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Abstract
Standard genetic mapping techniques scan chromosomal segments for location of genetic linkage
and association signals. The majority of these methods consider only correlations at single markers
and/or phenotypes with explicit detailing of the genetic structure. These methods tend to be
limited by their inability to consider the effect of large numbers of model variables jointly. In
contrast, we propose a Bayesian analysis of variance (ANOVA) method to categorize individuals
based on similarity of multidimensional profiles and attempt to analyze all variables simultaneously.
Using Problem 1 of the Genetic Analysis Workshop 15 data set, we demonstrate the method's
utility for joint analysis of gene expression levels and single-nucleotide polymorphism genotypes.
We show that the method extracts similar information to that of previous genetic mapping
analyses, and suggest extensions of the method for mining unique information not previously found.

Background
The extent to which the natural variation in gene expres-
sion is heritable has recently been the subject of some
intriguing studies [1-5] the most notable being a study by
Morley et al. [6] in which expression phenotypes were
analyzed as quantitative traits, yielding significant evi-
dence for linkage between expression levels and single-
nucleotide polymorphism (SNP) genotypes.

The Problem 1 data set for the Genetic Analysis Workshop
15 (GAW15) consists of 3554 lymphoblastoid gene
expression values observed in a sample of 194 healthy

individuals from 14 three-generation CEPH (Centre
d'Etude du Polymorphisme Humain) Utah families.
Additionally, the sample contains genotypes for 2882
autosomal and X-linked SNPs for each of these individu-
als. The challenge thereby presented is to measure and
characterize the heritability of expression phenotypes.

In this paper we present our analysis of the GAW15 Prob-
lem 1 data set based on a variable-selection method tied
to a Bayesian ANOVA model that has been shown to be
particularly effective in separating signal from noise
within expression data.
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Methods
The multigroup ANOVA model

Let Yi, j be the gene expression value for the jth gene on the

ith individual, where j = {1, 2,..., M} and i = {1, 2,..., n}.
Further, let Gi denote the group membership of the ith

individual, where Gi ={1, 2,..., g}, let I(·) denote an indi-

cator function, and let nk = #{i: Gi = k} denote the number

of individuals belonging to group k, such that the total

sample size is . Then the multigroup ANOVA

model is given by

where θj is the baseline effect for the jth gene, βk, j is the
group-differential effect (comparing the jth gene in group
k against a baseline group) and εi, j is the error term. The
errors are assumed to be independently distributed with
mean zero such that E[εi, j] = 0 and Var[εi, j] = σj

2. This
means that every gene can have its own variance compo-
nent. Aside from this, there are no distributional assump-
tions about the data.

This multigroup model can be restated as a linear model
as described in Ishwaran and Rao [7] and the task of iden-
tifying differentially expressing genes amounts to finding
non-zero group × gene interactions effects. A Bayesian var-
iable selection technique described below can then be
used to identify these parameters of interest. Despite rela-
tively weak assumptions about the data generating mech-
anism, we will nevertheless require that a common
variance model holds for the variable selection process,
and it is therefore necessary to transform the data to stabi-
lize the variances across genes. This is done using a
weighted regression technique also described in Ishwaran
and Rao [7], which has the advantage of avoiding prob-
lems associated with more typical global variance-stabiliz-
ing transformations (log-transformations, for example),
but at the same time does not change the signal-to-noise
ratio of the data for any given gene. Let Yi, j

+ denote data
produced by this transformation, and select a baseline
group g. Then the data are further centered and scaled by

where N = (n - ng)M is the total sample size and  is an

unbiased estimator for the common variance, .

Spike and slab hierarchical model for Bayesian ANOVA of 
microarrays (BAM)
Following some additional pre-processing steps [7] to
generate an orthogonal linear model design, Ishwaran
and Rao's spike and slab hierarchical model [7] is given as:

where Γj is the diagonal matrix with diagonal entries
obtained from γj = (γ1, j, γ2, j,..., γg-1, j)t, and γ = (γ1

t, γ2
t,...,

γM
t)t is a M(g - 1) -dimensional hypervariance vector. Each

design matrix Xj is chosen for orthogonality such that Xj
tXj

= NI. The prior distribution for the coefficient variances, π
(dγ), is a continuous bimodal prior in which one spike
component specifies small values, thus favoring small val-
ues of βj, and a right continuous tail specifies preferences
for large non-zero values of βj.

Ishwaran and Rao [8] derive a blocked Gibbs sampling
algorithm for posterior inference and show that the poste-
rior mean for the β values is the optimal summary meas-
ure to use. Hard thresholding is done using a data-
adaptive rule based on looking for coalescence of the pos-
terior variance at a value of 1.0 with corresponding large
posterior mean values (see Ishwaran and Rao [7] for
details). This spike and slab model was also shown to pos-
sess a selective shrinkage property where shrinkage
towards 0 (from classical least square estimates) occurs
only for those parameters corresponding to truly non-dif-
ferentially expressing genes with probability tending to 1
as the sample size increases. The model described above is
implemented in a software package called BAMarray [9],
and is available for download at http://www.bamar
ray.com.

It should be noted that the posterior mean estimator has
been shown to be a weighted average of generalized ridge
regression estimators, hence justifying the distribution-
free assumptions made in the original ANOVA model. So
in effect, the hierarchical model is a tool to generate a
Bayesian test statistic (referred to as a Zcut value [7]), and
corresponding thresholding rule, but does not reflect our
belief about the data generating mechanism.

Robustness of spike and slab model
The model is robust to non-normality of the response var-
iable, robust to clumpy dependence across genes [10] and
allows unequal variances across genes. In addition, the
spike and slab model was shown to be robust against cor-
relation in gene expression measurements across individ-
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uals. Typically, when not accounted for, these correlations
tend to produce underestimated variance estimates and
can lead to detection of spurious effects. It was shown that
the spike and slab model greatly mitigated this problem
due to its selective shrinkage property, which shrinks only
those coefficients corresponding to truly zero effects (see
Theorem 1 and Remark 5 of Ishwaran and Rao [8]).

Determining gene expression profiles
For our purposes, a gene expression profile is a multi-gene
pattern of expression values by which a given individual
may be assigned membership to one of a set of mutually
exclusive groups or categories. Our strategy for determin-
ing expression profiles is to ask whether gene expression
measurements for each individual can be classified as up,
down or equi-regulated with respect to a "median" family
expression profile. Interestingly, this can be handled as a
special case of the multi-group model in what is termed a
no-baseline analysis, and by accruing this information
across genes we obtain a novel profile from which to
assign individuals to expression profile clusters across
families. This process allows us to define expression pro-
files using all of the genes present rather than trying to do
things on a gene-by-gene basis. This also means that a
parameter vector of length equal to the number of genes
on the chip must be estimated for each individual. In
order to conduct such an analysis, we extended the data
set with pseudo samples obtained as follows: for each pos-
sible pairing of individuals within each pedigree, we cal-
culate the pair-wise difference vector and add it to the
existing data set. The effect of taking all possible pair-wise
differences between family members is to increase the
sample size while at the same time centering the expres-
sion profiles on a per-family basis. Each vector difference
is added as a pseudo sample to the existing set of data, and
for a pedigree of K individuals, the total number of such
additions is (K)(K-1). Note also that with the generation
of the pseudo samples and by use of the no-baseline vari-
ation of the spike and slab BAM model, we are implicitly
allowing each individual to act as a "group".

Remark
The generation of pseudo samples and the inherent famil-
ial structure of the pedigrees means that the expression
values will be correlated. But as previously indicated, the
spike and slab BAM model is robust to these correlations
and gives correct inferences.

After estimating Zcut vectors from the BAM no baseline
model for each individual, we clustered those vectors
across individuals using agglomerative hierarchical clus-
tering, wherein the optimal number of clusters is deter-
mined by Tibshirani's gap statistic [11]. In order to
determine which genes were most influential in the clus-
tering (i.e., generation of expression profiles) we exam-

ined each gene via a one-way ANOVA F statistic using the
assigned latent cluster labels as group indicators. Corre-
sponding p-values were determined and then adjusted for
multiplicity by using the Benjamini-Hochberg version of
false detection rate (FDR) control [12].

Relating the latent gene expression clusters to the SNP 
genotype information
Using the GAW15 data set, we sought to relate gene
expression to SNP genotypes collected from pedigrees of
healthy individuals. In essence, we were trying to deter-
mine the genetic determinants of the natural variation of
gene expression in this data set. Given that we do not have
explicit groupings of individuals into different phenotypic
groups (e.g., case/control) our approach was to use the
clustered expression profiles described above and relate
these latent clusters to the SNP genotype information
using the spike and slab multi-group methodology
described above. Similar arguments about correlation
between SNP measurements across individuals still hold
but the correlations across individuals within the latent
expression profile clusters are expected to be less strong
than the expression correlations within same pedigree. We
can apply the spike and slab BAM model to SNP data
because the model does not make distributional assump-
tions about the data generating mechanism, and employs
a limiting distribution result for its thresholding rule.

Results
We began by generating the additional pseudo samples as
described above, and were thus able to increase the ana-
lyzable sample size from the original 194 records to 2496.
On average, each individual from the original data set was
mapped to a unique set of 182 expression profile records.
The no-baseline analysis on these data revealed that, on
average, 30% of each individual's genes make a significant
contribution to profile differentiation. At the same time,
none of the genes examined could be immediately elimi-
nated from further consideration. In other words, there
were no genes with Zcut values equal to zero for all indi-
viduals in the sample. The sample proportion of non-zero
Zcut values, on a per-gene basis, ranged from 18% to
88%, indicating that some genes are likely to appear in all
expression profiles, while others are more discriminatory.

We performed an agglomerative hierarchical cluster anal-
ysis on the Zcut values to determine how individuals clus-
ter with respect to their expression profiles. The optimal
number of clusters for the data set was estimated to be five
based on the gap statistic measure (Fig. 1), and the clusters
are hereafter referred to as C1, C2, C3, C4, and C5.

The clusters themselves appear to suggest a fairly strong
age effect, as shown in Figure 2. The diagram shows the
relation between cluster membership frequency and gen-
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erational membership. On the basis of their gene expres-
sion variation alone, the grandparental generation (Gen
1) clusters primarily as C1, C2, and C4. The middle gener-
ation of parents (Gen 2) clusters as a mix of C1, C2, and
C3, and the "sibship" generation (Gen 3) clusters almost
exclusively together as C2. Because we are interested in
finding evidence of heritable effects within the expression
data, we sought to identify clusters that appear to repre-
sent mutually exclusive generations, which in this case
would be C2 and C4.

We also summarized the cluster analysis into a heat map
designed to reveal specific points of aggregation within
the data (Fig. 3), and our analysis of the heat map con-
firmed that C2 (shown in the leftmost block) and C4

(shown in the rightmost block) represent distinctive
groups on the basis of their gene expression levels.

After grouping individuals with respect to variation in
their gene expression it is reasonable to ask which genes
appear to be driving the inferred clustering. To answer
this, we performed a one-way univariate ANOVA test for
each gene to compare the between-group variation with
the within-group variation of the calculated Zcut values.
In each case, we calculated the F statistic and its p-value,
and then applied a p-value correction for multiple testing
to control the false discovery rate [12] setting the FDR at α
= 0.01 (Fig. 4).

The one-way ANOVA test to identify genes that best
explain the observed clustering revealed that 822 of the
original 3554 genes were statistically significant for the
clustering. This number reflects our attempt to control the
false-discovery rate and appears to strike a reasonable bal-
ance between complete lack of correlation and the overly
conservative correction obtained via the Bonferroni
method (Fig. 3). The genes with the 10 largest F statistics
were: ADAR, MSH2, GLTSCR2, HNRPF, MIR16, PGLS,
CYB5R3, HSPA8, PBK, and BAG2. There is no overlap
between the probe target locations for these genes.

Gap statisticFigure 3
Gap statistic.

Probe setsFigure 1
Probe sets.

p-Value adjustmentsFigure 2
p-Value adjustments.
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Having characterized the data in terms of expression-
driven clusters, we then turned to the question of how
those clusters relate to the SNP genotypes. We recoded the
SNP markers from the given coding: {0/0, 0/1, 1/1} to an
additive coding: {0, 1, 2} such that the homozygote for
the minor variant at a given genetic locus (i.e., the allele
with the lowest frequency) is coded as 2. We then applied
the multi-group ANOVA model described above to the

SNP data, but instead of a no-baseline model, we com-
pared the different clusters against each other, using the
sibship cluster (C2) as the reference group.

Of the 2882 SNP loci analyzed under the model, 1480
had non-zero Zcut scores for at least one of the four pos-
sible clusters (C1, C3, C4, C5), and of this reduced set, 118
had nonzero Zcut scores for exactly one cluster. And of

Comparative locations of significant genes and SNPsFigure 5
Comparative locations of significant genes and SNPs.
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these, only 90 SNPs were applicable to the C2 vs. C4 com-
parison.

Our results are summarized by the diagram in Figure 5.
Chromosomes are represented by straight lines parallel to
the X-axis. Both significant genes and SNPs are repre-
sented by short perpendicular lines. The gene orientation
is indicated by the position above (the '+' strand) or below
(the '-' strand) the chromosome line. All gene locations
for the Affymetrix HGFocus array are included in the
plots. The white space represents locations for approxi-
mately 4500 unprobed genes.

Conclusion
It seems likely that we have captured some type of age
effect in the expression data as illustrated in Figure 2; how-
ever, because we have only limited information on what
procedures were followed during data collection, we can-
not rule out other possible explanations such as a batch
effect.

We compared the chromosomal regions we found to be
significant to those reported by other investigators [3,6],
who, through linkage and hierarchical clustering analyses,
found evidence for a regulation hotspot on 14q32. They
found over 30 genes correlated with this region. We found
6 of those same genes significant in our analyses as well,
including RPN2, MIR16, RAN, RFC5, XPC, and INPP5A.
The second hotspot on 20q is the physical location of the
gene RPN2. We found, as did Morley et al. [6], a physical
relationship between these genes. RAN and RFC5 are
located close together on 12q24 (Fig. 5).

While none of our significant SNPs correspond to
reported associations with expression phenotypes, we did
find two significant SNPs (rs945942 and rs945945)
within a previously reported gene (INPP5A), both of
which were found to significantly differentiate C4 from
C2. Additionally, two of our most significant genes,
DDX17 (chromosome 22), and DSCR2 (chromosome 21)
have shown evidence of cis-acting and both cis- and trans-
acting linkage, respectively [3,6].

Standard mapping techniques used in other studies (e.g.,
Morley et al. [6]) have been moderately successful in map-
ping cis- and trans-locations within the genome that cause
variation in expression patterns in natural populations.
Those methods typically analyze a single expression signal
at a time, whereas we used a Bayesian ANOVA method to
categorize groups of individuals by their similarity of gene
expression profiles at a large number of genes. Such a
method could, for example, be used for disease classifica-
tion or heterogeneity classification when considering var-
ious phenotypes and other associated covariates. The
second step of determining the extent to which SNPs dis-

criminate between cluster memberships could be further
used to differentiate between groups of individuals who
have specific profiles. Another interesting possibility
would be to identify group membership within an
admixed population, based on the combination of expres-
sion phenotype and SNP genotype, in much the same
manner as we have shown here. Because we use the gap
statistic to determine the number of clusters, the method
represents a completely data-driven approach to the prob-
lem of subdividing a given population with respect to
genetic information.

We applied a whole-genome approach to determine the
best set of SNPs that can explain cluster membership, and
found that 90 SNPs best explained the difference between
groups C2 and C4. Explicit modeling of the SNP/expres-
sion relationship that best explains this profile will enable
us to model networks of genes that may be co-regulated.
In most cases this type of clustering of phenotypic profiles
(using expression or other phenotype data or some mix-
ture thereof) can assist with incorporation of protective as
well as susceptibility alleles inherent in the profiles.

In conclusion, our method can be generalized to address
problems other than expression profile modeling. The key
aspect we wish to emphasize is its applicability to variable
selection when the number of variables is large compared
to the number of observations. The ability to accurately
partition a data set, based on the variance of SNP geno-
type or expression levels, into representative clusters of
individuals is particularly appealing and likely to have
many applications beyond those we have discussed here.
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