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A RT I C L E

Simulation of Ca2+ Movements within the Sarcomere of Fast-Twitch 
Mouse Fibers Stimulated by Action Potentials

Stephen M. Baylor and Stephen Hollingworth

Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104

Ca2+ release from the sarcoplasmic reticulum (SR) of skeletal muscle takes place at the triadic junctions; following 
release, Ca2+ spreads within the sarcomere by diffusion. Here, we report multicompartment simulations of changes 
in sarcomeric Ca2+ evoked by action potentials (APs) in fast-twitch fi bers of adult mice. The simulations include 
Ca2+ complexation reactions with ATP, troponin, parvalbumin, and the SR Ca2+ pump, as well as Ca2+ transport by 
the pump. Results are compared with spatially averaged Ca2+ transients measured in mouse fi bers with furaptra, 
a low-affi nity, rapidly responding Ca2+ indicator. The furaptra ∆fCaD signal (change in the fraction of the indicator in 
the Ca2+-bound form) evoked by one AP is well simulated under the assumption that SR Ca2+ release has a peak of 
200–225 μM/ms and a FDHM of �1.6 ms (16°C). ∆fCaD elicited by a fi ve-shock, 67-Hz train of APs is well simulated 
under the assumption that in response to APs 2–5, Ca2+ release decreases progressively from 0.25 to 0.15 times that 
elicited by the fi rst AP, a reduction likely due to Ca2+ inactivation of Ca2+ release. Recovery from inactivation was 
studied with a two-AP protocol; the amplitude of the second release recovered to >0.9 times that of the fi rst with a 
rate constant of 7 s−1. An obvious feature of ∆fCaD during a fi ve-shock train is a progressive decline in the rate of de-
cay from the individual peaks of ∆fCaD. According to the simulations, this decline is due to a reduction in available 
Ca2+ binding sites on troponin and parvalbumin. The effects of sarcomere length, the location of the triadic junc-
tions, resting [Ca2+], the parvalbumin concentration, and possible uptake of Ca2+ by mitochondria were also 
investigated. Overall, the simulations indicate that this reaction-diffusion model, which was originally developed 
for Ca2+ sparks in frog fi bers, works well when adapted to mouse fast-twitch fi bers stimulated by APs.

I N T R O D U C T I O N

During normal excitation–contraction (EC) coupling 

of vertebrate twitch fi bers, an action potential (AP) elic-

its a large and rapid release of Ca2+ from the SR. As a 

result, myoplasmic free [Ca2+] rises quickly to a high 

level near the triadic junctions, the location of the SR 

Ca2+ release channels. Ca2+ then spreads by diffusion 

throughout the sarcomere while binding to sites on myo-

plasmic Ca2+ buffers, including ATP, troponin, parval-

bumin, and the SR Ca2+ pump. On a longer time scale, 

the released Ca2+ is resequestered within the SR by ATP-

dependent transport by the SR Ca2+ pump.

Kinetic models have been used to describe some, but 

not all, of these events in the setting of a functioning 

muscle cell. The earliest models started with an assumed 

(Robertson et al., 1981) or measured (Baylor et al., 

1983) waveform of the change in (spatially averaged) 

free [Ca2+] (∆[Ca2+]) or an assumed waveform of SR 

Ca2+ release (Gillis et al., 1982); the diffusion of Ca2+ 

and its mobile buffers was ignored. Also ignored were 

 effects due to binding of Ca2+ by the SR Ca2+ pump. The 

model of Cannell and Allen (1984) was the fi rst to con-

sider the diffusive aspects of the problem. The myoplasm 

of a half sarcomere of a myofi bril of a frog twitch fi ber 

was subdivided into a large number of compartments of 

equal volume; radial symmetry was assumed. AP-evoked 

activity was initiated by SR Ca2+ release into one com-

partment, and changes in Ca2+ binding and diffusion 

were calculated for each compartment by integration of 

a large set of simultaneous fi rst-order differential equa-

tions; transport, but not binding, of Ca2+ by the SR Ca2+ 

pump was included. To link the model to experiments, 

the spatially averaged luminescence change from aequo-

rin was simulated. An acceptable level of agreement was 

observed between the simulated and measured aequo-

rin signals, which supported the basic concepts of the 

model. An important conclusion was that large gradi-

ents in [Ca2+] exist within the sarcomere during, and for 

a few tens of milliseconds after, SR Ca2+ release (20°C).

A similar multicompartment model was developed by 

Baylor and Hollingworth (1998) to simulate AP-evoked 

Ca2+ movements in frog twitch fi bers (16°C). This 

model incorporated more up-to-date information about 

the time course of SR Ca2+ release and included ATP as 

a myoplasmic Ca2+ buffer. The experimental compari-

son for these simulations was with ∆[Ca2+] estimated 

with furaptra (Raju et al., 1989), a rapidly responding 

fl uorescent Ca2+ indicator with 1:1 stoichiometry (Ca2+:

indicator). These simulations confi rmed the existence 
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Abbreviations used in this paper: AP, action potential; EC, excitation–

contraction; EDL, extensor digitorum longus; FDHM, full duration at 

half maximum; RyR, ryanodine receptor.
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of large gradients in ∆[Ca2+] within the sarcomere dur-

ing and shortly after SR Ca2+ release. A novel fi nding 

was that Ca2+ binding by ATP and the diffusion of 

CaATP have a strong infl uence on the amplitude and 

time course with which Ca2+ binds to troponin at differ-

ent locations along the thin fi lament.

Similar multicompartment simulations have not yet 

been reported for mammalian fi bers. Mammalian Ca2+ 

measurements have been the focus of much recent 

work, including investigations into alterations in Ca2+ 

homeostasis by drugs and diseases (e.g., Dirksen and 

Avila, 2004; Woods et al., 2004; Capote et al., 2005; 

Yeung et al., 2005; Brown et al., 2007; Pouvreau et al., 

2007). Thus, it is important to establish valid modeling 

methods for interpretation of Ca2+ measurements in 

mammalian muscle. Although it is expected that many 

of the conclusions from the amphibian studies may ap-

ply to mammalian fi bers, there are structural, biochemi-

cal, and physiological differences between mammalian 

and amphibian fi bers that will infl uence the results and, 

possibly, the interpretations. For example, in mammals, 

the triadic junctions are offset �0.5 μm from the z line 

(Smith, 1966; Eisenberg, 1983; Brown et al., 1998), 

whereas, in amphibians, the junctions are located at the 

z line. The functional properties of the dihydropyridine 

receptors, the voltage sensors of EC coupling, are also 

different, as indicated by differences in the amount and 

voltage dependence of muscle charge movement (e.g., 

Hollingworth and Marshall, 1981). Differences are also 

found in the organization of the ryanodine receptors 

(RyRs), the Ca2+ release channels of the SR, at the tri-

adic junction. In fi bers from mammalian limb muscles 

(which are used in the experiments in our laboratory), 

the RyRs are found in junctional arrays only, whereas, in 

amphibian fi bers, both junctional and parajunctional 

arrays are present (Felder and Franzini-Armstrong, 2002). 

Moreover, adult mammalian limb fi bers have only the 

RyR1 isoform (Conti et al., 1996; Flucher et al., 1999), 

whereas amphibian fi bers have a nearly equal mixture 

of the RyR1 and RyR3 isoforms (sometimes referred to 

as RyRα and RyRβ) (Olivares et al., 1991; Lai et al., 

1992; Murayama and Ogawa, 1992; O’Brien et al., 1993). 

Finally, the time course of ∆[Ca2+] evoked by an AP 

is signifi cantly different in mammalian and amphibian 

fi bers. At 16°C, the FDHM (full duration at half maxi-

mum) of ∆[Ca2+] in mouse fast-twitch fi bers is �5 ms, 

whereas, in frog twitch fi bers of similar diameter, it is 

8–9 ms (Hollingworth et al., 1996).

In this article, we report multicompartment simula-

tions of sarcomeric Ca2+ movements evoked by APs in 

mouse fast-twitch fi bers. The results are compared with 

spatially averaged Ca2+ transients measured in these fi -

bers with furaptra and with simulations based on a single-

compartment model. This article also examines how 

sarcomere length, the location of the triadic junctions, 

the resting level of [Ca2+] ([Ca2+]R), the presence of 

parvalbumin, and the possible uptake of Ca2+ by mito-

chondria are expected to affect the results.

A preliminary version of the results has appeared in 

abstract form (Baylor, S.M., and S. Hollingworth. 2007. 

Biophys. J. 92:311a).

M AT E R I A L S  A N D  M E T H O D S

Simulations
A multicompartment model was used to simulate myoplasmic 
Ca2+ binding and diffusion as well as SR Ca2+ transport in mouse 
EDL (extensor digitorum longus) fi bers activated by APs (16°C). 
Simulations were performed for a half sarcomere of a myofi bril, 
which is divided into 18 equal volume units (six longitudinal by 
three radial; Fig. 1) at two sarcomere lengths, 4.0 (Fig. 1 A) and 

Figure 1. Cut-away view of a half sarcomere of one myofi bril 
showing the arrangement of the 18 equal-volume compartments 
(six longitudinal × three radial) in the simulations at a sarcomere 
length of 4 μm (A) and 2.4 μm (B). SR Ca2+ release enters the 
myoplasm near the middle of the thin fi lament in the outer com-
partment row (large downward arrow); Ca2+ pump activity occurs 
within all compartments in the outer row (small upward arrows). 
In both arrangements, troponin is restricted to the compartments 
located within 1 μm of the z-line (the region containing thin fi la-
ments, average length �1 μm). Because the buffer concentra-
tions in Table I are averages over the entire myoplasmic volume, 
the actual compartment concentration of troponin is 2.0 (A) or 
1.2 (B) times the value listed in Table I, and the actual compart-
ment concentration of Ca2+ pump molecules is three times (both 
A and B) the value listed in Table I. In both parts, the vertical and 
horizontal calibrations are different and not to scale.



 Baylor and Hollingworth 285

2.4 μm (Fig. 1 B). The myofi brillar radii were 0.375 and 0.484 μm, 
respectively, and the computational water volume was 0.884 fL in 
both cases. The calculations were performed with MLAB (Civi-
lized Software). An 18-compartment model appears to be suffi -
cient for the simulations of this article; in a study of Ca2+ binding 
and diffusion evoked by an AP in frog fi bers, simulations of the 
fl uo-3 Ca2+ signal performed with an 18- and a 100-compartment 
model yielded similar results (Hollingworth et al., 2000).

Ca2+ Binding and Diffusion. Each compartment is assumed to 
contain furaptra and an appropriate concentration of the major 
myoplasmic Ca2+ buffers—ATP, troponin, parvalbumin, and the 
SR Ca2+ pump (Table I and Fig. 1, legend). A set of differential 
equations is specifi ed for each compartment that describes (a) 
the binding of Ca2+ (and, in some cases, Mg2+ and H+) to these 
buffers according to the reaction schemes in Fig. 2 and the reac-
tion rate constants in Table II, and (b) the diffusion of free Ca2+ 
and the mobile Ca2+ buffers across compartment boundaries 

 according to the diffusion coeffi cients in Table III, B. The simula-
tions assume that [Ca2+]R is 50 nM, that free [Mg2+] is 1 mM (and 
constant), and that pH is 7 (and constant). These features are the 
same as those in spark Model 3 of Hollingworth et al. (2006), 
apart from small adjustments to the reaction rate constants and 
diffusion constants due to the temperature difference of the ex-
periments (16 vs. 18°C; see legend to Table II) and the use of fu-
raptra rather than fl uo-3 as the Ca2+ indicator.

Ca2+ Pumping. Because the SR membrane surrounds the periph-
ery of a sarcomere, Ca2+ pump activity was assigned to the outer 
row of compartments (small upward arrows in Fig. 1). The reac-
tion scheme of the Ca2+ pump is the same as in spark Model 3; the 
ion binding steps (fi rst eight reactions in Table II, D) are those 
given by Peinelt and Apell (2002). With this scheme and the rest-
ing values of [Ca2+], [Mg2+], and pH in Table I, only 0.6% of the 
transport sites are immediately available to bind Ca2+ when [Ca2+] 
suddenly rises (see legend of Fig. 2). This feature, which intro-
duces a delay in Ca2+ binding and transport by the Ca2+ pump 
 following SR Ca2+ release, increases the effi ciency of excitation–
contraction coupling in the sense that less Ca2+ release is required 
to achieve a given level of saturation of troponin with Ca2+ 
(Hollingworth et al., 2006).

Ca2+ Release. In mammalian fi bers, the triadic junctions are lo-
cated at the periphery of a myofi bril in a narrow region that is off-
set �0.5 μm from the z-line, both in slack and stretched fi bers 
(Brown et al., 1998). This Ca2+ release location is consistent with 
the experiments of Gomez et al. (2006) on mouse fast-twitch 
 fi bers from fl exor digitorum brevis muscle stimulated by APs, in 
which Ca2+ release domains offset �0.5 μm from the z-line were 
detected with confocal microscopy. In the simulations, the SR 
Ca2+ release fl ux is assumed to enter the outer compartment that 
includes the region 0.5 μm from the z-line; for the simulations at 
sarcomere lengths 4.0 and 2.4 μm, this is the second and third 
compartment, respectively (large downward arrows in Fig. 1).

The time course of SR Ca2+ release in response to an AP 
was calculated with an empirical function (compare Baylor and 
Hollingworth, 1998):

 
+ = <

⋅ − − − τ ⋅ − − τ ≥

2

L

Ca  Release(t) 0 if t T,

= R [1 exp( (t T)/ 1)] exp( (t T)/ 2) if t T.
 (1)

Figure 2. Reaction schemes 
for ATP (A), parvalbumin (B), 
troponin (C), the SR Ca2+ pump 
(D), and furaptra (=Dye; E). 
Table I gives the total reactant 
concentrations and Table II 
the reaction rate constants. 
With the resting values of free 
[Ca2+], free [Mg2+], and pH in 
Table I, the fractional amounts 
of the various reactants at rest 
are (A) ATP (1.000), CaATP 
(0.000); (B) Parv (0.062), Ca-
Parv (0.258), MgParv (0.680); 
(C) Trop (0.993), CaTrop 
(0.006), Ca2Trop (0.001); (D) 
E (0.006), CaE (0.006), Ca2E 
(0.004), MgE (0.123), Mg2E 

(0.123), HE (0.062), H2E (0.615), H3E (0.062), H4E (0.001); (E) Dye (0.451), CaDye (0.000), PrDye (0.548), CaPrDye (0.000). The resting 
fraction of furaptra in the protein-bound form, 0.548, is approximately consistent with that estimated from furaptra’s apparent myoplasmic 
diffusion coeffi cient, 0.68 × 10−6 cm2s−1, measured in frog twitch fi bers at 16°C (Konishi et al., 1991). From this diffusion coeffi cient, Zhao 
et al. (1996) estimated that the fraction of furaptra in the protein-bound form in resting frog fi bers is 0.58.

TA B L E  I

Concentrations of Myoplasmic Constituents in Mouse EDL Fibers

1 2 3

Constituent Concentration (μM) Concentration of binding 

sites (μM)

resting [Ca2+] 0.050 –

resting [Mg2+] 1,000 –

troponin 120 240 (Ca2+ regulatory sites)

SR Ca2+ pump 120 240 (Ca2+ transport sites)

parvalbumin 750 1,500 (Ca2+/Mg2+ sites)

ATP 8,000 8,000 (Ca2+/Mg2+ sites)

furaptra 100 100 (Ca2+/Mg2+ sites)

protein 500 500 (furaptra sites)

Concentrations are spatially averaged and referred to the myoplasmic 

water volume (Baylor et al., 1983); except for free [Ca2+] and free 

[Mg2+], total concentrations are given. Except for furaptra and protein, 

the values assumed here for EDL fi bers are the same as those given 

by Hollingworth et al. (2006) for frog twitch fi bers. The furaptra and 

protein concentrations apply to Fig. 2 E and Table II (E). pH is assumed 

to be 7 and constant.
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The time-shift parameter T was set to 1.4 ms to simulate the delay 
from the time of AP generation to the onset of SR Ca2+ release. L, 
τ1, and τ2 were set to 5, 1.3 ms, and 0.5 ms, respectively, so that 
the FDHM of the release fl ux would be 1.6 ms, the same as the 
mean value estimated from the 11 fi bers of this study in a single-
compartment analysis of their furaptra Ca2+ transients (compare 
last section of Results). The value of R was adjusted to give good 
agreement between the amplitudes of the simulated and mea-
sured furaptra Ca2+ transients (next section).

Experimental Procedures
Spatially averaged myoplasmic Ca2+ signals evoked by APs were 
measured with furaptra (also known as mag-fura-2) in intact EDL 
fi bers from 6–14-wk-old mice. Furaptra is a fl uorescent indicator 
whose dissociation constant for Ca2+ is relatively large (49 μM in 
a standard salt solution with 1 mM Mg2+; 16°C) and which re-
sponds rapidly to ∆[Ca2+] in muscle fi bers (Konishi et al., 1991; 
Rome et al., 1996). Because furaptra’s dissociation constant for 
Mg2+ is large (5.3 mM in a standard salt solution at 16°C), inter-
ference in the Ca2+ measurements from changes in [Mg2+] are ex-
pected to be small. As argued previously (Baylor and Hollingworth, 
2003), furaptra appears to supply the most accurate  measurements 

to date of (spatially averaged) ∆[Ca2+] in mammalian muscle fi -
bers stimulated by APs.

Most results from the furaptra EDL experiments were reported 
previously (Hollingworth et al., 1996; Baylor and Hollingworth, 
2003); the results with the two-AP protocol (see Figs. 10 and 11) 
are new to this study. In each experiment, one fi ber within a small, 
manually dissected bundle of fi bers was microinjected with a mem-
brane-impermeant form of furaptra (K4mag-fura-2; Invitrogen); 
the average myoplasmic furaptra concentration was �0.1 mM. To 
minimize movement artifacts in the fl uorescence records, the fi bers 
were stretched to long-sarcomere length, 3.8 ± 0.2 μm (mean ± 
SD). ∆F/FR, the change in indicator fl uorescence divided by its 
resting fl uorescence, was recorded from a �300-μm length of fi -
ber in response to either one external shock, a fi ve-shock train 
at 67 Hz, or two shocks separated by a delay of 15 to 400 ms. In 
most experiments, the fl uorescence excitation and emission wave-
lengths were 410 ± 20 nm and >480 nm, respectively.

Comparisons between the Multicompartment Simulations and 
the Measurements
The signal that can be most directly compared between the simu-
lations and the measurements is the spatially averaged change in 

TA B L E  I I

Rate Constants for the Reactions shown in Fig. 2 (16 °C)

1 2 3 4

Reaction Forward Reverse Ratio

A.

 Ca2+ + ATP  CaATP *0.1364 × 108M−1s−1 30,000 s−1 2,200 μM

B.

 Ca2+ + Parv  CaParv 0.417 × 108M−1s−1 0.5 s−1 0.012 μM

 Mg2+ + Parv  MgParv 0.33 × 105M−1s−1 3 s−1 91.0 μM

C.

 Ca2+ + Trop  CaTrop 1.77 × 108M−1s−1 1,544 s−1 8.72 μM

 Ca2+ + CaTrop  Ca2Trop 0.885 × 108M−1s−1 17.1 s−1 0.194 μM

D.

 Ca2+ + E  CaE 1.74 × 108 M−1 s−1 6.97 s−1 0.04 μM

 Ca2+ + CaE  Ca2E 1.74 × 108 M−1 s−1 8.71 s−1 0.05 μM

 Mg2+ + E  MgE 8.71 × 104 M−1 s−1 4.36 s−1 50 μM

 Mg2+ + MgE  Mg2E 8.71 × 104 M−1 s−1 87.1 s−1 1,000 μM

 H+ + E  HE instantaneous instantaneous (pK=8)

 H+ + HE  H2 E instantaneous instantaneous (pK=8)

 H+ + H2E  H3E instantaneous instantaneous (pK=6)

 H+ + H3E  H4E instantaneous instantaneous (pK=5)

 Ca2E  E + (2 Ca2+) 3.48 s−1 0 0

E.

 Ca2+ + Dye  CaDye 2.33 × 108M−1s−1 11,416 s−1 49 μM

 Pr + Dye  PrDye 0.100 × 108M−1s−1 3,660 s−1 366 μM

 Ca2+ + PrDye  CaPrDye 0.466 × 108M−1s−1 4,909 s−1 105 μM

 Pr + CaDye  CaPrDye 0.100 × 108M−1s−1 7,869 s−1 787 μM

Letters A–E correspond to the reactions in panels A–E of Fig. 2, where forward (column 2) and reverse (column 3) rate constants are denoted by k+i and 

k-i (i = 1, 2, etc.), respectively. Column 4 gives the dissociation constant (=k-i/k+i). The rate constants were obtained by scaling those of Hollingworth 

et al. (2006) at 18°C by the factor 0.871, which corresponds to a Q10 of 2. In A, the asterisk in column 2 denotes an apparent rate constant at free [Mg2+] = 

1 mM, [K+] = 0.15 M, pH = 7, and viscosity = 2 centipoise (see Baylor and Hollingworth, 1998). In D, the dissociation constants of the reactions with H+ 

are expressed as pKs (shown in parentheses); the parentheses on the righthand side of the last reaction in column 1 denote the two Ca2+ ions transported 

by the pump to the lumen of the SR. In E, “Dye” denotes furaptra and “Pr” denotes protein sites capable of binding furaptra. Steady-state calculations with 

the scheme in E show that with the protein concentration in Table I, the relation between free [Ca2+] and the fraction of furaptra in the Ca2+-bound form 

(∆fCaD = ([CaDye]+[CaPrDye])/[DyeTotal]) is very accurately described by a 1:1 binding equation with an apparent KD of 70 μM, the value estimated for 

frog myoplasm under steady-state conditions (Baylor and Hollingworth, 1998). However, when the peak of ∆[Ca2+] elicited by an AP is calculated from 

∆fCaD in a single-compartment calibration (Eq. 3), a larger KD, 96 μM, is required (see Materials and Methods and Baylor and Hollingworth, 1998).
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the fraction of furaptra bound with Ca2+ (denoted ∆fCaD). The 
spatially averaged ∆F/FR measurements were converted to spa-
tially averaged ∆fCaD as described previously ( Hollingworth et al., 
1996; Baylor and Hollingworth, 2003). With 410-nm excitation, 
∆fCaD is calculated from ∆F/FR with the equation:

 Δ = − ΔCaD Rf 1.07 F/F .  (2)

Spatially averaged ∆fCaD in the simulations was obtained by av-
eraging the simulated ∆fCaD waveforms in the 18 compartments. 
These waveforms, which include changes in both protein-free 
and protein-bound indicator (Fig. 2 E and Table II, E), were cal-
culated as (∆[CaDye]+∆[CaPrDye])/[DyeTotal], where [DyeTotal] 
is the total furaptra concentration (usually 100 μM, Table I). 
Within each compartment, the time courses of the ∆[CaDye] and 
∆[CaPrDye] waveforms were always virtually identical; peak ∆[Ca-
Dye], however, was always somewhat larger than peak ∆[CaPrDye] 
(see dissociation constants in Table II, E).

Single-Compartment Estimation of ∆[Ca2+] from ∆fCaD
For single-compartment modeling (compare Figs. 3 and 4 and 
the last section of Results), ∆fCaD was converted to (spatially aver-
aged) ∆[Ca2+] with the equation:

 +Δ = Δ − Δ2
D CaD CaD[Ca ] K f /(1 f ).  (3)

Eq. 3 is based on the idea of a spatially uniform, kinetically rapid, 
1:1 binding reaction between furaptra and Ca2+. KD, furaptra’s 
apparent dissociation constant for Ca2+ in the myoplasm, is 
 assumed to be 96 μM (Hollingworth et al., 1996; Baylor and 
 Hollingworth, 2003). This KD was selected previously to make the 
estimated peak of ∆[Ca2+] evoked by an AP in a frog twitch fi ber 
match that estimated with PDAA (purpurate diacetic acid) 
 (Konishi et al., 1991). PDAA is a rapidly responding absorbance 
indicator whose fractional binding to myoplasmic constituents of 
large molecular weight is relatively small (0.2–0.5; Hirota et al., 
1989; Konishi and Baylor, 1991) and whose KD for Ca2+ (0.9 mM 
in a standard salt solution) is suffi ciently large that nonlinearities 
in Ca2+ binding near the SR Ca2+ release sites is expected to be 
small (Hirota et al., 1989). In contrast, with furaptra, whose KD is 
an order of magnitude smaller, substantial nonlinear responses 
are expected near the release sites, while nearly linear responses 
are expected in regions removed from the release sites. It is ex-
pected that use of Eq. 3 to estimate ∆[Ca2+] evoked by APs cannot 
be accurate at all time points because of the nonlinear Ca2+ bind-
ing by furaptra near the release sites (Baylor and Hollingworth, 
1998; see also Results and legend to Table II).

R E S U LT S

The uppermost traces in Fig. 3 show ∆fCaD of furaptra 

averaged from four experiments in which an EDL fi ber 

was activated by one AP (panel A) and a fi ve-shock, 67- Hz 

train of APs (panel B; note difference in time scales). 

The second row of traces in these panels shows ∆[Ca2+] 

calculated from ∆fCaD with Eq. 3. Fig. 3 (C and D) shows 

Figure 3. Spatially averaged responses elic-
ited by a single AP (left) and a 67-Hz train of 5 
APs (right) initiated at 0 time. (A and B) Ex-
perimental ∆fCaD and ∆[Ca2+] responses aver-
aged from four fi bers in which ∆fCaD was 
relatively free of movement artifacts; ∆[Ca2+] 
was calculated from ∆fCaD with Eq. 3 in Mate-
rials and Methods. The mean sarcomere 
length was 3.8 μm (range, 3.7–3.9 μm) and 
the mean myoplasmic concentration of 
 furaptra was 89 μM (range, 64–113 μM). Fiber 
identifi cation numbers: 032596.2, 040596.1, 
040896.1, and 040996.3. (C and D) ∆fCaD and 
∆[Ca2+] responses averaged over the 18 com-
partments in the multicompartment simula-
tions. The bottom traces show the release 
fl uxes used to drive the simulations. The peaks 
of the release fl uxes are 205 μM/ms in C and 
208, 53, 45, 38, and 32 μM/ms in D (APs 1–5, 
respectively); the FDHM of all release fl uxes is 
1.6 ms. The values of ∆[CaTotal] are 349 μM in 
C and 354, 90, 76, 66, and 55 μM in D. 

TA B L E  I I I

Values of Other Parameters in the Multicompartment Simulations

A. Structural parameters (μm)

 Length of the thin fi lament 1.0

 Distance from z- to m-line 2.0 and 1.2

 Radius of a myofi bril 0.375 and 0.484

B. Diffusion coeffi cients (16 °C) (10−6 cm2 s-1)

 Free Ca2+ 3

 ATP 1.4

 Parvalbumin 0.15

 Furaptra (protein-free) 1.59

The myofi brillar radii of 0.375 and 0.484 μm are for half-sarcomere 

lengths of 2.0 and 1.2 μm, respectively. The diffusion coeffi cients of 

ATP and furaptra apply to both the Ca2+-free and Ca2+-bound forms; the 

diffusion coeffi cient for parvalbumin applies to the Ca2+-bound, Mg2+-

bound, and metal-free forms. Troponin, the SR Ca2+ pump, and protein-

bound furaptra are considered to be nondiffusible.
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simulation results with the 18-compartment model. In 

each of these panels, the top two traces are the simu-

lated waveforms of spatially averaged ∆fCaD and ∆[Ca2+], 

respectively. The bottom trace is the SR Ca2+ release 

fl ux used to drive the simulations (described in Mate-

rials and Methods).

Fig. 4 (A and B) shows a comparison of the experi-

mental and simulated ∆fCaD waveforms in Fig. 3. Good 

agreement is observed between these waveforms. This is 

one of the central results of this article and shows that 

the reaction-diffusion equations of spark Model 3, which 

was developed for frog fi bers (Hollingworth et al., 2006), 

work well on this time scale when adapted to mouse 

fast-twitch fi bers activated by APs. Columns 2 and 3 of 

Table IV give additional information about the amplitude 

and time course of the waveforms in Fig. 3 (A and C). 

The values of peak amplitude and FDHM of ∆fCaD are 

0.155 and 5.3 ms, respectively, in the measurements and 

0.155 and 5.1 ms in the simulations.

Fig. 4 (C and D) shows a comparison of two versions 

of spatially averaged ∆[Ca2+]. The noise-free waveforms 

are those in Fig. 3 (C and D), i.e., are the result of the 

18-compartment simulations. The slightly noisy wave-

forms are those in Fig. 3 (A and B), i.e., are the single-

compartment estimates of spatially averaged ∆[Ca2+] 

calculated with Eq. 3 from the measured ∆fCaD signals. 

While these waveforms are generally similar, the estimates 

from the measurements are larger than the simulated 

∆[Ca2+] waveforms, and the difference is proportion-

ally larger at later times.

The traces in Fig. 4 (E and F) reveal that the difference 

in the waveforms in Fig. 4 (C and D) is due to an error as-

sociated with the single-compartment method for esti-

mating ∆[Ca2+]. The continuous traces in Fig. 4 (E and F) 

are the same as the simulated traces in Fig. 4 (C and D), 

i.e., are the “true” spatially averaged ∆[Ca2+] waveforms 

as determined in the multicompartment simulations. 

The dashed traces are the single-compartment estimates 

of spatially averaged ∆[Ca2+] based on the simulated 

∆fCaD waveforms in Fig. 4 (A and B) and Eq. 3. This com-

parison reveals that the single-compartment method 

overestimates ∆[Ca2+]. The error arises from the assump-

tion, inherent in a single-compartment model, that 

∆[Ca2+] is homogenous throughout the sarcomere. How-

ever, the multicompartment simulations reveal highly 

nonuniform changes, particularly at times during and 

immediately after Ca2+ release (Figs. 5 and 6, described 

below). As noted in the last section of Materials and 

Methods, the large ∆[Ca2+] in and near the release com-

partment produces substantial nonlinearities in furap-

tra’s response that vary with time. As a result, it is not 

possible to accurately calibrate the entire ∆[Ca2+] wave-

form from ∆fCaD based on Eq. 3 and a single value of KD.

Simulated Changes in the Individual Compartments
Fig. 5 shows spatially resolved (i.e., compartment) infor-

mation from the 1-AP simulation of Fig. 3 C. Panel A 

shows ∆[Ca2+] in the 18 compartments as a function of 

time. In this panel, the largest trace shows ∆[Ca2+] in 

the release compartment and the next two largest traces 

show ∆[Ca2+] in the intermediate and inner radial com-

partments at the longitudinal location of the release 

compartment. The three dashed traces (not all of which 

are distinguishable) show similar information at the 

longitudinal location adjacent to the z-line. The next 

four triplets of traces show this information at the other 

four longitudinal locations; in three of these four loca-

tions, no radial differences are discernable.

Figure 4. Comparison of spatially averaged wave-
forms in the experiments and simulations. (A) 
superposition of the ∆fCaD waveforms in Fig. 3 C 
and Fig. 3 A (noise-free and slightly noisy traces, 
respectively). (C) Superposition of the ∆[Ca2+] 
waveform in Fig. 3 C (noise-free trace) and the 
∆[Ca2+] waveform in Fig. 3 A (noisy trace). (E) 
Superposition of the ∆[Ca2+] waveform in Fig. 
3 C (continuous trace) and ∆[Ca2+] calculated 
with Eq. 3 from the ∆fCaD waveform in Fig. 3 C 
(dashed trace). (B, D, and F) Similar presenta-
tion for the measurements and simulations in 
Fig. 3 (B and D).
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The traces in the other panels in Fig. 5 follow a similar 

pattern. The largest responses are found in the release 

compartment, and responses in the other compartments 

decline with distance from the release compartment; the 

dashed traces denote responses in the compartments next 

to the z-line. These other panels show changes in the 

concentration of Ca2+ bound to furaptra (∆[CaDye]; B), 

troponin (∆[CaTrop]; C), parvalbumin (∆[CaParv]; D), 

and the SR Ca2+ pump (∆[CaPump]; E). Panel F shows 

the concentration of released Ca2+ returned to the SR by 

the transport step of the Ca2+ pump (∆[CaPumped]). 

Not shown are the changes in Ca2+ binding to ATP 

(∆[CaATP]) in the 18 compartments. The time courses 

of these waveforms are very similar to those of ∆[Ca2+] 

in the corresponding compartment (panel A). The 

 amplitudes of the ∆[CaATP] and ∆[Ca2+] waveforms 

are related by empirical factors that vary slightly with 

compartment location. For example, with 1 AP, peak 

∆[CaATP] in the release compartment is 3.0 times peak 

∆[Ca2+] (240 and 80 μM, respectively). In the compart-

ment farthest from the release compartment, peak 

∆[CaATP] is 3.7 times peak ∆[Ca2+] (10.54 and 2.85 

μM, respectively). In the other compartments, peak 

∆[CaATP] is between 3.4 and 3.8 times peak ∆[Ca2+]. 

Fig. 6 shows analogous spatially resolved information for 

the 5-AP simulation of Fig. 3 D.

The large gradients in ∆[Ca2+], in combination with the 

differing reaction schemes in Fig. 2 and the differing 

diffusion constants in Table III (B) generate the variety 

of waveforms in the panels of Figs. 5 and 6. With tropo-

nin, which binds Ca2+ relatively quickly, differences 

among the compartments occur primarily at time <10 ms. 

With parvalbumin and the SR Ca2+ pump, the differences 

persist for longer times. Of importance for activation of 

the myofi laments, peak ∆[CaTrop] in response to both 

1 and 5 APs is large in all troponin-containing compart-

ments, ≥210 μM. Thus, peak occupancy is ≥0.88 times 

the concentration of Ca2+-free troponin sites at rest, 

239.3 μM (=240 μM minus the resting occupancy, 

0.7 μM; see Table I and Fig. 1, legend).

Progressive Changes during High-Frequency Stimulation
According to the simulations in Fig. 3 D, the fi rst AP 

in a 67-Hz train of APs releases �350 μM total [Ca2+] 

(∆[CaTotal]), whereas APs 2–5 in the train release 0.25–

0.15 times the fi rst release. The large reduction in release 

with subsequent APs in the train is probably due to Ca2+ 

inactivation of Ca2+ release (Baylor et al., 1983; Schneider 

and Simon, 1988; Jong et al., 1995) produced by the rise 

in myoplasmic [Ca2+] caused by the prior release(s).

It is possible that myoplasmic Ca2+ buffering due to the 

presence of 100 μM furaptra increases SR Ca2+ release 

above its normal value by reducing ∆[Ca2+] and thus 

Ca2+ inactivation of Ca2+ release. This possibility was ex-

plored in simulations with 0 and 100 μM furaptra. Ac-

cording to these simulations, the peak of ∆[Ca2+] in the 

release compartment (compare Fig. 1 A), which is likely 

to contain the receptor for Ca2+ inactivation of Ca2+ re-

lease, is 86 μM without furaptra and 80 μM with 100 μM 

furaptra; the time course of ∆[Ca2+] in this compartment 

is essentially identical with 0 and 100 μM furaptra. Any 

perturbation in SR Ca2+ release due to the 7% reduction 

in the peak of ∆[Ca2+] is expected to be minor.

An interesting feature of the waveforms in Fig. 3 (B 

and D) is that the changes in ∆fCaD and ∆[Ca2+] evoked 

by the individual APs in the train decay progressively 

more slowly at later times. This feature is quantifi ed in 

Fig. 7. The circles and X’s in panel A show measured and 

simulated values, respectively, of the rate constant char-

acterizing the early decay of ∆fCaD plotted as a function 

of the time of AP stimulation during the train. As ex-

pected from the similarity of the measured and simu-

lated ∆fCaD traces in Fig. 4 B, the circles and X’s in Fig. 7 A 

have similar values at all time points. The largest reduc-

tion in the rate constants occurs between the fi rst and 

second shocks in the train (Hollingworth et al., 1996).

The X points in Fig. 7 B show analogous rate con-

stants for the simulated ∆[Ca2+] waveform in Fig. 3 D. 

A smaller rate of decay of ∆[Ca2+] is expected for later 

peaks in the train because the myoplasmic Ca2+ buffers 

will become progressively more saturated with Ca2+ dur-

ing maintained activity; thus, these buffers will become 

progressively less able to bind Ca2+ and assist in lower-

ing free [Ca2+] after cessation of release (Melzer et al., 

1986). Because furaptra responds rapidly to ∆[Ca2+] 

and is heavily saturated with Ca2+ only near the release 

sites, the rate constants in Fig. 7 A are only �20% 

smaller than the corresponding values in Fig. 7 B.

To quantify the decrease in the concentration of buf-

fer sites available to bind Ca2+ during the train, the sim-

ulated concentration of sites that are free of bound ions 

shortly after each peak of ∆fCaD—and thus are immedi-

ately available to bind Ca2+ during the decay phase of 

TA B L E  I V

Comparison of Measured and Simulated Spatially Averaged Waveforms 
Elicited by one AP (16 °C)

1 2 3 4 5

peak 

amplitude

FDHM 

(ms)

peak 

amplitude

FDHM 

(ms)

A. Measurements

 furaptra ∆fCaD 0.155 5.3 0.178 6.8

 furaptra ∆[Ca2+] 17.5 μM 4.5 20.8 μM 6.0

B. 18-Compartment simulations

 furaptra ∆fCaD 0.155 5.1 0.178 7.3

 ∆[Ca2+] 16.1 μM 3.6 19.1 μM 4.8

 Ca2+ release fl ux 205 μM/ms 1.6 227 μM/ms 1.6

 ∆[CaTotal] 349 μM – 386 μM –

The values in columns 2 and 3 were determined from the measurements 

and simulations in Fig. 3 (A and C); those in columns 4 and 5 were 

determined from the measurements and simulations in Fig. 10 in response 

to the conditioning AP. ∆[CaTotal] is the time integral of the release fl ux.
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∆fCaD—were determined. The spatially averaged con-

centrations of these sites (denote [Site]) are plotted in 

Fig. 7 C for troponin, parvalbumin, and the Ca2+ pump 

(the more slowly reacting Ca2+ buffers) vs. the time of 

the corresponding AP stimulus during the train. These 

concentrations were determined at the time points that 

marked the beginning of the period during which the 

simulated rate constants in Fig. 7 (A and B) were esti-

mated (see legend). Fig. 7 C shows that the [Site] values 

for troponin and parvalbumin but not the Ca2+ pump 

decrease substantially during the train.

Fig. 7 D shows the associated changes in Ca2+ binding 

by these buffers. The changes in the simulated values 

of ∆[CaTrop], ∆[CaParv], and ∆[CaPump] were deter-

mined between the starting and ending times (denoted 

t1 and t2, respectively) during which the simulated decay 

rate constants in A and B were estimated. These values 

(denoted ∆[CaSite](t2) − ∆[CaSite](t1)) are plotted in 

Figure 5. Ca2+ concentration changes in the 18 compartments in the simulation of Fig. 3 C. ∆[CaDye] includes both protein-free and 
protein-bound furaptra (Fig. 2 E); ∆[CaTrop] and ∆[CaPump] include the Ca2+ ions that are both singly and doubly bound to these 
buffers (Fig. 2, C and D). In each panel, peak amplitudes decline with distance from the release compartment; dashed traces denote 
changes in compartments adjacent to the z-line. In several panels, there is an apparent grouping of the traces in triplets, which corre-
sponds to the three radial compartments at a given longitudinal location; at some longitudinal locations, the changes in the three radial 
compartments are indistinguishable. To facilitate comparisons among panels, the calibrations of the ordinates are referred to the total 
concentrations listed in Table I, which are spatially averaged. Because troponin and the Ca2+ pump are not located in all compartments, 
the simulated amplitudes of ∆[CaTrop] and ∆[CaPump] in their respective compartments are larger than shown in the plots by the ratio 
of the total site concentrations in these compartments to the spatially averaged concentrations (see Fig. 1, legend). 
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Fig. 7 D vs. the time of AP stimulation during the train. 

As expected from Fig. 7 C, the concentrations of Ca2+ 

bound by troponin and parvalbumin but not the pump 

decrease substantially during the train. (Note that ATP 

and furaptra respond rapidly to ∆[Ca2+], and the values 

of ∆[CaSite](t1) − ∆[CaSite](t2) for ATP and furaptra 

[not depicted] are negative rather than positive at all 

time points, i.e., ATP and furaptra release rather than bind 

Ca2+ between t1 and t2. Thus, decreased Ca2+ binding 

by ATP and/or furaptra does not underlie the decrease 

in the simulated rate constants in Fig. 7 (A and B). Also, 

the simulated concentration of Ca2+ transported by the 

Ca2+ pump progressively increases rather than decreases 

during the train (Fig. 6 F); thus, decreased transport of 

Ca2+ by the pump does not underlie the decrease in the 

simulated rate constants.)

Fig. 7 (C and D) indicates that a reduction in Ca2+ 

binding by troponin and parvalbumin but not the pump 

is primarily responsible for the decrease in the simu-

lated rate constants in Fig. 7 (A and B) and presumably 

also in the measured rate constants in Fig. 7A.

The Effect of Parvalbumin on the FDHM of ∆[Ca2+], ∆fCaD, 
and ∆[CaTrop]
Parvalbumin is thought to facilitate muscle relaxation in 

many types of fast-twitch muscle  fi bers (e.g., Gillis et al., 

1982; Baylor et al., 1983; Rome et al., 1996). In twitch 

fi bers of mice, the concentration of parvalbumin is 

strongly correlated with the fi ber type (Heizmann et al., 

1982; Ecob-Prince and Leberer, 1989). Slow-twitch fi bers 

(type I) and fast glycolytic fi bers (type IIa) have negligi-

ble and small-to-negligible concentrations, respectively; 

Figure 6. Ca2+ concentration changes in the 18 compartments in the simulation of Fig. 3 D. The presentation is like that in Fig. 5. 
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in contrast, fast oxidative- glycolytic fi bers (type IIb) gen-

erally have large parvalbumin concentrations, compara-

ble to that found in frog twitch fi bers (Table I). In mouse 

EDL muscle, whose fi ber-type composition is reported to 

be �60% type IIb and �40% type IIa (Ecob-Prince and 

Leberer, 1989), the average parvalbumin concentration 

is 4.4 g/kg wet weight (Heizmann et al., 1982). This cor-

responds to a myoplasmic concentration of Ca2+/Mg2+ 

sites of �1.26 mM, as calculated from (a) parvalbumin’s 

molecular weight (�12,000), (b) the presence of two 

Ca2+/Mg2+ sites per parvalbumin molecule, and (c) the 

factor 1/0.58 to convert a kilogram of muscle wet weight 

to a liter of myoplasmic water (Baylor et al., 1983). The 

value 1.26 mM is close to the standard parvalbumin site 

concentration in our simulations, 1.5 mM (Table I). If 

parvalbumin is present exclusively in the type IIb fi bers 

of EDL muscle, the concentration of parvalbumin sites 

in these fi bers could be �2 mM. Because the parvalbu-

min concentration is reported to vary widely between 

type IIa and type IIb fi bers, it was of interest to compare 

simulation results with different concentrations of parv-

albumin sites (denoted [ParvTotal]).

In these simulations, [ParvTotal] was varied between 

0 and 2,000 μM. At each concentration, the amplitude of 

the release fl ux (set by the value of R in Eq. 1) was ad-

justed so that peak ∆fCaD was 0.155, the same as in Fig. 3 

(A and C); the values of the total concentration of 

 released Ca2+ varied from 298 μM (for [ParvTotal] = 0) 

to 365 μM (for [ParvTotal] = 2,000 μM). Fig. 8 shows the 

relations between [ParvTotal] and the values of FDHM of 

spatially averaged ∆[Ca2+] (squares), ∆fCaD (circles), 

and ∆[CaTrop] (X’s). An increase in [ParvTotal] from 

0 to 2,000 μM produces a large reduction in all three 

FDHMs; by 61%, 74%, and 83%, respectively. As ex-

pected from the constraint of a constant peak ∆fCaD, 

much smaller changes were observed for peak ∆[Ca2+] 

and peak ∆[CaTrop], +9% and −2%, respectively. 

These results supply a multicompartment confi rmation 

that Ca2+ binding by parvalbumin is expected to shorten 

the duration of the twitch by abbreviating the time that 

∆[Ca2+] is elevated above the contractile threshold 

(Gillis et al., 1982) and hence abbreviating the time of 

thin fi lament activation, which is roughly proportional 

to the FDHM of ∆[CaTrop].

From Fig. 8, a [ParvTotal] of �1,400 μM is associated 

with an FDHM of ∆fCaD of 5.3 ms, the experimental 

value in Fig. 3 A (column 3 of Table IV, A). Interestingly, 

the values of FDHM of ∆fCaD measured in rested EDL fi -

bers all fall in a reasonably narrow range, 3.7– 6.8 ms 

(mean ± SD = 5.4 ± 1.0 ms, n = 11; Hollingworth 

et al., 1996; Baylor and Hollingworth, 2003; see also 

Fig. 9, described in the next section). These values, in 

combination with Fig. 8, suggest that [ParvTotal] was sub-

stantial in all of our EDL fi bers, ≥800 μM, and there-

fore that all of these fi bers were type IIb. Although, as 

noted above, �40% of mouse EDL fi bers are reported 

Figure 7. Analysis of changes in 
spatially averaged waveforms during 
a fi ve-shock, 67-Hz stimulus (A, mea-
surements; A–D, simulations). (A) 
The ∆fCaD waveforms in Fig. 3 (B 
and D) were analyzed to estimate 
the rate constants characterizing the 
early decay of the changes evoked by 
the fi ve APs. For each change, a de-
caying single-exponential function 
without an offset was fi tted to the 
falling phase of ∆fCaD during a 4–5-
ms period that began 1–1.5 ms after 
peak; the time points that specify 
the beginning and end of each fi t-
ting period are denoted t1 and t2. 
The fi tted rate constants are plotted 
vs. the times of the corresponding 
external shocks (open circles, mea-
surements; X’s, simulations). (B) Re-
peat of the analysis in A for the 
∆[Ca2+] waveform in Fig. 3 D; for 
each evoked change, rate constants 
were again determined between t1 
and t2. (C) [Site] denotes the simu-
lated spatially averaged concentra-

tion of sites on troponin (circles), parvalbumin (squares), and the Ca2+ pump (triangles) that are not bound with Ca2+, Mg2+, or H+ at 
time t1; the values were determined from the simulations for each of the fi ve evoked changes. (D) Simulated values of ∆[CaSite](t2) − 
∆[CaSite](t1), defi ned as the change in the spatially averaged concentration of Ca2+ bound to troponin (circles), parvalbumin (squares), 
and the pump (triangles) between times t1 and t2. As in C, the values were determined from the multicompartment simulations for each 
of the fi ve evoked changes.
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to be type IIa, in which [ParvTotal] is much smaller, these 

fi bers may not have been sampled in our experiments. 

Our experiments are always performed on fi bers lo-

cated peripherally on the most distal head of the EDL 

muscle (Hollingworth et al., 1996). In mouse semimem-

branous muscle, which has 80–90% type IIb fi bers, the 

fi bers at the periphery of the muscle are reported to 

have larger parvalbumin concentrations than the fi bers 

near the center (Ecob-Prince and Leberer, 1989).

[Ca2+]R and the Relation between the Peak and FDHM 
of ∆fCaD

The open symbols in Fig. 9 show the experimental val-

ues of FDHM of ∆fCaD plotted vs. the peak amplitude 

of ∆fCaD for the 11 fi bers of this study when stimulated 

by one AP. The FDHM values range from 3.7 to 6.8 ms 

(mentioned above) and the ∆fCaD amplitudes range 

from 0.141 to 0.184. While the relation between these 

data is somewhat noisy, the data appear to be positively 

correlated. It was therefore of interest to see if simula-

tions like those in Fig. 3 C, but with many different val-

ues of R in Eq. 1, revealed a positive correlation between 

these parameters. The continuous curve in Fig. 9 shows 

the simulated relation between the peak and FDHM of 

∆fCaD at the standard values of [Ca2+]R and [ParvTotal], 

50 nM and 1,500 mM, respectively (Table I). The top 

and bottom dashed curves were obtained with similar 

simulations but with values of [Ca2+]R of 150 and 0 nM, 

respectively. Over the range of measured ∆fCaD ampli-

tudes, all curves reveal a positive correlation between the 

peak and FDHM of ∆fCaD, similar to that in the data.

The relation in Fig. 9 was also simulated at [Ca2+]R = 
50 nM with values of [ParvTotal] of 1,000 and 2,000 μM 

(not depicted). Compared with the continuous curve in 

Fig. 9, these relations are shifted to higher and lower 

values on the ordinate, respectively. These effects of 

[Ca2+]R and [ParvTotal] on the simulated relation are 

reasonable because increases/decreases in [Ca2+]R will 

decrease/increase the concentration of metal-free sites 

available on parvalbumin, which will increase/decrease 

FDHM of ∆fCaD (Figs. 7 and 8).

The explanation of the failure of the data points in 

Fig. 9 to lie on a single curve includes one or more of 

the following: fi ber-to-fi ber variation in [Ca2+]R, fi ber-

to-fi ber variation in [ParvTotal], and noise in the experi-

mental determination of peak and FDHM of ∆fCaD. 

Overall, the data are generally consistent with [Ca2+]R = 

50 nM and [ParvTotal] = 1,500 μM, as used in the stan-

dard simulation conditions (continuous curve).

Recovery of SR Ca2+ Release after a Conditioning Stimulus
Changes in the amount of SR Ca2+ release and changes 

in the decay phase of ∆fCaD subsequent to a fi rst stimu-

lus were described above in connection with Fig. 3 (B 

and D) and Fig. 7. This section describes measurements 

with a two-pulse protocol that was used to study the ability 

of the fi ber to recover from the effects of a fi rst stimulus. 

In this protocol, a fi rst AP elicits a fi rst Ca2+ release; 

then, after a variable waiting period, a second AP elicits 

a second release. Analysis of the amplitudes of the asso-

ciated release fl uxes is expected to give information 

about recovery of the release system from Ca2+ inactiva-

tion of Ca2+ release (e.g., Jong et al., 1995). The analysis 

is also expected to give information (described in the 

next section) about the time required for the slowly re-

acting myoplasmic Ca2+ buffers to recover their ability 

to bind Ca2+ and thus speed the decay of ∆fCaD.

The two-AP protocol was performed in three fi bers, 

all of which were at a sarcomere length of 4.0 μm. Five 

common waiting periods between pulses were used in 

these experiments: 40, 80, 160, 320, and 400 ms; in ad-

dition, in two of the three experiments, a 15-ms waiting 

period was used. The top superimposed traces in Fig. 10 A 

show the averaged ∆fCaD signals recorded with the fi ve 

common waiting periods. The ∆fCaD amplitudes evoked 

by the second stimulus are smaller than that evoked by 

the conditioning stimulus, and the FDHM values are 

larger; with time, these values recover toward those of 

the conditioning stimulus. In some of the records, a 

small movement artifact is apparent during the later 

falling phase of the ∆fCaD evoked by the conditioning 

stimulus, as indicated by a slight undershoot of the base-

line (time of peak undershoot ≈ 90 ms). The time 

course of the movement artifact appeared to be similar 

to the time course of twitch tension (unpublished data), 

as both the tension transient and the undershoot of 

∆fCaD returned to baseline with very similar time courses. 

The tension transient was therefore used to correct for 

the movement artifact in ∆fCaD. To do so, the tension 

transient was inverted and scaled so that its time course 

Figure 8. Effect of [ParvTotal] (the total concentration of the 
Ca2+/Mg2+ sites on parvalbumin) on the values of FDHM of spa-
tially averaged ∆fCaD and ∆[Ca2+] (circles and squares, respec-
tively, calibrated on the lefthand ordinate) and of spatially 
averaged ∆[CaTrop] (X points, calibrated on the righthand ordi-
nate) in the multicompartment simulations. At each value of 
[ParvTotal], the value of R in Eq. 1 was adjusted to give peak ∆fCaD = 
0.155, the value in column 2 of Table IV, A; no changes were made 
to other simulation variables.
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during the period 90–250 ms matched that of the nega-

tive phase of ∆fCaD; the scaled tension transient was then 

subtracted from each of the ∆fCaD waveforms. The cor-

rected waveforms are shown as the bottom superim-

posed traces in Fig. 10 A.

The ∆fCaD waveforms evoked by the conditioning stim-

ulus (t = 0 ms) are similar in all recordings; the mean ± 

SD values of the peak amplitude and FDHM of this 

∆fCaD are 0.178 ± 0.003 and 6.8 ± 0.4 ms, respectively 

(n = 5; columns 4 and 5 of Table IV, A). The circles in 

Fig. 11 A show the normalized amplitude of this and the 

other ∆fCaD responses in Fig. 10 A plotted as a function 

of the time of stimulation. For this plot, each amplitude 

was determined as its peak amplitude minus its starting 

value on ∆fCaD evoked by the conditioning stimulus (not 

its peak relative to baseline), and each amplitude was 

divided by that evoked by the conditioning pulse (fi lled 

circle). The small circle in Fig. 11 A shows the normal-

ized amplitude with a waiting period of 15 ms between 

APs, which was obtained from the averaged responses 

in the two experiments with this measurement. With a 

brief waiting period between APs, the amplitude of the 

second ∆fCaD is smaller than that of the fi rst; with longer 

waiting periods, the amplitude of the second ∆fCaD ap-

proaches that of the fi rst.

Fig. 10 B shows results of simulations designed to 

mimic the experimental results in Fig. 10 A. The top su-

perimposed traces show the simulated ∆fCaD waveforms 

obtained with the fi ve common waiting periods; the bot-

tom superimposed traces show the associated Ca2+ re-

lease waveforms. As usual, the amplitudes of the release 

fl uxes were chosen so that the peaks of the simulated 

∆fCaD waveforms (relative to baseline) matched the ex-

perimental ones. The ∆fCaD waveforms in Fig. 10 B ap-

pear to reproduce qualitatively the main features of the 

experimental ∆fCaD waveforms. The normalized ampli-

tudes of the simulated ∆fCaD responses are shown as the 

X’s in Fig. 11 A, which are similar to those of the mea-

surements (circles).

The triangles in Fig. 11 A show the amplitudes of the 

release fl uxes in the simulations, normalized by that of 

the conditioning release. The amplitudes of the second 

releases increase progressively from 0.239 (t = 15 ms) 

to 0.917 (t = 400 ms) times that of the fi rst release. The 

triangles at t ≥ 40 ms have been fi tted with a decaying 

single-exponential function having three adjustable pa-

rameters: an initial value, a fi nal value, and a rate con-

stant (see legend). The points are well fi tted by this 

function (continuous curve in Fig. 11 B); the curve also 

intersects the point at t = 15 ms, which was not included 

in the fi t. According to the curve, the large reduction in 

release after the fi rst AP recovers to 0.97 of the initial 

release with a rate constant of 6.9 s−1 (time constant 

of 146 ms). If the receptor site for Ca2+ inactivation of 

Ca2+ release has a dissociation constant for Ca2+ that is 

large compared with the values of [Ca2+] at times ≥40 ms, 

the dissociation rate constant of Ca2+ from this site 

should be �6.9 s−1. On the other hand, if the KD of the 

receptor site is small, the dissociation rate constant may 

be larger than 6.9 s−1.

Recovery of the Fast Decay of ∆fCaD after a 
Conditioning Stimulus
In Fig. 10 A, the fi ve waveforms evoked by the second 

AP differ in time course as well as in amplitude. With a 

short delay between stimuli, the decay of the second 

∆fCaD is markedly slower than that of the conditioning 

stimulus (compare Fig. 7 A); with longer delays, the de-

cay becomes faster and approaches that of the condi-

tioning stimulus. Similar changes are observed in the 

simulated waveforms (Fig. 10 B).

The simulations were analyzed to determine what 

changes in Ca2+ binding by the slow Ca2+ buffers are as-

sociated with recovery of the fast decay of ∆fCaD. The 

circles in Fig. 11 B plot the decay rate constants of the 

individual ∆fCaD measurements in Fig. 10 A; as in Fig. 11 A, 

Fig. 11 B also includes the data point at t = 15 ms 

(small circle). The X’s in Fig. 11 B plot the decay rate 

constants of the simulated ∆fCaD responses. Both plots 

reveal that the decay rate constant at t = 15 and 40 ms is 

substantially smaller than that at t = 0 ms and, as time in-

creases, the rate constant recovers toward the initial value. 

There are some discrepancies, however, between the sim-

ulated and measured rate constants. The simulated value 

Figure 9. Relation between the peak amplitude and FDHM of 
spatially averaged ∆fCaD in the measurements and simulations. 
The large symbols show results from 11 rested EDL fi bers stimu-
lated by a single AP; circles, squares, and triangles give the values 
from the four fi bers of Fig. 3 (A and B), the three fi bers of Fig. 10 A, 
and the remaining fi bers of this study, respectively. The curves 
through the small fi lled symbols show the relations determined in 
the multicompartment simulations with many values of R in Eq. 1 
at three values of [Ca2+]R: 150 nM (top curve), 50 nM (the stan-
dard value in the simulations; middle curve), and 0 nM (bottom 
curve). For the middle curve, the range in release fl uxes that cor-
responds to the range in the experimental amplitudes of ∆fCaD is 
191–233 μM/ms.
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for the conditioning stimulus, 132 s−1 (t = 0 ms), is not 

as large as the measured value, 150 s−1, and the simu-

lated values between 15 and 320 ms are all noticeably 

larger than the measured values. The precise reason(s) 

for these differences is not known.

Another difference between the simulated and mea-

sured rate constants in Fig. 11 B is that the recovery of 

the simulated rate constant slows at late times and the 

measured value overtakes the simulated value. A possi-

ble explanation for this discrepancy is that ∆[Ca2+] 

evoked by the conditioning AP returns to baseline less 

rapidly in the simulations than in the measurements, 

thus delaying the recovery of parvalbumin; for example, 

at t = 400 ms, simulated spatially averaged ∆[Ca2+] in 

response to the conditioning AP is 108 nM above rest-

ing. A slower return of ∆[Ca2+] could occur if the turn-

over rate of the Ca2+ pump in the simulations is smaller 

than the actual turnover rate, or if some other slow pro-

cess or buffer not included in the simulations contrib-

utes to the actual decline of ∆[Ca2+] on this time scale. 

As demonstrated in an earlier section ([Ca2+]R and the 

Relation between the FDHM and the Peak of ∆fCaD), re-

lease fl uxes that produce ∆fCaD waveforms with identical 

peak amplitudes are associated with larger values of 

FDHM of ∆fCaD (and hence smaller decay rate con-

stants) if [Ca2+]R is larger. The conclusion that ∆[Ca2+] 

returns to baseline more slowly in the simulations than 

the measurements is supported by preliminary experi-

ments with fl uo-3, which can be used to follow the time 

course of the decline of ∆[Ca2+] with much greater ac-

curacy than is available with furaptra. These experi-

ments indicate that ∆[Ca2+]’s return is indeed somewhat 

slower in the simulations than in the measurements 

(Baylor, S.M., and S. Hollingworth. 2007. Biophys. J. 
92:311a). The reason for this shortcoming in the model 

merits further investigation.

Fig. 11 (C and D) (which is analogous to Fig. 7, C and D) 

shows the analysis of the simulated changes on troponin, 

parvalbumin, and the Ca2+ pump (the slowly reacting 

Ca2+ buffers) during the time periods when the decay 

rate constants in Fig. 11 B were estimated. As expected 

from Fig. 7 C, Fig. 11 C reveals that the conditioning AP 

produces a marked decline in the concentration of sites 

on troponin and parvalbumin, but not on the pump, 

that are immediately available to bind Ca2+ early in the 

falling phase of ∆fCaD in response to a release initiated 

15 ms after the fi rst release. Between 15 and 320–400 ms, 

the available site concentrations on troponin and parval-

bumin, but not the pump, recover substantially. Fig. 11 D 

shows that a similar pattern is observed for the simulated 

concentrations of Ca2+ actually bound by troponin, par-

valbumin, and the pump during the early decay of ∆fCaD. 

Presumably, recovery of the ability of troponin and parv-

albumin to bind Ca2+ is primarily responsible for the 

reappearance of the fast decay rate of ∆fCaD in the mea-

surements (Fig. 11 B, open circles).

Simulations at Sarcomere Length = 2.4 μm
To our knowledge, myoplasmic Ca2+ transients have not 

been measured in the same mammalian fi bers at short- 

and long-sarcomere length. This is diffi cult to do on a bun-

dle of intact fi bers, only one of which contains a Ca2+ 

indicator (as in our experiments). We have therefore 

used simulations to estimate sarcomeric Ca2+ movements 

in mouse fast-twitch fi bers at a physiological sarcomere 

length, 2.4 μm.

Figure 10. Spatially averaged ∆fCaD responses with a 
two-AP protocol with waiting periods of 40, 80, 160, 320, 
and 400 ms between APs. (A) ∆fCaD responses averaged 
from three EDL fi bers (top) and these responses after 
correction for a small movement artifact by the method 
described in the text (bottom). A rest period of 1 min 
was used between repetitions of the paired stimuli. Fiber 
identifi cation numbers: 021097.1, 042597.1, and 042597.2. 
(B) Top: simulated multicompartment ∆fCaD responses 
to mimic the lower traces in A; bottom: the Ca2+ release 
waveforms used to drive the simulations. The release 
fl ux amplitudes are 227 μM/ms for the conditioning 
stimulus and 0.358, 0.498, 0.703, 0.871, and 0.917 times 
that of the conditioning pulse (waiting periods of 40, 
80, 160, 320, and 400 ms, respectively).
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For these simulations, the 18-compartment arrange-

ment (six longitudinal by three radial) was retained (Fig. 

1 B), but fi ve changes were implemented. (1) The half-

sarcomere length (distance between the z- and m-lines) 

was shortened from 2.0 to 1.2 μm. (2) To keep the myo-

plasmic volume constant, the radius of the myofi bril 

was increased from 0.375 to 0.484 μm (appropriate for 

a cylindrical geometry). (3) To match the thin-fi lament 

length of 1.0 μm (=5/6 of the new half-sarcomere 

length), the number of troponin-containing compart-

ments was increased from 9 to 15; thus only the three 

compartments adjacent to the m-line lacked troponin. 

(4) To keep constant the spatially averaged concentra-

tion of troponin sites (240 μM, Table I), the troponin site 

concentration within the 15 compartments was set to 

288 μM (vs. 480 μM at sarcomere length = 4.0 μm; see 

Fig. 1, legend). (5) The Ca2+ release compartment was 

moved from the second to the third compartment in the 

outer longitudinal row, so that the location of Ca2+ re-

lease would remain at the middle of the thin fi lament 

(0.5 μm from the z-line). Not changed in these simula-

tions was the Ca2+ release function evoked by an AP, 

which remained as in Fig. 3 C.

 Fig. 12 A compares simulated spatially averaged wave-

forms at a sarcomere length of 2.4 μm (dashed traces) 

and 4.0 μm (continuous traces). The top pair of traces 

shows ∆fCaD and the bottom pair shows ∆[Ca2+]. The 

∆fCaD waveforms are noticeably different, although, some-

what surprisingly, the ∆[Ca2+] waveforms are almost 

identical. The peak amplitude of ∆fCaD is 17% larger at 

short-sarcomere length (0.182 vs. 0.155), FDHM is 16% 

smaller (4.3 vs 5.1 ms), and the time of peak is 5% smaller 

(3.9 vs. 4.1 ms). These differences arise because, as noted 

in the next paragraph, better mixing of Ca2+ among the 

compartments occurs at short-sarcomere length.

An analysis of the Ca2+-buffer responses in the 18 

compartments (compare Fig. 5) revealed qualitatively 

similar changes at short- and long-sarcomere length. 

For any particular buffer, the most obvious change in 

the compartment waveforms was that the difference be-

tween the smallest and largest peak values was usually 

smaller at short-sarcomere length. For example, the 

peaks of the ∆[Ca2+] waveforms varied from 9 to 64 μM 

at sarcomere length of 2.4 vs. 3 to 80 μM at sarcomere 

length of 4.0 μm (Fig. 5 A); the peaks of ∆[CaATP] var-

ied from 34 to 178 μM vs. 11 to 240 μM; and the peaks 

of ∆[CaDye] varied from 12 to 37 μM vs. 4 to 45 μM 

(Fig. 5 B). The greater extremes in the peak values at 

long-sarcomere length are expected from the greater 

diffusion distance to the m-line with a half-sarcomere 

length of 2.0 vs. 1.2 μm. An exception to this observa-

tion occurs with troponin, which is not distributed uni-

formly within the sarcomere. The peaks of the ∆[CaTrop] 

waveforms varied from 193 to 238 μM at short- sarcomere 

length vs. 215 to 238 μM at long-sarcomere length (Fig. 

5 C). The larger range at short-sarcomere length ap-

pears to be due to the fact that although longitudinal 

diffusion distances to reach the troponin sites are simi-

lar at short-and long-sarcomere length, radial diffusion 

distances are larger at short-sarcomere length.

Fig. 12 B shows another comparison of simulated 

∆[Ca2+] waveforms at the two sarcomere lengths (dashed, 

Figure 11. Analysis of measured and 
simulated responses with the two-AP 
protocol. (A) The large circles show the 
amplitudes of the measured ∆fCaD sig-
nals in Fig. 10 A (bottom traces) nor-
malized by 0.178, the mean amplitude 
evoked by the conditioning stimulus 
(fi lled circle, t = 0 ms); each ∆fCaD am-
plitude was determined as the peak of 
∆fCaD minus its starting value on the 
∆fCaD trace evoked by the conditioning 
stimulus. The small circle at t = 15 ms 
shows the normalized amplitude aver-
aged from the responses of the two fi -
bers of Fig. 10 A that had measurements 
with a 15-ms waiting period between 
APs. The X’s show similar information 
for ∆fCaD in the simulations of Fig. 10 B, 
as well as for a simulation with a 15-ms 
waiting period. The triangles show the 
amplitudes of the release fl uxes in the 
simulations normalized by the release 
fl ux of the conditioning stimulus (227 
μM/ms). The curve through the trian-
gles is a least-squares fi t of the points at 
t ≥ 40 ms with the function f(t) = R0 + 

(Rmax − R0) · (1 − exp(−r · t)). The fi tted values of R0, Rmax, and r are 0.164, 0.965, and 6.87 s−1, respectively. (B) Decay rate con-
stants of ∆fCaD in the measurements (circles) and simulations (X’s), determined as in Fig. 7 (A and B). (C and D) Values of [Site] and 
∆[CaSite](t2) − ∆[CaSite](t1), determined as in Fig. 7 (C and D).
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2.4 μm; continuous, 4.0 μm). These waveforms, rather 

than being the “true” spatially averaged ∆[Ca2+] wave-

forms (Fig. 12 A), are the single-compartment estimates 

obtained with Eq. 3 from the (spatially averaged) ∆fCaD 

waveforms in Fig. 12 A (compare the dashed ∆[Ca2+] 

traces in Fig. 4, E and F). The peak amplitude of the 

trace in Fig. 12 B at 2.4 μm is 20% larger than that at 

4.0 μm (21.2 vs. 17.6 μM), FDHM is 16% smaller (3.8 vs. 

4.5 ms), and time of peak is 5% smaller (3.9 vs. 4.1 ms). 

These differences are similar to those estimated with fu-

raptra in experiments on frog single fi bers at different 

sarcomere lengths, where the peak of ∆[Ca2+] is �25% 

larger at a sarcomere length of 2.5 than at 4.0 μm, FDHM 

is �25% smaller, and time of peak is �10% smaller 

(Konishi et al., 1991). Because SR Ca2+ release at long-

sarcomere length and myoplasmic Ca2+ buffering ap-

pear to be similar in mouse fast-twitch fi bers and frog 

twitch fi bers (Table I and Baylor and Hollingworth, 

2003), the combined results of the measurements and 

simulations suggest that the SR Ca2+ release waveforms 

evoked by an AP are quite similar at short- and long-

 sarcomere length.

Effect of the Location of the SR Ca2+ Release Sites Relative 
to the z-Line
Amphibians and mammals reveal a striking difference 

in the organization of the triadic junctions. In amphib-

ians, the junctions occur once per sarcomere and are 

centered on z-lines; in mammals, they occur twice per 

sarcomere and are offset �0.5 μm from the z-lines. This 

difference is expected to offer advantages to mammals 

for contractile activation; specifi cally, for a given Ca2+ 

release waveform, the binding of Ca2+ to troponin would 

be expected to be more uniform along the thin fi lament 

and, on average, occur more rapidly.

To explore this effect quantitatively, simulations at a 

sarcomere length of 2.4 μm (compare preceding sec-

tion) were performed with two different Ca2+ release 

locations: the third compartment in the outer row (as 

for the simulations in Fig. 12) and the fi rst compart-

ment in the outer row (to simulate the location of the 

triadic junctions in amphibians). For these simulations, 

the furaptra concentration was set to 0 to eliminate any 

(small) effects of furaptra buffering on the results.

Fig. 13 shows simulated responses to 1 AP with the 

two Ca2+ release locations. Each panel shows a family of 

∆[CaTrop] waveforms at fi ve different distances from 

the z-line; the top and bottom panels correspond to the 

mammalian and amphibian release locations, respec-

tively. To simplify the presentation, each of the displayed 

waveforms is an average of ∆[CaTrop] over the three 

radial compartments at one of the fi ve longitudinal 

 locations containing troponin. As expected, the wave-

forms in the top panel are more uniform in amplitude 

and time course than those in the bottom panel. In the 

top panel, peak amplitudes vary from 200 to 233 μM 

and times of peak from 6.0 to 11.3 ms; in the bottom 

panel, the corresponding ranges are 170 to 231 μM and 

7.7 to 16.3 ms. In both panels, the waveform at the lon-

gitudinal location most distant from the z-line (which 

corresponds to the end of the thin fi lament) has both 

the smallest peak value and the largest time of peak. 

At this location, the peak value in the bottom panel, 

170 μM, is only 0.71 times the maximum value (239.3 μM); 

the peaks of all other waveforms in Fig. 9 are ≥200 μM, 

which are ≥0.84 times maximum.

A high occupancy of troponin with Ca2+ near the end 

of the thin fi lament would appear to be particularly ad-

vantageous to fi ber contraction, as this region of the 

thin fi lament is within reach of myosin cross-bridges at 

most working sarcomere lengths. Thus, the simulations 

demonstrate a clear advantage for contraction in locat-

ing the site of SR Ca2+ release at the middle of the thin 

fi lament rather than at the z-line. Another way to quan-

tify this advantage is to determine the percentage in-

crease in the amplitude of Ca2+ release at the z-line that 

would yield an average peak ∆[CaTrop] at the end of 

the thin fi lament of 200 μM (=the value simulated with 

one AP when release is located at the middle of the thin 

fi lament). This percentage increase, determined in ad-

ditional simulations, is 8%. In this case, however, the 

time of peak ∆[CaTrop] at the end of the thin fi lament 

is 15.5 ms, which remains longer than the 11.3-ms value 

when release is located at the middle of the thin fi lament. 

Thus, locating Ca2+ release at the middle of the thin fi l-

ament has the advantage of using a smaller release fl ux 

Figure 12. Simulations of spatially averaged responses evoked 
by one AP at sarcomere lengths of 2.4 μm (dashed traces) and 
4.0 μm (continuous traces). (A) The top pair of traces shows ∆fCaD 
and the bottom pair ∆[Ca2+], averaged over the 18 compart-
ments. (B) Single-compartment estimates of ∆[Ca2+] obtained 
with Eq. 3 from the ∆fCaD traces in A. The modifi cations of the 
model for the multicompartment simulation at sarcomere length = 
2.4 μm are described in the text (see also Fig. 1 B). The Ca2+ re-
lease fl ux was identical to that in Fig. 3 C.
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to achieve a faster and more uniform binding of Ca2+ 

along the length of the thin fi lament.

Possible Infl uence of Ca2+ Uptake by Mitochondria
The simulations of this article do not take into account 

uptake of Ca2+ by the mitochondria. In this section, we 

show that inclusion of mitochondrial Ca2+ uptake would 

have a negligible effect on the simulations of this article. 

Our analysis relies on three pieces of information in the 

literature. (1) In rat fast-twitch fi bers at 37°C, the maxi-

mal rate of Ca2+ uptake by mitochondria is 65 nmol of 

Ca2+ per mg protein per min (Sembrowich,  Quintinskie, 

and Li, 1985). If a Q10 of 2 is assumed, this corresponds 

to a maximal uptake rate at 16°C of �16 nmol of Ca2+ 

per mg protein per min. (2) The protein content of mito-

chondria is 0.385 g per cm3 (Schwerzmann, Hoppeler, 

Kayar and Weibel, 1989). (3) In rodent fast-twitch fi bers, 

the estimated fraction of the fi ber volume taken up by 

mitochondria is 2–8% (Eisenberg, 1983).

The maximal rate of mitochondrial Ca2+ uptake in 

rodent fast-twitch fi bers at 16°C is thus estimated to 

be �0.008 μM/ms if referred to the fi ber volume, or 

�0.012 μM/ms if referred to the myoplasmic water vol-

ume (compare Baylor et al., 1983). The latter value is 

<0.1% of the maximal SR Ca2+ release rates in Figs. 3 

and 10 and <2% of the maximal rate of Ca2+ uptake by 

the SR Ca2+ pump in the reaction scheme of Table II (D), 

0.831 μM/ms. Mitochondrial Ca2+ uptake is thus esti-

mated to be very small compared with the Ca2+ move-

ments reported in this article.

Comparisons between Multicompartment and Single-
Compartment Simulations
Fig. 4 (E and F) shows that spatially averaged ∆[Ca2+] 

cannot be accurately estimated at all times from the 

 furaptra ∆fCaD signal and Eq. 3. As a result, single-

 compartment inferences about Ca2+ binding to the 

myoplasmic Ca2+ buffers (e.g., Baylor and  Hollingworth, 

2003) will necessarily have some errors, as will esti-

mates of ∆[CaTotal] and the Ca2+ release fl ux. Additional 

simulations were performed to estimate the magni-

tude of these errors. For these simulations, the dashed 

∆[Ca2+] traces in Fig. 4 (E and F) were used to calculate 

single-compartment waveforms of ∆[CaATP], ∆[CaTrop], 

∆[CaParv], ∆[CaPump], and ∆[CaPumped] from the 

standard set of differential equations (compare the re-

action schemes in Fig. 2); ∆[CaDye] was calculated from 

the ∆fCaD traces in Fig. 3 (C and D) with the relation 

∆[CaDye] = ∆fCaD × 100 μM (the furaptra concentra-

tion in Table I). ∆[CaTotal] was then calculated as the 

sum of ∆[Ca2+], ∆[CaDye], ∆[CaATP], ∆[CaTrop], 

∆[CaParv], ∆[CaPump], and ∆[CaPumped], and the 

release fl ux as the time derivative of ∆[CaTotal].

As expected from the larger ∆[Ca2+] traces in the 

 single-compartment simulation (dashed traces in Fig. 4, 

E and F), the single-compartment estimates of ∆[CaTotal] 

and the release fl uxes were somewhat larger than the 

“true” values estimated in the 18-compartment simula-

tion. With one AP, ∆[CaTotal] at t = 50 ms was 14% larger 

in the single- vs. multicompartment simulation (398 vs. 

349 μM), and, with 5 APs, ∆[CaTotal] was 17% larger at 150 

ms (754 vs. 647 μM). The peak and FDHM of the release 

waveform were also larger, 219 μM/ms and 1.7 ms vs. 

205 μM/ms and 1.6 ms. The fractional reductions in Ca2+ 

release with APs 2–5 were very similar in both simulations. 

Thus, overall, the single-compartment estimates were in 

fair agreement with the multicompartment results.

These estimates of single-compartment errors in mouse 

fi bers are somewhat smaller than those estimated previ-

ously in frog fi bers (Baylor and Hollingworth, 1998), 

where SR Ca2+ release with single-compartment model-

ing was �25% larger than that with multicompartment 

modeling. A smaller error in mouse fi bers is expected 

from the fact that the location of SR Ca2+ release is offset 

from the z-line in mouse fi bers. As noted in the preced-

ing section, this offset is expected to reduce intrasarco-

meric Ca2+ gradients and hence reduce the differences 

between single- and multicompartment modeling.

D I S C U S S I O N

This article describes a multicompartment model for 

simulating Ca2+ movements within the sarcomere of 

Figure 13. Simulated families of ∆[CaTrop] waveforms at a sar-
comere length of 2.4 μm with two Ca2+ release locations: the mid-
dle of the thin fi lament (top) and adjacent to the z-line (bottom). 
These locations approximate the location of the triadic junctions 
in mammalian and amphibian fi bers, respectively. Each waveform 
represents an average over the three radial compartments at one 
of the fi ve longitudinal locations of the 15 troponin-containing 
compartments; these are centered at 0.1, 0.3, 0.5, 0.7, and 0.9 μm 
from the z-line. As in Fig. 5 C, ∆[CaTrop] includes changes in 
both the singly and doubly bound Ca2+ states of troponin, and the 
concentration change on the ordinate is referred to the entire 
myoplasmic volume. In each panel, the peak amplitudes decline 
with distance from the release compartment; the dashed trace 
shows the result closest to the z-line. The SR Ca2+ release function 
was identical to that in Fig. 3 C.
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mouse fast-twitch fi bers stimulated by APs. The im-

plementation is based on a reaction-diffusion model 

de veloped recently for Ca2+ sparks in frog fi bers 

(Hollingworth et al., 2006). The simulations were com-

pared with spatially averaged Ca2+ transients measured 

in mouse EDL fi bers with furaptra at 16°C  (Hollingworth 

et al., 1996; Baylor and Hollingworth, 2003). Good 

agreement was observed between the simulated and 

measured furaptra ∆fCaD responses (Fig. 4, A and B, 

and Fig. 10). A clear strength of the model is its ability 

to simulate both large-scale Ca2+ movements of the 

type evoked here by APs and the small-scale Ca2+ move-

ments that occur with Ca2+ sparks. The good agree-

ment observed in these different settings should not be 

taken as good evidence that all model parameters are 

well known, however. It is clear that the choice of some 

parameter values can be “traded off” for others (e.g., 

[Ca2+]R vs. the parvalbumin concentration; see Fig. 9) 

without signifi cantly affecting the simulation results. 

Because good agreement between the simulations and 

measurements was observed in the initial calculations 

(Fig. 4, A and B), further refi nement of model parame-

ters to give better agreement with the measurements 

did not appear to be justifi ed.

Figs. 5 and 6 confi rm that large differences in ∆[Ca2+] 

and in the concentration of Ca2+ bound to its buffers oc-

cur in different regions of the sarcomere for a number 

of milliseconds after AP-evoked SR Ca2+ release (com-

pare Cannell and Allen, 1984; Baylor and Hollingworth, 

1998; Novo et al., 2003). Substantial diffusive movements 

of Ca2+ and the mobile Ca2+ buffers (not directly illus-

trated in this article) result because of these gradients.

This article also estimated SR Ca2+ release and myo-

plasmic Ca2+ binding with a single-compartment model. 

The single-compartment model produced modest (10–

20%) overestimates of the amount of SR Ca2+ release 

evoked by a single AP or a brief high-frequency train 

of APs. These overestimates arise because the single-

compartment model cannot take into account the large 

gradients in ∆[Ca2+] within the sarcomere (Fig. 5). The 

multicompartment model, however, has the disadvan-

tage of added computational complexity. The choice of 

a single- vs. a multicompartment model for the analysis 

of a particular experiment needs to weigh the expected 

increase in accuracy of a multicompartment model vs. 

the computational simplicity of a single-compartment 

model. Some questions—e.g., what quantitative differ-

ences are expected to arise because of differences in 

sarcomere length (Fig. 12) or in the location of the tri-

adic junctions (Fig. 13)—can only be addressed with a 

multicompartment model.

Properties of Ca2+ Release Evoked by a Single AP 
and a High-Frequency Train of APs
The good agreement between the simulated and mea-

sured ∆fCaD waveforms in Fig. 4 A and Fig. 10 supports 

the idea that, in a fast-twitch EDL fi ber stimulated by 

one AP, the peak amplitude of SR Ca2+ release is 200–

225 μM/ms and the FDHM of SR Ca2+ release is �1.6 ms 

(16°C). The good agreement for a fi ve-shock 67-Hz teta-

nus (Fig. 4 B) supports the conclusion that Ca2+ release 

in response to APs 2–5 declines progressively from 

�0.25 to �0.15 times that elicited by the fi rst AP.

Ca2+ Inactivation of Ca2+ Release
The results indicate that the concentration of Ca2+ re-

leased by a second AP initiated 15 ms after a fi rst AP 

is only �0.25 times that evoked by the fi rst (Figs. 3 

and 10). This large reduction in release likely occurs be-

cause of Ca2+ inactivation of Ca2+ release produced by 

the rise in [Ca2+] elicited by the fi rst release (compare 

Baylor et al., 1983; Schneider and Simon, 1988; Jong 

et al., 1995). The ability of the release system to recover 

from inactivation was studied with a two-AP protocol 

(Figs. 10 and 11). The results indicate that, during the 

period 15–400 ms after the fi rst release, the amplitude 

of the second release recovers from �0.25 to >0.9 times 

that of the fi rst release with a rate constant of �7 s−1. 

This rate constant might refl ect the ability of the release 

system to recover from inactivation uninfl uenced by 

Ca2+, as a large fraction of the recovery (0.36 to >0.9 

times the fi rst release) takes place ≥40 ms after the fi rst 

release, when, according to the multicompartment sim-

ulation, [Ca2+] near the release sites is <2 μM.

The properties of Ca2+ inactivation of Ca2+ release in 

mouse fast-twitch fi bers at 16°C have both similarities 

and differences when compared with those in frog cut 

fi bers at 14–15°C (Jong et al., 1995). The relative ampli-

tude of release with a second AP initiated ≤15 ms after 

the fi rst is similar in the two preparations, �0.3 times 

that of the fi rst release, and the fractional recovery from 

inactivation after 200–400 ms is similar, >0.9. The val-

ues of the recovery rate constant, however, are different: 

�7 s−1 in mouse fi bers vs. �40 s−1 in frog fi bers. It is 

possible that the smaller value in mouse fi bers is related, 

at least in part, to the time required for ∆[Ca2+] to 

 return to a suffi ciently low level that the recovery rate 

constant becomes independent of Ca2+. In the frog 

 experiments, the myoplasm contained 20 mM EGTA, 

which is expected to quickly reduce ∆[Ca2+] to <0.1 μM; 

thus, the rate constant reported for frog fi bers is likely 

to be independent of Ca2+ (Jong et al., 1995). In the 

mouse fi bers of this article, the return of ∆[Ca2+] to 

a low level relies on the normal Ca2+ buffering and re-

moval systems, and, as noted above, the simulations in-

dicate that it takes �40 ms for [Ca2+] near the release 

sites to fall below 2 μM. If this level is suffi ciently low for 

recovery to proceed unaffected by Ca2+, then the Ca2+-

independent recovery rate appears to be approximately 

sixfold smaller in mouse fi bers than in frog fi bers. It 

would be valuable to estimate this rate constant in 

mouse fi bers with the EGTA or related method.
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The Time Course of ∆[Ca2+] Evoked by an AP
In EDL fi bers stimulated by one AP, the value of FDHM 

of spatially averaged ∆[Ca2+] is estimated to be 3.6–4.8 

ms (16°C; Table IV, B). These small values depend on a 

brief Ca2+ release waveform and the presence of a sub-

stantial concentration of Ca2+ buffers in myoplasm that 

are capable of binding Ca2+ relatively quickly after cessa-

tion of release. The simulations indicate that both tropo-

nin and parvalbumin are major contributors to this Ca2+ 

binding. In fast-twitch mouse fi bers, the concentra-

tion of Ca2+ regulatory sites on troponin is substantial, 

�240 mM (Table I), and the simulations indicate that 

troponin captures Ca2+ during the falling phase of 

∆[Ca2+] (Figs. 5 and 7). In addition, type IIb EDL fi bers 

have near millimolar concentrations of parvalbumin 

 (Heizmann et al., 1982; Ecob-Prince and Leberer, 1989), 

and the simulations indicate that the Ca2+/Mg2+ sites on 

parvalbumin also play an important role in binding Ca2+ 

during the falling phase of ∆[Ca2+] (Figs. 5 and 7).

In frog twitch fi bers having diameters similar to those 

of EDL fi bers (30–50 μm), the average amplitude of the 

furaptra ∆[Ca2+] signal elicited by one AP is very similar 

to that in EDL fi bers (16.9 ± 1.5 and 17.8 ± 0.4 μM, re-

spectively; estimated with Eq. 3) while its FDHM is larger 

(8.6 ± 1.6 and 4.6 ± 0.3 ms) (16°C; Hollingworth et al., 

1996). If the concentrations and kinetics of the myo-

plasmic constituents are basically similar in these two 

 fi ber types (compare Tables I and II), the most likely 

explanation for the larger FDHM of ∆[Ca2+] in frog 

 fi bers is that SR Ca2+ release lasts longer. A possible 

basis for such a difference is that frog fi bers have an 

approximately equal mixture of RyR1 and RyR3 iso-

forms whereas EDL fi bers have only the RyR1 isoform 

(see Introduction). Activity in the RyR3 isoform might 

underlie a broadening of the overall release time course. 

For example, it has been proposed that SR Ca2+ release 

in frog fi bers involves activation of RyR1s by T-tubular 

depolarization, and the resultant rise in [Ca2+] then ac-

tivates RyR3s via Ca-induced Ca2+ release (e.g., Klein 

et al., 1996; Shirokova and Rios, 1997; Gonzalez et al., 

2000; see also Rios and Pizarro, 1988). It has not been 

ruled out, however, that other factors might also cause a 

longer-lasting Ca2+ release fl ux in frog fi bers—for ex-

ample, differences in the waveform of the AP in the 

transverse tubular system, differences in the properties 

of muscle charge movement, and differences in the on-

set of Ca2+ inactivation of Ca2+ release.

Recovery of the Fast Decay of ∆[Ca2+] after 
a Conditioning Stimulus
The simulations indicate that the metal-free sites on 

both troponin and parvalbumin are largely depleted by 

the Ca2+ released with a fi rst AP (Fig. 5, Fig. 7 C, and 

Fig. 11 C) and that the loss of the ability of these sites 

to bind Ca2+ is associated with a substantial reduction 

in the rate of decay of ∆[Ca2+] evoked by a second AP 

initiated shortly after the fi rst (Figs. 7 and 11). As expected 

from this conclusion, the simulations indicate that the 

reappearance of the rapid decay of ∆[Ca2+] in response 

to an AP is strongly correlated with the recovery of the 

concentration of the metal-free sites on troponin and 

parvalbumin (Fig. 11, C and D).

Location of the Triadic Junctions Relative to the z-Line
The triadic junctions in mammalian fi bers are located 

circumferentially around a myofi bril in a narrow region 

that is offset �0.5 μm from the z-line, both in slack and 

stretched fi bers (Brown et al., 1998). This location of SR 

Ca2+ release appears to be optimized for producing an 

occupancy of troponin with Ca2+ that is as uniform as 

possible for a single release location and a given amount 

of Ca2+ release. The simulations of Fig. 13 confi rm that 

this location has clear advantages when compared with 

the location of the triadic junctions in amphibians fi -

bers (at the z-line). The mammalian location achieves a 

more uniform and generally faster occupancy of tropo-

nin with Ca2+ while using a smaller total concentration 

of released Ca2+.

Calcium Movements at Short-Sarcomere Length
The furaptra ∆fCaD measurements of this article were 

performed at nonphysiological sarcomere lengths, 3.6–

4.0 μm, to minimize movement artifacts in the optical 

records. Simulations were used to estimate the Ca2+ 

movements expected in mouse EDL fi bers at a normal 

working sarcomere length, 2.4 μm. These simulations 

indicate that, with the standard SR Ca2+ release fl ux 

evoked by an AP, the binding of Ca2+ by its buffers other 

than troponin is more uniform at short-sarcomere 

length than at long-sarcomere length; in contrast, Ca2+ 

binding by troponin is less uniform at short-sarcomere 

length. These differences appear to arise because the 

average longitudinal distance over which Ca2+ diffuses 

to reach its buffers other than troponin is smaller at 

short-sarcomere length, while the average radial dis-

tance to reach troponin is larger.

An unanticipated observation in the simulations is that 

spatially averaged ∆[Ca2+] is virtually identical at short- 

and long-sarcomere lengths (for a given Ca2+ release 

waveform); in contrast, the ∆fCaD response of furaptra 

has a somewhat larger amplitude and briefer time course 

at short-sarcomere length (Fig. 12). The larger and 

briefer ∆fCaD at short-sarcomere length arises because 

the sarcomeric gradients in ∆[Ca2+] are smaller at short-

sarcomere length; thus, nonlinearities in furaptra Ca2+ 

binding in and near the release compartment are smaller. 

Experimental observations consistent with these simula-

tions were made previously in frog single fi bers, where 

the amplitude of the furaptra ∆[Ca2+] signal (calibrated 

with Eq. 3 from spatially averaged ∆fCaD) was found to be 

somewhat larger at short-sarcomere length, and its time of 

peak and FDHM somewhat smaller (Konishi et al., 1991). 
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Without information from the multicompartment simu-

lations, it would be tempting to conclude that stretch re-

duces SR Ca2+ release (e.g., Blinks et al., 1978). Fig. 12, 

however, shows that stretch can reduce the measured 

(spatially averaged) Ca2+ signal without any reduction in 

Ca2+ release, thus providing a clear example of how a 

multicompartment model can aid in the interpretation 

of an experimental observation.
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