate biomarkers and drug target
pairs*. Compared to univariate predictors, our first question
was whether multivariate machine-learning models can explain
larger amounts of context specificity. We also dramatically
broadened the scope of our inquiry to include applications in
biotechnology by allowing a CERES score in one gene to be
predicted by other CERES scores across the genome. We did
this because we suspected that the collective probing of the loss-
of-function dynamics of the entire genome through CRISPR
could provide information on the state of the genetic network
that is fundamentally different than baseline OMICS measure-
ments in unperturbed cells.

With millions of measurements, we needed to build an
extensive feature selection and model validation pipeline for
our machine-learning models to minimize overfitting while
ensuring robustness and predictive power (Supplementary
Fig. 3). Comparing across multiple machine-learning methods,
we found that an approach that employed iterative-feature
selection combined with random forest regression was robust
and superior to other approaches (Supplementary Figs. 4 and
5). We validated our models with additional test sets (from
later Broad data releases) and we observed comparable results
(Supplementary Fig. 5a—c).

With this high-quality pipeline, we built thousands of machine-
learning models across millions of measurements. We found that
multivariate models virtually always outperform univariate models
when predicting diverse cell-line-specific phenotypes across our
set of highly context-specific genes (Fig. 1f, g). This suggests that
multivariate context critically improves predictions of cell-type
specificity, and that classic synthetic lethality as a univariate
paradigm to interpret context specificity can be greatly improved
upon. We next aimed to compare our findings versus a null
model of cell-type specificity. We reasoned that a nearest-
neighbors approach, whereby CERES scores in a test set cell line
are predicted by the nearest cell-line neighbors in the OMIC data
(i.e., cells that are most similar by mutation status/transcriptome/
copy number via CELLigner). We observed that multivariate
models using our machine-learning pipeline dramatically outper-
form this null model (Fig. 1h), as well as other machine-learning
approaches (Supplementary Fig. 4). However, are our multivariate
models better because they add further genetic context to key
synthetic lethal mutations? Or is the multivariate prediction
accuracy due to something else?

CRISPR phenotypes predict cell-line-specific responses to gene
loss. To investigate why our multivariate machine-learning
models make better predictions than univariate models, we first
examined the types of data that contribute to highly predictive

models of context specificity. A plurality of input features (40.0%)
were RNA-seq transcripts in the input dataset, but the top ten
features in our predictive multivariate models were over-
whelmingly composed of CERES scores (73.4%) (P value <0.001)
(Fig. 2a, b and Supplementary Figs. 6a and 7). This suggested to
us that perturbations of the genetic network (as provoked by
Cas9, and measured by CERES scores) were better at predicting
cell-type-specific phenotypes than conventional “omic” mea-
surements from unperturbed cells.

To quantify the degree of these differences and to understand
them, we examined our multivariate models of context-specific
loss-of-function using existing biological models of context
specificity. These alternate biological models include classic
synthetic lethality (the genotype of cell x predicts sensitivity to
LOF), dosage lethality (the expression level of the “same gene”
predicts its own sensitivity to knockout and is referred to as the
“same gene” in Fig. 2), paralog lethality (the loss of a
compensating paralog confers sensitivity to a related gene),
lineage lethality (where cell type or developmental context
predict genetic sensitivity) and network context (where
neighboring genetic nodes in a network diagram, or sets of
genes, are connected using another database that adds signal to
noise in context-specific predictions, referred to as “gene set” in
Fig. 2)%1828-30 These were compared to a “functional” model
(Fig. 2) that used CERES scores as predictive variables. Among
the top ten features in our multivariate models, all of these
existing models of context specificity were observed (Fig. 2c-f).
This is consistent with exciting recent papers where similar
approaches have featured prominently®28:30, Moreover, it re-
emphasizes the importance of these relationships in a only
select group of context-specific genes. We found >4 times as
many context-specific CRISPR loss-of-function phenotypes
were accurately predicted by the CERES scores of another gene
in the genome (Fig. 2f).

Therefore, prior paradigms do not capture as many context-
specific relationships as functional genetic CRISPR features.
Importantly, this also represents a distinct model of how context
specificity can be generated. In classic synthetic lethality, cell-type
specificity is predicted by mutations that are unique to a subset of
cells. Synthetic lethal relationships suggest that single “private”
mutations cause a genetic network to function in two qualitatively
different ways in two different cell types. We refer to these as
“private” models, because a subset of cell lines harbors a “private”
genetic mutation that predicts a unique response to CRISPR
mediated loss-of-function. In contrast, our models utilize
measurements of the function of predominantly wild-type genes
that are consistently expressed across all cell lines, therefore we
refer to our models as “public” models because the topology is
“public” to all cell lines, and quantitative differences in pathway
utilization account for context specificity. Just 6.9% of the genes
with significant CERES scores have any alterations in any of the
omic data in any cell line. Thus, our “public” models are
measuring the function of wild-type genes that are utilized
differentially. This is a different way to explain context specificity.
It implies that many of the common rules for the utilization of
wild-type genes are used across all cell lines and that cell-line
specificity can be driven by the degree of common pathway
utilization. Importantly, this is true in genes that are labeled as
“selective essential” and “common essential”.

To understand this common genetic architecture in more
detail, we also sought to understand the topology of the combined
set of all multivariate models. In other words, we asked how many
predictive features are shared between models. If multiple models
share the same CRISPR features, it would suggest that some genes
might be especially good at predicting context specificity, and it
could give us insights into the common genetic architecture of

4 | (2022)13:625 | https://doi.org/10.1038/s41467-022-28045-w | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28045-w

ARTICLE

Target-feature gene pairs
a Feature source (top 10 features) c 9 9 P
B On same gene (27) B Mutation (6)
CERES (2426) Not on same gene (499)  RNA-seq (23) = —
- 3
o =
Mutation (6) 94.9% i -
Copy number (150)
Uz s 45 65 08 9w
nth Feature
RNA-seq (723) d I paralog (60) . CERES (22) o
Not in paralog (466) = Copy number (1) —
b B RNA-seq (47) . o
B Mutation —_—
= Copy number g
= RNA-seq —_—» 5
. CERES §—— _—
8 88.6% 8 —
c = o
[0 I
(o] p—
B 12 3 4 5 6 7 8 9 1
nth Feature
> e = In Panther (82) mm CERES (193)  __
o Not in Panther (444) mm Copy number (1) —
= mRNAseq (24)  — -
‘—>
84.4%
nth Feature :
f Top most important feature Top 10 features 9
» 20 o 2 Mutation
g 400 g 400
[}
S % 5 Copy number
“é 300 5 300 g
8 200 é 200 w RNA-seq
£ E
=
3 100 Z 100 CERES
Classic Same gene Paralog Gene set Functional Classic Same gene Paralog Gene set Functional
synthetic synthetic 0.0 0.5 1.0 15 20

Lethality types

Lethality types

Redundancy score
(No. total features/No. unique features)

Fig. 2 CRISPR CERES scores are the most prominent predictive features in multivariate models. a The distribution of the top ten features per data
source from the multivariate models in Fig. 1 are aggregated across all models. CERES scores are highly enriched as features in these multivariate models.
b A heatmap view of all target genes for nth feature, colored by the data source. Gray indicates there were less than ten predictive features for the target
gene. c-e The relationship between the top ten features for every cell-type-specific gene and whether they are from the same gene (¢), paralogs (d), or in
network gene set Panther (e), as visualized in the gray pie charts and heatmaps. Of the feature-target gene pairs within each group (dark gray), they are
further broken by data source (colored pie charts). f Examining the top feature in every model, we classified which model of cell-type specificity that
feature belonged to. g Redundancy scores are measured as the ratio of the total number of features to the total number of unique features, measured per
data source (CERES, RNA-seq, mutation, copy number, lineage). Source data are provided as a Source Data file.

human cell lines. It would also suggest that some screening
information might be redundant. We divided the total number of
predictive relationships by the number of unique predictors to get
the average number of predictive relationships per feature.
CRISPR features had an average of two relationship/feature,
meaning that unlike mutation predictors, many CRISPR gene
features were shared across multiple models and that redundancy
is possible (Fig. 2g).

Densely cross-predictive CRISPR networks define a common
genetic architecture in mammalian cells. Because of the
dichotomy between the single “private” genetic defects that pre-
dict context specificity for single genes, and the “public” features
in our models, we provide a schematic that describes our
hypothesis to account for these differences. In cancer models of
synthetic lethality, a variety of possible models exist. These dis-
tinct relationships form distinct “private” functions fi(x) that
predict cell-type-specific differences in CERES scores Y; (Fig. 3a,
left). The predictive features in these functions are rarely shared
between models (Fig. 2g). However, in a common genetic
architecture, these “private” functions exist in the background of
a densely predictive common genetic architecture that ties many
individual Y; predictions together, and many CERES features are
shared between models (Fig. 3a, right). This hypothesizes a

different network structure. We asked whether this schematic was
consistent with our models of the DepMap data by using the
union of all models to build networks where genes are nodes, and
predictors of cell-type-specific phenotypes are edges (Fig. 3b).
When we compared the networks with and without CRISPR
CERES scores, we observed a striking dichotomy (Fig. 3¢, d and
Supplementary Fig. S8) that matched our hypothesis from Fig. 3a.
CRISPR CERES predictions connect many “private” models into
larger interconnected subnetworks (Fig. 3¢, d and Supplementary
Fig. S8), this dramatically increases the number of nodes (genes)
that exist in the network (i.e., It explains more context specificity),
and these nodes have a higher mean number of neighbors 5.1 vs
1.7 (P value = 2.0e-24), and a higher clustering coefficient 0.5 vs
0.04 (P value =1.7e-40) (Fig. 3d). These highly connected and
densely clustered subnetworks identify the fabric of genetic
interactions that are interwoven to collectively determine cell
specificity across cell lines. To understand the biological nature of
this network, we examined the difference between the biology of
cell-specific genes versus the common genetic architecture of
predictive features that connect highly cell-type-specific genes
using gprofiler2. Whereas cell-type-specific genes govern the cell
cycle or metabolism (i.e., core cellular functions), the underlying
biology of the genes that predict cell specificity was enriched for
genes that coordinate biology across the cell’s various organelles
and protein complexes (Fig. 3e and Supplementary Data 2).
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Fig. 3 A common genetic architecture in mammalian cell lines. a Schematic illustrating difference between classic synthetic lethality and our common
genetic architecture. Synthetic lethality consists of many individual Y; functions. These functions are cell-type-specific models with single features. Our
proposed common genetic architecture is hypothesized to connect these “private” functions with shared CERES features. A common genetic architecture
has many redundant edges, and more interconnected nodes. More nodes suggest that more cell-type-specific phenotypes are predictable, and more edges
suggest redundancy. b A network built from the aggregation of all multivariate models. Genes are represented as nodes and feature-target gene relations
as edges. Colors represent distinct subnetwork communities that were identified by the Louvain method. € Network communities with (right) and without
(left) nodes/edges involving functional CRISPR features for a single Louvain community, and a comparison with our hypothesis from (a). Edges are colored
based upon the data source; and nodes are colored based on the model score (of top ten feature model) of the corresponding gene as target. d To
quantitate the visual similarity between our hypothesis in (a) and the data in (¢) across all Louvain communities, we examined the differences in the
clustering coefficient, the average number of neighbors, and the network heterogeneity. e gprofiler2 plots examine the enrichment of functional categories.
f Residual plot identifies GO terms that are more (residuals of —log10 P values >10) or less (residuals of -log10 P values < —10) enriched in predictor genes
than in target genes. Dots represent shared GO terms among the 100 most significant terms in target and predictor gprofiler2 analysis result. The p-values
from gprofiler2 for (e) and (f) are based on hypergeometric tests with multiple testing corrections using the g:SCS method. Source data are provided as a

Source Data file.

This increase in terms referring to the cellular organization, and
protein-protein binding in the genetic architecture genes can be
visualized in a residuals plot in Fig. 3f, where the terms that are
the most uniquely significant in either gene set are highlighted
by P value residual. Thus, the “common genetic architecture”
can be rationalized by the cell biological function of genes that
coordinate the activity of individual organelles and proteins
across the cell.

To get a closer look at how predictive features coordinate cell-
type-specific genes, we examined a specific network in greater
detail. We chose a network that harbored the SAGA complex
(Fig. 4a). SAGA is involved in co-transcriptional activation from
yeast to metazoans. It acetylates and deubiquitylates histones in
promoter regions to co-activate transcription by RNA polymerase
131,32, These activities are thought to act in a concerted fashion
and a recent cryo-EM structure links the human SAGA complex’s
canonical acetyltransferase and deubiquitinylation activity
through a core assembly of SUPT20H, TAF6L, TAF5L, TADAI,
and SUPT7L (among others)33 (Fig. 4a). The core is thought to
physically link both enzymatic functions to promote robust

transcriptional co-activation. Our models of cell-specific pheno-
types easily predicted which cell lines were sensitive to the
depletion of core SAGA complex genes by using the CERES
scores of other SAGA core complex members (Fig. 4a). Thus, the
structure of the SAGA core complex has similarities to our
functional networks of cell-type specificity.

Interestingly, while the core SAGA genes were densely cross-
predictive of each other, the view of the complex, in light of our
cell-type specificity networks, has a different interpretation
than a cryo-EM structure. The enzymatic genes USP22 and
KAT2A and others in these sub-modules were not cross-
predictive of each other (Fig. 4a). A resampling analysis
suggested that the lack of cross predictions between enzymatic
components was statistically significant (P < 0.05). The simplest
null hypothesis for cell-type specificity in a complex is that an
entire complex is a single machine and that more or less of the
entire machine is required in some cell lines versus others.
If this is the case for the SAGA complex then both enzymes
would be expected to be tightly linked to SAGA core complex
phenotypes, and to each other.
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Fig. 4 Two vignettes on cell-type-specific prediction networks. a A simplistic diagram of key functional modules in the SAGA complex includes a Histone
Acetyl Transferase (HAT) module, a De-Ubiquitinating (DUB) module and core complex members (SAGA core) that are thought to be structural. The
subnetwork to the right was extracted from a Louvain community containing the SAGA complex and its associated enzymatic modules. The edges are
predictive relationships of CERES scores in our final models. When comparing the density of the edges between functional modules, the sparsity of the red
edges between HAT and DUB modules is visually striking (comparing green to orange vs. green to blue and orange to blue). b A simple multivariate linear
regression model (for interpretability) was used to rationalize the network structure. The aggregate measures of cell-type-specific phenotypes for each
functional model were created by averaging the CERES scores of individual genes in each module from (a). HAT or DUB, as well as HAT and DUB cell-type-
specific features, were found to be independent predictors of the cell-type-specific phenotype of the SAGA core complex (measured by the Akaike
information criterion (AIC), Baye's information criterion (BIC), and P value of model coefficients based on two-sided t tests). € A diagram of the difference
between the static, structural, view of the SAGA complex that suggests an integrated molecular machine that is built from its constituent modules, and a
cell-type specificity view of the SAGA complex that suggests plasticity in module requirements across cell lines is genetically integrated by the SAGA core.
d CHEK2 and TP53 interactions in our functional networks are presented from their Louvain community. Red arrow are CERES prediction relationships and
the blue arrow is an RNA-seq feature. e CERES scores for TP53 and CHEK?2 across all cell lines in the Broad institute’s dependency map data (19Q3). f To
demonstrate the role of CHEK2 in the absence of DNA damage in already transformed cell lines, we performed an “add back” experiment where we
infected CHEK2 mutant Colo678 cells with a functional copy of CHEK2 marked with GFP. Partially transduced cells can be used to measure fitness changes
via a GFP competition experiment. Partially infected pools are monitored for the GFP + proportion of cells (n = 3 replicates). Depletion occurs when the

fitness of the infected cell decreases. The control is GFP alone. Source data are provided as a Source Data file.

Here, the protein scaffold (the SAGA core) that physically
associates the enzymatic functions (USP22 (DUB) and KAT2A
(HAT)) appears to offer a more surprising role in cell-type
specificity. The scaffold serves to integrate incoherent variation in
the cell-type specificity of enzymatic activities and it does not
form a single molecular machine. This can be seen in a simple
regression model using USP22 and KAT2A as independent
predictors of cell-type-specific SAGA complex phenotypes. This
model results in significant, independent, and additive contribu-
tions of both enzyme subunits to the prediction of core SAGA
essentiality (see Fig. 4b, ¢; AIC, BIC, and p-values of variables).
Thus, SAGA cell-specific phenotypes are computed using a
weighted sum of the USP22 and KAT2A dependencies, suggest-
ing that the core complexes’ context-specific role is to coordinate
incoherent dependence of its substituent enzymatic activities.

Subnetworks also highlight coherent biology (Supplementary
Fig. 8a-c), Supplementary Fig. 8b shows a Cyclin-CDK-
regulatory network that is entirely composed of genes that drive
the cell cycle. Supplementary Fig. 8c highlights mitochondrial
respiration and the electron transport chain. To get deeper
biological insights, we also decided to look carefully at specific
networks surrounding the TP53 gene in Fig. 4d. While TP53 is
part of many pathways, two well-studied pathways are ATM-
> CHEK2- >TP53 and ATR- > CHEKI1->TP53. Both CHEKI1
and CHEK?2 can directly phosphorylate TP533435, but CHEK1
and CHEK2 are typically studied following the application of
external DNA damage, not during unstressed growth3°. While
these pathways appear straightforward in reviews3°, the genetic
evidence regarding the cell-type specificity of CHEK2 and P53
loss of function adds further confusion because MEFs grown

from knockout mice suggest that ATM and P53 but not CHEK2
are required for cell cycle arrest following irradiation3’. More-
over, in some cancer cell lines, CHEK2 affects cell viability
following DNA damage in a TP53 independent manner38-40,
Finally, while CHEK1 is likely a common essential gene in
humans, TP53 is not?3. Thus, the cell-type-specific genetic
pathways regulating the cell-type-specific function of CHEKI1
and 2 for normal growth are unclear, especially in the absence of
external DNA damage and in fully transformed cancer cell lines.

To investigate this, we looked for edges between CHEK1 or
CHEK2 and TP53 in our cell-type specificity models. We found
that CHEK2, but not CHEKI is a predictor of TP53 cell-type-
specific KO phenotypes across all cell lines (Fig. 4d). A closer
inspection of the data suggests that this relationship exists
because sgRNAs that cause the loss of CHEK2 or the loss of TP53
enrich in the same subset of cell lines (Fig. 4d, right). This result
was somewhat surprising to us because CHEK2 is not widely
known to regulate the cellular fitness of already transformed cells
in the absence of DNA damage and we could not find a clear
precedent for it in the literature. It is formally possible that
CRISPR-induced DNA damage is occurring and that CRISPR-
induced double-strand breaks artificially cause cell lines with
CHEK2 loss to enrich the screening data. An orthogonal
experiment would be to show the opposite effect: i.e., that the
re-addition of functional CHEK2 in a CHEK2 loss-of-function
cell line can cause a growth defect. While CHEK?2 loss-of-function
mutations are rare in human cancer cell lines, we identified a cell
line, Colo678, that harbored biallelic loss-of-function mutations
in CHEK2. Re-expression of a functional WT copy of CHEK2
caused a growth defect in the absence of DNA damage, while
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expression of a GFP control did not. In prior literature, it has
been suggested that the re-addition of TP53 to TP53-deficient
cell lines is a potential cancer gene therapy strategy*!. Our data
suggest that a similar strategy of re-expressing CHEK2 in
CHEK?2-deficient cell lines is possible.

However, in spite of these intriguing biological vignettes, we
believe our most important hypothesis is that not all genes in a
subnetwork would need to be measured in order to predict the
CERES scores across an entire subnetwork, and if successful, this
would be as transformative for CRISPR screens as other recent
work in transcriptomics?2.

Identification of a common genetic architecture leads to the
lossy compression of CRISPR libraries. Measuring sgRNA
enrichment or depletion in pooled screens informs gene function
by identifying when genes are required for viability?3-2442,
However, these libraries can be too large and cumbersome
for many types of biological studies. This is because CRISPR
libraries require large amounts of coverage (4-10 sgRNAs/gene,
500 cells/sgRNA, and 500 reads/sgRNA) to achieve high-quality
measurements*3-4>, A “simple” genome-wide dropout screen in a
mammalian cell line can require 40 to >100 million cells and a
similar number of sequencing reads to get good measurements on
~20,000 genes. Thus, an approach that decreases the measure-
ment requirements at the genome scale would be useful for
mammalian cell biology and genetics. This reduction creates a
natural analogy to image compression. “CRISPR predicts
CRISPR” models might be able to compress CRISPR experiments
instead of their data. We aim to identify reduced sets of CRISPR
constructs that could be screened at smaller scales to predict the
loss-of-function effects of unmeasured genes at the genome scale.

Image compression can be lossless or lossy. Lossless compres-
sion achieves modest reductions in file sizes but loses no
information. Lossy compression can achieve orders of magnitude
reductions in file size (Fig. 5a), but there are tunable reductions in
image quality#°. For our purposes, a dramatic reduction in library
size with some information loss is preferable to lossless
compression and a modest reduction in library sizes. This is
because a fundamental barrier to the scalability of modern human
functional genomics is library size*%. Achieving less than an order
of magnitude reduction in library size will be useful, but it will fail
to dramatically enhance experimental tractability in many
experimental contexts. For instance, even a genome-wide library
of perfect sgRNAs cannot decrease CRISPR library sizes to below
~20,000 unique constructs. Eliminating the need to measure
redundant genes (and not redundant sgRNAs) is the only
approach that has the potential to create libraries that are orders
of magnitude smaller.

Inspired by lossy compression and previous landmark analyses
in transcriptomics??, we hypothesized that the existence of a
common genetic architecture could enable the tunable lossy
compression of the genes that are targeted in CRISPR libraries.
Here, compression does not refer to the in silico data storage
requirements, but to the in vitro number of genes that must be
measured in a pooled screen to achieve a genome-scale “portrait”
of gene function (Fig. 5a).

To examine the possibility for lossy compression we decided to
start with the entire genome, and not simply focus on the genes
that were highly cell-type-specific. Our aim was to identify a
highly informative set of genes, for whom experimental
measurement can accurately predict unmeasured CERES at a
genomic scale. Using a multi-step machine-learning approach, we
identified 25, 100, 200, and 300 gene sets whose CRISPR CERES
scores were highly correlated with other genes in the 19Q3 Broad
DepMap data. These potential compression sets were enriched

for genes that are involved in enzyme binding, the nucleus,
biosynthesis, and transcription factor activity (Fig. 5e and
Supplementary Data 3). We then examined whether these small
gene sets harbored predictive power across the genome. With
models trained on 488 cell-line screens from the 19Q3 Broad data
and then tested on 87 independent cell lines screened in 19Q4, we
found that the predictive performance of lossy compression genes
in a validation set began to saturate at 200 genes (Supplementary
Fig. 9a). Across the genome, predictions from a lossy 200 set
closely resembled the true test set data (Pearson’s r=0.92)
(Fig. 5b and Supplementary Fig. S9b-d). Importantly, the
similarity between predicted and measured CERES scores existed
across common essential, selective essential, and nonessential
genes. The predictions were dramatically better than models built
from a random set of 200 genes (Pearson’s r = 0.0) (Fig. 5¢). To
build intuition, two representative examples of two gene-specific
models are available in Supplementary Fig. 9d and all 18,333
models can be reproducibly generated from source on GitHub.
Importantly, some common essential and nonessential genes were
predicted to have roughly the same phenotype in all cell lines.
This is consistent with the interpretation that some essential
genes are interpreted in a binary fashion by the cell.

Recent work comparing the Broad dataset with the Sanger
dataset has identified high cross-dataset correlations and key
differences for many shared genes!4. These projects had
differences in screen duration, media composition, and sgRNA
identity. As an extraordinarily stringent test of our lossy 200 set,
we examined the predictive performance of our lossy 200 gene set
that was built on only Broad 19Q3 data in an independent test set
from the Sanger Institute (Fig. 5d). This Sanger institute data used
different cell lines, a different library, different timepoints, and
different media conditions. Consistent with a lossy approach, our
lossy 200 set reproduced a genome-scale portrait of CRISPR loss
of function in the Sanger institute data that resembled
performance in the DepMap test data (Pearson’s r = 0.78). This
is despite the Sanger institute’s use of sgRNAs, and screening
conditions that our lossy 200 gene set was not trained upon.
This clearly suggests that small sets of 200 genes can provide
reproducible genome-scale information.

To probe this further, we examined predictions outside the
context of simple growth. To et al. performed multiple sgRNA
screens in the presence of a variety of small-molecule
perturbations*’. We reprocessed the data of To et al. using the
CERES pipeline. Then we computationally extracted the L200 and
performed predictions on the phenotypes of the rest of the genes
in the small-molecule datasets. Correlations between measure-
ments and predictions were relatively high across all seven
screens (Pearson’s r =0.72, Supplementary Fig. 10). Moreover,
we also reasoned that screen hits should be similar between
measurements and predictions. To test this, we examined the top
500 hits in each chemical screen. In this “hit list”, 70% of the top
500 hits were in common between measurements and predictions
across all seven screens (Supplementary Fig. 10).

A series of lossy compression screens accurately predict loss-of-
function phenotypes. Lossy compression is an exciting predic-
tion. To test it experimentally, we focused on a cell line that was
left out of the original analysis, PC9 cells. We ordered a third
library, the Brunello library, which is the modern alternative to
the Avana library and it shares only ~10% of the Avana guide
sequences across more than 19,000 genes. We did two different
experiments. The first was a pooled screen across the entire
Brunello library. We then computationally extracted the 1200
values and used them to predict all the measured values in the
library (Fig. 6a). In parallel, we also cloned a standalone Lossy
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Fig. 5 Lossy genomic compression. a Schematic of lossy compression in terms of image compression using JPEG (top) and similarity to genomic loss-of-
function compression. b Genome-wide comparison between actual and inferred CERES scores on a held-out test set, shown as heatmaps and scatter plots
per gene essentiality classes. Models built based on only 200 lossy genes with their CERES scores as features. ¢ The same test set as in (b) but was

inferred based on a random predictor. d Genome-wide comparison between

actual and inferred CERES scores on the independent test set data from the

Sanger Institute. Multivariate models were trained based on Broad data from 19Q3 and used to predict independent cell lines and an independent library.

e gprofiler2 plots identify functional enrichments in lossy compression sets.

The P values are based on hypergeometric tests with multiple testing

corrections using the g:SCS method. Source data are provided as a Source Data file.

200 library and we examined the predictions of the L200 set
when the screen was performed in a 6-well plate. Both the
standalone Lossy 200 set and the Lossy 200 set that had been
computationally extracted from the full Brunello library were
able to predict phenotypes across most of the Brunello library
(Pearson’s r = 0.895 and 0.889, and the predictions between the
approaches were remarkably similar, Pearson’s r=0.981). In
addition to correlations, we also examined “hit calls” in Fig. 6¢
because we know that functional genomics screens are often
qualitatively interpreted as the top N hits in a screen. This
Analysis showed that roughly 369/500 of the top hits measured
in the full Brunello library in PC9 cells could be predicted from
measurements of 200 genes.

Discussion

Different cell types behave differently. This has been a funda-
mental question of genetics and cell biology since the first cells
were cultured. It has guided classic work by Hayflick and
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Eagle!148, as well as modern work in systems biology*’. Recent
systematic efforts to perform genome-scale CRISPR screens
across mammalian cell lines are a significant new tool to
understand this challenging question. This is due to the excep-
tionally detailed and comprehensive genomic information that
now exists in CRISPR screened mammalian cell lines across two
independent institutes®!213, Our work represents the largest
systematic effort to use these datasets to understand the basic
biological origins of cell-type specificity. Understanding this
question advances basic cell biology and genetics. Previous work
has focused on ranking translational hypotheses and comparing
dataset measurement quality®14. Surprisingly, well-described and
clinically important phenomena like synthetic lethality can make
strong models, but they are relatively rare explanations for con-
text specificity across all cell lines/genes. We refer to these as
“private” models, where a specific event in a subset of cell lines
predicts a unique response to CRISPR mediated loss-of-function.
Thus, “private” genetic mutations constitute a comparatively
minor explanation for cell-type-specific phenotypes.
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Fig. 6 Direct experimental validation of lossy compression sets. a Two separate pooled screens were performed in a cell line (PC9) that was not included
in model training and validation. Experiment 1 was the full Brunello library. A 21-day dropout experiment was performed in PC9 cells. Measurements on
18,114 genes were direct and form the gold standard. The L200 can be computationally extracted from the full screen and compared to these gold-standard
measurements. A new L200 standalone library of 800 guides targeting 200 genes was cloned. This library can be used to perform a small-scale lossy
compression experiment. The data can then be compared to the gold standard. b Correlations of inferred vs measured CERES scores for both screens in (a)
and a comparison of the predictions between the standalone sets and the computationally extracted L200 set in the Brunello library. ¢ A Venn diagram
describes the overlap in “Hits" in the 500 most differentially required genes for growth in PC9 cells. Both of the lossy compression screens from (a) and
the gold-standard (measured) data are compared. Source data are provided as a Source Data file.

Instead of “private” models, the collective wisdom of all
CRISPR loss-of-function perturbations across multiple genes
constitutes a different model of cell-type specificity where the
elements of genetic logic are shared across cell lines and they are
linked by predictions that are enriched for genes that connect and
coordinate diverse biological processes. Cell-type specificity is
produced by the differential utilization of these connecting and
coordinating genes across all cells. These models are based upon
the information encoded in the response to stimuli in widely
expressed genes that are not mutated. They can also be collec-
tively assembled into a common genetic map that details the
network architecture of cell-type-specific phenotypes across cells.
Interestingly this common map resembles a decade-old concept
in the signal transduction literature called “common effector
processing”4%. Common effector processing describes cell-
specific differences in caspase activation as a function of signal
integration across a small set of widely expressed kinases and not
the differential utilization of cell-type restricted kinase pathways.
Thus, our genetic findings converge with classic high-profile work
in post translational modification networks. This convergence
points to a broader theme in explanations of context specificity
that transcend a single-data type or phenotypic focus. This theme
is that while discrete and qualitative differences between cells can
drive cell-type-specific behaviors, it is often the quantitative
degree to which ubiquitous pathways are utilized that determines
context specificity. This is a continuous model of cell specificity in
public genes, as opposed to the discrete model of synthetic leth-
ality in “private” contexts. Our systematic analysis across the
Broad and Sanger datasets lends support to this model of context
specificity at a scale that dramatically exceeds prior work.

In network biology, previous work has focused on the most
connected nodes. So-called “Network Hubs” are often enriched in
functional phenotypes and regulate many genes®’. In our study,
the most connected hubs contain the most redundant features in

our predictive models. This dichotomous interpretation of hubs
(critical vs dispensable) is counterintuitive in network science
because most work has identified network hubs as important. The
highly connected genes in our common genetic architecture drive
the insight that the lossy compression of CRISPR libraries is
possible and it helps us understand which measurements we
might be able to eliminate instead of the measurements that we
want to keep.

While large screens of pools of guides targeting single genes in
well-behaved cancer cell lines are easy to perform at the genome-
wide scale, many contexts exist where the experimental coverage
requirements of genome-wide libraries are logistically challen-
ging, if not impossible. Lossy compression changes the experi-
mental calculus by allowing a subset of a genetic library to predict
unmeasured gene phenotypes. However, the largest caveat in our
approach is that it is lossy, and therefore it has less information
than a genome-wide library. This tradeoff is most important to
consider in the set of genes for which zero significant phenotypes
have been identified in any mammalian cell line in the Broad and
Sanger data sets. Evidence in yeast and worms suggests that
broader environmental and developmental contexts elicit more
phenotypes across single gene knockouts®1>2. Thus, the number
of non-essentials decreases as more screening conditions are
tested. Some completely novel phenotypes in a unique environ-
ment in a nonessential gene might be challenging to predict with
our current lossy 200 compression set. However, new screens are
being completed all the time that can help improve our lossy sets.
At the time of our writing, nearly 1000 different mammalian cell
lines have already been screened by the Broad and Sanger Insti-
tute. Only 1144 contexts were needed to identify a measurable
phenotype in every yeast gene®2. While the human genome will
likely require more contexts to saturate phenotypic predictions,
lossy sets may strongly benefit from approaches like transfer
learning and few-shot learning as new data arises®3. On the other
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side of this caveat, there is a clear limit to potential false negatives
because many nonessential genes belong to paralogous gene
families and contain genes that are likely to buffer each other’s
effects upon single sgRNA knockout. Thus, many current non-
essential genes may never have a measurable phenotype in any
context with a single sgRNA3?. Our current lossy 200 approach
would be sufficient to predict the phenotypes in these genes in
any context. This buffering provides a biologically plausible
bound to potential false negatives.

Despite this caveat, lossy compression has enormous potential.
Chemogenomic screens that kill cells can bottleneck libraries by
tenfold at a 90% inhibition of cell viability. These bottlenecks in
screens can raise coverage requirements for genome-scale screens
to as many as 1 billion cells, a challenging bar. Beyond gene-drug
interaction screens, pairwise genetic epistasis maps require n?/2
unique constructs*4. To make a genome-wide pairwise interaction
map (even ignoring the challenge of cloning a pairwise library of
1e8 gene pairs), coverage requirements of 3 sgRNAs per gene, 500
cells/sgRNA, and 500 reads/sgRNA create an impossibly large
screening challenge that requires a population greater than 1010
cells. Engineering cell lines to perform better for biotechnology
applications could benefit from highly combinatorial genome
engineering through CRISPR loss or gain of function. Testing all
three-, four-, or five-way loss-of-function genotypes for enhanced
performance in stirred-tank bioreactors is impossible without
some form of library compression. Because thousands of
unmeasured phenotypes can be predicted with hundreds of
CRISPR measurements, lossy compression sets are positioned to
expand the experimental landscape of possibilities in mammalian
functional genomics by enabling genome-scale experiments that
were previously impossible.

Methods

Datasets. Cancer Dependency Map datasets 19Q3 and 19Q4 were retrieved from
DepMap portal?®. This included the Broad and Sanger gene effects (CERES scores),
CCLE expression, CCLE gene copy number, CCLE mutations, and lineage (from
sample info file). The classifications of non-essentials and common essentials were
also retrieved for the same release periods. The data used in this study are available
in the Zenodo database under the DOI identifier (10.5281/zenodo.5721869).

Data preprocessing. The data were pre-processed and later models were built
using python. Several steps were performed to preprocess the raw data. Copy
number missing value was replaced with zero. Cell lines with any missing CERES
values were dropped. Mutations were grouped into damaging (with variant
annotation labeled as damaging), hotspot nondamaging (with variant annotation
labeled as not damaging and is either a COSMIC or TCGA hotspot), or other (with
variant annotation labeled as other conserving/nonconserving).

Feature pruning was performed to remove noninformative variables. This
included removal of features with only constant values and categorical features
where if a category value was supported only by less than or equal to ten samples.
Non-expressed genes (TPM < 1) were also removed. Data were normalized (z
scored) for RNA-seq and copy number values.

Feature selection and model building. The model building was based on an
iterative-feature selection process. First, the dataset was constructed using
CERES (excluding the target gene), RNA-seq, copy number, mutations, and
lineage as features, with the goal of predicting the CERES of a target gene. The
target genes list was a set of 583 genes with highly variable phenotypes based on
CERES standard deviation >0.25 and range >0.6. For lossy gene set compression
inference (described below), the target genes list was the entire genomic set of
18,333 genes. The data were split 85% and 15% into train and test sets,
respectively. The full training dataset was fit using a random forest regressor
with 1000 trees, a maximum depth of 15 per tree, minimum of 5 samples
required per leaf node, and a maximum number of features as log2 of the total
number of features. The top quartile of most important features was kept and
used to refit a new random forest model. This process was repeated three times.
The remaining feature set was further refined for significant features using the
Boruta feature selection method*. The resulting features fit using random forest
constituted the reduced model. For the purposes of analyses, the top ten most
important features were selected and the resulting model constituted the top ten
only features model. These were multivariate models (i.e., more than one feature
genes were used for the prediction). In the case of comparison to univariate

models, for each target gene, additional univariate models were built (one per
feature gene) as random forest models.

In addition to this iterative-feature selection and Boruta selection with random
forest, other modeling approaches were performed for comparison. This included
linear regression, elastic net (with alpha of 0.1), and random forest on the full train
dataset followed by taking the top quartile of important features for building the
reduced model. The top ten most important features were then taken for follow-up
analyses.

For the Nearest-Neighbors Null model, the Celligner-aligned cell-line UMAP
positions were retrieved from the Cancer Dependency Map portal (https://
depmap.org/portal/celligner). The Euclidean distance between every cell-line pair
was calculated using the UMAP 2D positions. The predicted CERES score in a test
cell line was one of its nearest cell-line neighbors. Pearson correlation was then
calculated between the predicted and actual CERES scores.

Model evaluation. The models were evaluated based on R? values and were
calculated for the full, reduced, and top ten only features models. While R?
values provide a sense of model fit, it does not describe model significance. To
this end, a recall metric was also calculated to take into account the correlation
between predicted versus actual CERES relative to a reference null distribution.
More specifically, the recall was defined, similar to that in Subramanian et al.??,
as the fraction of null Spearman correlation values that was lower than the
Spearman correlation of the given model for the target gene of interest. The null
correlation value was calculated as the Spearman correlation between the actual
CERES of a randomly drawn gene and the predicted CERES of the target gene.
This procedure was repeated 1000 times to generate the null distribution, per
target gene. For the analysis set, we focused on predictable models with a recall
>0.95 and R?> 0.1 of the top ten only features models (resulting in 529 target
genes); and with at least one univariate R%s (of the top ten univariate R%s) >0.
With these filtering criteria, the initial 583 target genes were reduced to 526
highly predictive target genes. In the analyses of feature genes, we excluded low-
quality feature genes where the univariate R2s were <0. In addition, a con-
cordance score was calculated per model as the fraction of all predicted CERES
values where the actual and predicted were both below or above —0.6 (a cutoff
used for essentiality).

Gene set analysis. Gene set enrichment on context-specific genes, common
genetic architecture predictor genes, and lossy200 genes were performed using
gprofiler2®® in R with default parameters and a P value significance threshold of
0.05. gprofiler2 P values of top terms in common genetic architecture predictor
genes were regressed on P values of top terms in context-specific genes and resi-
duals were visualized with seaborn residplot.

Network analyses. Networks were derived from the model results by linking all
related source and target genes using networkx in python. Communities were
extracted from this network using the Louvain method. Network communities
were visualized and network statistics were extracted using Cytoscape v3.7.2%°.
Power analysis was performed on nodes with undirected degree of at least 2. The
number of nodes vs degree was fit to a power-law function Eq. (1).

y= axt (1)

Lossy gene sets. Lossy sets were derived as centroids in an iterative k-means-
based tight-clustering procedure using the tightClust package in R%7. The procedure
was run to derive 125, L75, L100, L200, and L300 lossy sets, which were then used
for the saturation analyses. For compression-based inference, the input dataset
consisted of the CERES of these lossy gene sets, as opposed to all genomic features.

Statistical analyses. The enrichment of contribution of CERES as features was
statistically tested using Chi-squared test. The statistical significance for node
clustering coefficient and the average number of neighbors between functional only
and functional + genomic networks was assessed using two-sided ¢ test. All sta-
tistical tests were performed in python.

CHEK2 construct generation. CHEK2 cDNA was synthesized in-frame and
linked to 3> GFP (from pLVX-PGK-Puro-IRS-GFP) by a triglycine linker. The
GFP-CHEK2 DNA fragment was then cloned into pLVX-IRES-Puro using
recombination-based cloning.

COLO678 CHEK2 competition experiment. The constructs were co-transfected
into HEK293T cells using calcium phosphate with 3rd generation lentivirus
packaging vectors. On the same day, COLO678 (DSMZ, ACC#194) were seeded at
0.6 M/ml, 1 ml per well in six-well plates. One day after transfection, the media
were changed to RPMI to collect viruses. Twenty-four hours later, cells were
infected with 1 ml of virus supernatant and 4 mg/mL polybrene. The growth rate
monitoring was started three days after infection. The cells were trypsinized and
the growth of successfully infected cells (GFP positive) was quantified with flow
cytometry every 5 days.
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Lentiviral sgRNA library preparation. Human Brunello CRISPR knockout pooled
library was a gift from David Root and John Doench (Addgene #73178). Lentivirus
was generated by co-transfecting 20 10-cm plates of HEK293T cells with the pooled
library and third-generation packaging vectors using Lipofectamine 2000. Virus
was harvested 48- and 72-h post transfection. The viral supernatant was pre-
cipitated by adding 80 ug/mL polybrene and 80 pg/mL chondroitin sulfate, incu-
bating at 37 °C for 20 min, and centrifuging 10 k ¢’s for 5 min. The resulting pellet
was resuspended in 15 mL RPM], aliquoted, and frozen at —80 °C.

Brunello screen in PC9 Cells. The titer of the viral library was measured with a test
infection of PC9 cells (ATCC CRL-11350) 12-well plates. After 20 h of exposure to
virus, cells were removed from the virus and cultured in 1 pg/mL puromycin for

3 days. For the full-scale screen, infection conditions that yielded a 10% infection
efficiency were chosen to achieve a post-selection MOI of ~1. To achieve 150-fold
library cover after selection, 13 million cells were infected in 12-well plates at 250 k
cells/well. After infection, cells were cultured in 1 pug/mL puromycin for 3 days, and
the 10% infection efficiency was confirmed by comparing cell counts in wells with and
without puromycin. After selection, cells were maintained in T175 flasks, with passage
every 3 days to maintain a minimum of 500-fold library coverage (minimum of 38
million cells). Cells were harvested at day 21, and gDNA was extracted from a pellet of
35 million cells (~450-fold library coverage). The guide library was prepared using the
Brunello sequencing protocol provided by Addgene. The library was sequenced on a
HiSeq 3000 (single-read 50 bp).

Standalone lossy 200 screen in PC9 cells. The standalone Lossy 200 screen in
PC9 cells was performed similar to the full-scale Brunello screen. The subset of
L200 gene guides from the Avana library (800 guides) were synthesized and cloned
into lentiCRISPRv2 (Addgene #52961). Successful library coverage was confirmed
with NGS. The L200 lentivirus was prepared in two 10-cm plates, similar to the
Brunello virus, and titered to achieve 10% infection efficiency. Three million PC9
cells were infected in order to achieve ~225-fold library coverage per replicate
following selection. Infected cells were maintained in 10-cm plates, passaging to a
minimum of 400 k cells (500-fold library coverage). Cells were harvested at day 21,
and gDNA was extracted from a pellet of 1 million cells (~1250-fold library cov-
erage). The guide library was prepared and sequenced as in the Brunello screen.

CERES score analysis in L200 standalone screen. Guide counts were deter-
mined from the sequencing data using the Broad Institute’s PoolQ shell script. Log-
fold change in guide abundance was calculated relative to pDNA values. The log-
fold changes were subjected to the QC metrics outlined in Dempster 20194Gene
essentiality was inferred using the R package ceres, and scores were scaled such that
the median essential gene and nonessential gene (from the list developed by Hart
et al.23) core was —1 and 0, respectively. For the standalone L200 screen, there was
no overlap between the L200 gene set and the nonessential gene set. In this case, the
depletion values were scaled such that the median essential gene score was —1, and
the median conditionally essential gene effect matched that of the average con-
ditionally essential gene scores across all cell lines in the Achilles dataset.

Brunello PC9 and To et al. data analysis. The 19Q3 CERES scores were used as
training data for model construction. For model predictions, the To et al.#’ and
Brunello PC9 L200 CERES scores were extracted and used to predict the other
measured scores in Brunello PC9 and To et al.#” drug screen. For the standalone
PC L1200 screens, the standalone L200 values were used to predict the other
measured values in Brunello PC9 data. Data preprocessing and feature selection of
these external data were followed®”.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All original data are publicly available on the DepMap portal (https://depmap.org/portal/
download/) and upon download can be placed in the data folder as described in the
documentation in our GitHub repository [https://github.com/pritchardlabatpsu/

cga]. Source data are provided with this paper.

Code availability

A fully documented git repository with all source codes and notebooks can be accessed at
the Pritchard Lab at PSU GitHub repository [https://github.com/pritchardlabatpsu/cga].
The source codes for running the entire pipeline have been provided as a python
package, with all library dependencies defined for complete reproducibility— including
the virtual environment used. The repository also contains codes for the generation of all
figures/tables and accompanying source data presented in this paper.
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