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1  | INTRODUC TION

Chagas disease, caused by the parasite Trypanosoma cruzi, af-
fects over 6  million people, mostly in the Americas. Infections in 

humans can cause acute febrile illness in 1%–5% of individuals, 
while an estimated 20%–30% of infections can transition into a 
chronic disease associated with cardiac disorders and sudden death 
(Bern, 2015; Shikanai-Yasuda & Carvalho, 2012). Human infections 
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Abstract
Trypanosoma cruzi is widely reported in bats, yet transmission routes remain unclear. 
We present evidence from metagenomic sequence data that T. cruzi occurs in the 
saliva of diverse Neotropical bats. Phylogenetic analyses demonstrated that the 
bat-associated T. cruzi sequences described here formed part of a bat-specific clade, 
suggesting an independent transmission cycle. Our results highlight the value in re-
purposing metagenomic data generated for viral discovery to reveal insights into the 
biology of other parasites. Evaluating whether the presence of T. cruzi in the saliva of 
two hematophagous bat species represents an ecological route for zoonotic trans-
mission of Chagas disease is an interesting avenue for future research.
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predominately arise in domestic or peridomestic cycles of sterc-
orarian transmission from triatomine vectors; however, alternative 
transmission routes of T. cruzi can include transfusion and transplan-
tation (Bern,  2015; Perez-Molina & Molina,  2018). In light of suc-
cessful vector control programs and serological screening in blood 
banks to prevent transfusions of infected blood, congenital trans-
mission and orally transmitted infections originating from sylvatic 
cycles are of increasing epidemiological importance (Perez-Molina 
& Molina, 2018; Shikanai-Yasuda & Carvalho, 2012). Here, we focus 
on sylvatic cycles of T. cruzi in wildlife, which can be maintained in 
animal populations through vector-borne transmission, consump-
tion of contaminated material, or predation on infected hosts or vec-
tors (Jansen et al., 2015). Additionally, some wildlife species such as 
opossums experimentally and naturally maintain multiple parasite 
life stages (Barros et al., 2020; Deane et al., 1984) and have been 
hypothesized to transmit T. cruzi in the absence of arthropod vectors 
(Shikanai-Yasuda et  al.,  1991; Urdaneta-Morales & Nironi,  1996). 
The recent detection of T. cruzi in the salivary glands of Diaemus 
youngi, a hematophagous bat, suggests the possibility that bats 
could also act as both reservoirs and transmitters of the parasite 
(Villena et  al.,  2018). Bats are important trypanosome reservoirs 
which host both generalist and bat-restricted trypanosomes (Marcili 
et al., 2009; Ramírez et al., 2014) and have been suggested as the 
ancestral host of trypanosomes (Hamilton et al., 2012). Identifying 
routes of trypanosome transmission in bats may shed new light on 
sylvatic cycles of the parasite and inform strategies to reduce zo-
onotic transmission.

2  | MATERIAL S AND METHODS

As part of a virus discovery project, in 2016, we captured bats across 
seven sites in northern Peru (Departments of Amazonas, Cajamarca 
and Loreto) using mist nets, harp traps and hand nets (Figure  1) 
(Bergner et al., 2020). Samples were collected from four bat species 
(N = 27 individuals total) representing frugivores (Carollia perspicil-
lata, N = 10), nectarivores (Glossophaga soricina, N = 5) and two san-
guivores (Desmodus rotundus, N = 10 and Diphylla ecaudata, N = 2) 
specializing on mammals and birds, respectively. Sampling protocols 
were approved by the Research Ethics Committee of the University of 
Glasgow School of Medical, Veterinary and Life Sciences (Ref081/15), 
the University of Georgia Animal Care and Use Committee (A2014 
04–016-Y3-A5), and the Peruvian Government (RD-142–2015-
SERFOR-DGGSPFFS, RD-054–2016-SERFOR-DGGSPFFS).

Saliva was collected using sterile cotton-tipped swabs 
(Fisherbrand) which were stored in 1ml RNALater (Ambion) over-
night at 4°C then transferred to −80°C. Total nucleic acid was ex-
tracted from individual swabs using a KingFisher Flex 96 (Thermo) 
and a BioSprint One for All Vet Kit (Qiagen) (Bergner et al., 2019). 
Extracts were pooled by bat species (Table 1) and depleted of host 
material using DNAse (Bergner et  al.,  2019). Libraries were pre-
pared for untargeted metagenomic sequencing using the Clontech 
SMARTer Stranded Total RNA-Seq Kit v2 (Takara), then sequenced 

on an Illumina NextSeq500 at the University of Glasgow Polyomics 
Facility. Sequencing reads (European Nucleotide Archive proj-
ect PRJEB35111) were processed using an in-house bioinformatic 
pipeline (Bergner et al., 2019), with slight modification to the read 
trimming step to accommodate the library preparation kit and read 
length.

The pipeline used SPAdes v.3.10.1 (Bankevich et al., 2012) for de 
novo assembly and Diamond v.0.8.20 blastx (Buchfink et al., 2014) 
for classification of contigs, which revealed Trypanosoma-like 
Cytochrome B (cytB) sequences in all pools and Trypanosoma-like 
glycosomal glyceraldehyde 3-phosphate dehydrogenase (gGAPDH) 
sequences in two of four pools (Table 1). Representative sets of T. 
cruzi cytB and gGAPDH sequences from different hosts and vectors 
(Table  S1 and Table  S2) were aligned with new T. cruzi sequences 
from bats using MAFFT 7.017 (Katoh et al., 2002) within Geneious 
7.1.7 (Kearse et al., 2012). For both genes, we focused on regions 
present in novel and published sequences, using trimal with auto-
matic parameters (Capella-Gutiérrez et al., 2009) on the Phylemon 
server (Sanchez et al., 2011) to remove alignment ends with missing 
data across most samples. There were no internal alignment gaps 
present in regions analysed, such that end trimming left reading 
frames intact. Both cytB and gGAPDH datasets were restricted to 
unique sequences, with the exception of sequences from T. cruzi in 
bat saliva and other bat-associated TcI sequences.

For each alignment, the best model of sequence evolution and 
support for codon partitioning were evaluated using PartitionFinder2 
(Lanfear et  al.,  2017) on the CIPRES Science Gateway 3.3, which 
was run with linked branch lengths, the greedy search algorithm, 
and BIC criterion. For the cytB analysis, PartitionFinder supported 
codon partitioning with the models HKY  +  G, F81 and GTR  +  G 
applied to the first, second and third codon positions, respectively. 
For the gGAPDH analysis, PartitionFinder indicated the models JC, 
HKY and F81 applied to the first, second and third codon positions, 
respectively. Bayesian phylogenetic analysis of cytB and gGAPDH 
was performed using MrBayes 3.2.6 (Ronquist et al., 2012) on the 
CIPRES server with the substitution models and partitioning scheme 
indicated by PartitionFinder. Each analysis was run for 2,000,000 
generations and sampled every 2,000 generations, with the first 

Impacts

•	 Chagas disease caused by Trypanosoma cruzi affects mil-
lions of people, but the dynamics of parasite transmis-
sion within sylvatic cycles remain poorly known

•	 We report the presence of T. cruzi I in the saliva of four 
Neotropical bat species, which phylogenetic analyses 
suggested represented a bat-specific transmission cycle

•	 T. cruzi I was detected in two hematophagous bat spe-
cies, underlining the need for further research into the 
potential risk of zoonotic transmission directly from bat 
bites
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20% of trees discarded as burn-in. Maximum likelihood phylogenetic 
analysis of cytB and gGAPDH was conducted using RAxML 8.2.8 
(Stamatakis et al., 2008). As RAxML only allows a single model of 
rate heterogeneity in partitioned analysis, separate PartitionFinder 
analyses were run for each type of rate heterogeneity. The scheme 
with lowest BIC score was selected for each alignment, yielding the 

substitution model GTR + G for cytB and GTR for gGAPDH. RAxML 
was then run with 1,000 bootstrap replicates using the indicated 
substitution model and codon partitioning. Figures were prepared in 
R version 3.5.3 (R Core Team, 2019) using the packages ‘ape’ (Paradis 
& Schliep, 2019), ‘phangorn’ (Schliep, 2010), ‘phytools’ (Revell, 2011) 
and ‘ggtree’ (Yu et al., 2016).

F I G U R E  1   Sampling of bats in Peru. 
Circles show the proportion of individuals 
of a given bat genus captured at each 
site, and the total sample size is listed 
beside the site name. Individuals of the 
same species were combined across 
sites into one pool for metagenomic 
sequencing [Colour figure can be viewed 
at wileyonlinelibrary.com]
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TA B L E  1   Summary of Neotropical bat saliva metagenomic sequencing

Species
Individuals in 
pool Raw reads

Trypanosoma-like 
reads

Trypanosoma-like 
contigs cytB accession

gGAPDH 
accession

Glossophaga soricina 5 24,079,752 347,241 20,302 MT572485 MT572489

Diphylla ecaudata 2 25,023,095 100,377 2,532 MT572486 —

Desmodus rotundus 10 28,946,275 113,219 2,752 MT572487 MT572490

Carollia perspicillata 10 28,700,978 18,328 293 MT572488 —

www.wileyonlinelibrary.com
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3  | RESULTS AND DISCUSSION

Sequences matching the genus Trypanosoma were abundant in all bat 
species tested (18,328–347,241 reads per pool; Table 1). Bayesian 
and Maximum Likelihood phylogenetic analysis of cytB and gGAPDH 
classified all novel bat-associated sequences within the T. cruzi TcI 
lineage (Figure 2; Figure S1; Figure S2). Although the Peruvian bat-
derived sequences did not group together in the gGAPDH phy-
logeny, likely due to lack of sequence variation, cytB sequences 
clustered with TcI sequences from Brazilian bats (Lima et al., 2014) 
(posterior probability  =  0.77; bootstrap support  =  58%). Other 
Neotropical bat-derived TcI sequences from Venezuela, Colombia 
and Brazil were dispersed amongst non-bat TcI samples or formed 
a distinct bat-associated clade towards the base of the TcI lineage 
(Figure  2; Figure  S1), as observed previously (Marcili et  al.,  2009). 
Sequences from bat and non-bat hosts did not cluster together for 
any country where both were available (i.e., Venezuela, Colombia, 
Brazil), demonstrating that geographic structure alone does not 
explain the occurrence of bat-associated TcI clades (Table  S1). TcI 

has been hypothesized to have its origins in marsupials due to 
high levels of strain diversity in these hosts (Brenière et al., 2016), 
but it also occurs in diverse bat species (Lima et  al.,  2014; Marcili 
et al., 2009; Ramírez et al., 2014). Our results support the conclu-
sion that bats can maintain independent transmission cycles of this 
lineage. Although our approach focused only on TcI, future studies 
could employ metabarcoding (e.g., Dario et al., 2017) to explore the 
diversity of other Trypanosoma species present in bat saliva. More 
generally, as our data were originally generated for virus discovery, 
we show how metagenomic data can simultaneously reveal insights 
into diverse pathogens.

The discovery of T. cruzi in bat saliva has several plausible ecolog-
ical explanations with different implications for transmission. Since 
the four infected bat species have different feeding behaviours, a 
common source of dietary contamination is unlikely. Given the ex-
pected role of arthropods in T. cruzi transmission, presence in saliva 
might arise from inadvertent consumption of ectoparasites while 
grooming. This hypothesis is supported by the observation that 
bat-associated ectoparasites in the family Cimicidae experimentally 

F I G U R E  2   Trypanosoma cruzi cytB phylogeny. The phylogeny was constructed in MrBayes based on a 476bp alignment of 71 
Trypanosoma cytochrome B sequences, rooted on Trypanosoma dionisii (Genbank accession FJ900249). The TcI lineage and the bat sub-clade 
are highlighted in gold and blue, respectively, and expanded for further detail [Colour figure can be viewed at wileyonlinelibrary.com]
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replicate and transmit other Trypanosoma species (Gardner & 
Molyneux, 1988). Oral infection of humans by a similar route further 
supports the viability of this transmission mode (Shikanai-Yasuda & 
Carvalho, 2012). Alternatively, T. cruzi may be excreted in bat saliva, 
as supported by infection in the salivary glands of another hemato-
phagous bat species, D. youngi (Villena et al., 2018). If verified, bat-
to-bat transmission in the absence of arthropods would represent a 
novel transmission route which might occur through social contacts, 
biting, or—in the case of D. rotundus—blood-meal sharing.

Although T. cruzi has been documented in the salivary glands of 
D. youngi (Villena et al., 2018), our findings comprise the first evi-
dence of TcI in the saliva of D. rotundus and D. ecaudata, two vampire 
bat species which are known to feed on humans (Ito et al., 2016). 
Notably, the area of northern Peru where our study was conducted 
is a hotspot for vampire bat depredation on humans which has been 
associated with recurrent rabies outbreaks (Gilbert et  al.,  2012; 
Stoner-Duncan et al., 2014). The hematophagous diet of D. rotundus 
therefore provides an ecological route for T. cruzi transmission to di-
verse non-bat mammals, including humans.

Ultimately, the likelihood of zoonotic transmission will be deter-
mined by the viability of infectious parasites in bat saliva. Since par-
asite viability cannot be evaluated using metagenomic data, isolation 
of the parasite and establishing the presence of metacyclic trypomas-
tigotes are crucial next steps to evaluate zoonotic risk. In addition, 
parasite load is an important determinant of infection for other trans-
mission modes (e.g., congenital; Bustos et al., 2019), but our sequenc-
ing approach of pooling DNA from multiple individuals precludes any 
such quantification. Efforts to accurately quantify parasite load in 
saliva, using methods such as quantitative PCR, would be valuable. 
Zoonotic transmission also depends on the susceptibility of humans 
to bat-associated strains. In our study, the cytB and gGAPDH phy-
logenies suggest that the parasites detected in bats belong to the TcI 
lineage of T. cruzi, which is generally assumed to be capable of infect-
ing humans. However, we note that multi-locus sequence typing and 
18S ribosomal RNA sequencing can more sensitively discriminate T. 
cruzi lineages, so additional sequencing of these markers is needed to 
confirm the identity of trypanosomes as T. cruzi I (Dario et al., 2017; 
Yeo et al., 2011). This is particularly relevant given that our sequences 
represent a consensus based on pools made up of multiple individu-
als, and others have reported a high frequency of mixed infections 
even in individuals bats (Dario et al., 2017; Jansen et al., 2018).

In conclusion, our study reports likely bat-maintained transmis-
sion cycles of the TcI lineage of T. cruzi and possible shedding of 
these parasites in the saliva of two bat species which can feed on 
humans. The origins and implications of T. cruzi DNA in bat saliva 
provide an interesting avenue for further research. Given the re-
gional significance of Chagas disease, it is important to evaluate the 
risk posed by bats as both reservoirs and transmitters of zoonotic 
trypanosome infections.
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