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Abstract
Dengue virus (DENV) is one of the most important arboviral pathogens in the 
tropics and subtropics, and nearly one- third of the world's population is at risk of 
infection. The transmission of DENV involves a sylvatic cycle between nonhuman 
primates (NHP) and Aedes genus mosquitoes, and an endemic cycle between human 
hosts and predominantly Aedes aegypti. DENV belongs to the genus Flavivirus of the 
family Flaviviridae and consists of four antigenically distinct serotypes (DENV- 1- 4). 
Phylogenetic analyses of DENV have revealed its origin, epidemiology, and the drivers 
that determine its molecular evolution in nature. This review discusses how phyloge-
netic research has improved our understanding of DENV evolution and how it affects 
viral ecology and improved our ability to analyze and predict future DENV emergence.
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1  |  INTRODUC TION

Dengue virus (DENV) is the cause of high morbidity and mortality 
annually, and the global burden of DENV is increasing. Dengue virus 
is currently prevalent in 128 countries, and has now spread to non- 
tropical areas such as Europe.1,2 Dengue virus is also resurfacing in 
countries where native DENV has been non- existent for decades.3,4 
Dengue epidemics can place a significant burden on limited health 
care systems, with an estimated 390 million infections, 500 000 
hospitalizations, and 20 000 deaths per year.2,5,6 Globalization, 
transportation, trade, climate change, and the expanding range of 
the Aedes mosquito vector are expected to further increase the out-
break and spread of the virus to new geographic areas.7 Despite ad-
vances in the research and development of DENV vaccines, clinical 
management and vector control continue to form the basis of DENV 
prevention and control. While clinical treatment has effectively re-
duced the mortality caused by DENV in many cases, vector preven-
tion and control efforts have been relatively ineffective.6

The persistent DENV burden has largely resulted from the circu-
lation of four different DENV serotypes with overlapping endemic 
areas and partial host cross- protection.8,9 Thus, understanding 
DENV evolution through advances in genome sequencing, phylo-
genetics, bioinformatics, and other evolutionary and computational 
biology approaches offers a valuable opportunity to improve surveil-
lance and response to DENV outbreaks. Here, we discuss the evo-
lution and epidemiology of DENV and illustrate how evolutionary 
analyses can be utilized as effective tools to control this pathogen.

2  |  DENGUE VIRUS

DENV is an enveloped virus with a genome consisting of a single- 
stranded RNA approximately 10 to 11 kbp in length. The dengue ge-
nome consists of three structural and seven non- structural coding 
genes, all translated into a single polypeptide with two untranslated 
regions (UTR) at the 3′ ends and the 5′ ends. Examination of the struc-
tures of the viral proteins has provided insights into their effects on 
protein function, including the dynamics of viral morphology, the avail-
ability of binding sites, their roles in viral replication and pathogenesis, 
and variations in identified epitopes. Widely used approaches to study 
viral diversity rely on the analysis of individual amino acid positions of 
an alignment. A robust method based on Shannon's entropy is used 
to measure the degree of conservation and variability of peptides of 
desired length and infer their evolutionary stability. For immunologi-
cal applications, the entropy measure for viral sequences is based on 
overlapping nonamer peptides. The entropy of the DENV proteome 
provides useful insight into viral evolution and diversity.10,11

DENV belongs to the Flavivirus genus, which also includes sev-
eral other medically important arboviruses such as Zika virus (ZIKV), 
yellow fever virus (YFV), Japanese encephalitis virus (JEV) and 
West Nile virus (WNV).12 Global transmission is achieved via hu-
mans as both reservoirs and amplifying hosts.13 DENV is maintained 
in its natural reservoir, non- human primates and the Aedes genus 

mosquitoes, through the sylvatic cycle.14 This sylvatic life cycle may 
extend to human hosts and subsequently establish an endemic cycle 
dominated primarily by Aedes aegypti.9,15,16 Compared to other arbo-
viruses in the Flaviviridae family, such as WNV and JEV, DENV has a 
limited host range in vertebrates.16,17

DENV is classified into four serotypes, DENV- 1- 4. Within each 
DENV serotype, clusters of DENV viruses with nucleotide sequence 
divergence not >6% within a given genome region are further defined 
as genotypes.9,18 Each of the four DENV serotypes is thought to orig-
inate from its own sylvatic cycle.17,19 Sylvatic DENV strains have been 
isolated mainly from non- human primates (NHP). However, the spill- 
over to the endemic cycle is thought to continue occurring.9,12 There 
is certainly considerable diversity among unsampled sylvatic DENV. It 
was reported that a sporadic sylvatic DENV strain causing infection in 
humans in Borneo in 2007 was identified as a ‘fifth dengue serotype’ 
because the viral sequence differed from all known DENV strains.20

Dengue fever is characterized by symptoms ranging from asymp-
tomatic infections to a self- limiting dengue fever and then to more 
severe systemic symptoms including capillary leakage, hemorrhage, 
shock, and death.21 It is worth noting that the percentage of den-
gue infections that develop to the onset of such severe symptoms is 
generally low.21 In general, infection by one dengue serotype leads 
to lifelong protection against that same serotype, short- term protec-
tion against all serotypes for 1– 3 years, and subsequent protection 
against more severe disease upon contact with other serotypes due 
to a process called antibody- dependent enhancement (ADE).22,23 
ADE of viral infection is a phenomenon in which virus- specific an-
tibodies promote viral entry and, in some cases viral replication, in 
monocytes/macrophages and granulocytic cells through interaction 
with Fc and/or complement receptors. It is hypothesized that this is 
an evolutionary mechanism that DENV developed to avoid simul-
taneous competition of four serotypes against the same host pop-
ulation.9 The risk of developing severe disease increases with the 
second infection and decreases after the second infection.24

3  |  CHAR AC TERIZ ATION OF THE 
E VOLUTION OF DENV

DENV genome sequencing of human serum or vector samples is 
most commonly used in the molecular epidemiological analysis of 
DENV.25 The relatively small size of the DENV genome has the ad-
vantage of allowing next- generation sequencing (NGS) approaches, 
and public DENV genome libraries (e.g., GenBank) have grown rap-
idly over the past years. The quality of these sequence data varies 
and requires multistep quality control before finally being used for 
analysis.26

Subsequently, evolutionary analysis of consensus DENV ge-
nomes has typically been relegated to phylogenetics and phyloge-
nomics,27,28 where phylogenetic trees are extrapolated to explain 
evolution as a function of interviral relationships and genetic dis-
tance.28 As DENV evolution occurs on a scale which often matches 
that of DENV transmission and epidemics, genetic variances among 
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common DENV strains can often be detected within a few weeks, 
especially when genome- wide data are used.29– 31

In recent years, Bayesian phylogenetic methods have been 
widely applied using software such as BEAST (Bayesian Evolutionary 
Analysis of Sampling Trees).32 Bayesian methods also allow for the 
construction of complex evolutionary models, such as those describ-
ing changes in the rate of molecular evolution, population dynamics, 
and spatial migration. Information on geographic origin can also be 
inferred if available for the sample.26

4  |  SYLVATIC AND ENDEMIC DENV

Comparative analysis of the evolution of sylvatic and endemic DENV 
sequences has provided important insights into DENV biology. In 
DENV- 1, −2, and − 4, the evolution and epidemiology of sylvatic and 
endemic virus lineages remain distinct. Phylogenetic evidence has 
revealed that endemic DENV- 1, −2, and − 4 strains did not arise from 
a single ancestor but from independent sylvatic cycles. No data are 
available on the sequence of sylvatic DENV- 3, but this serotype is 
also thought to have evolved from a distinct sylvatic ancestor.33

The 5′ and 3′ regions of the UTR are well conserved in endemic 
and sylvatic DENV- 4 strains, suggesting that these UTR regions have 
important functions, but there are significant differences in the cod-
ing regions.34 Sylvatic and endemic strains of serotypes 1 and 2 ex-
hibit similar levels of genetic divergence.35,36 Nucleotide differences 
of up to 19% between sylvatic and endemic strains in each dengue 
serotype have been observed.16 This is clearly associated with anti-
genic variance, and in vitro data suggest that exposure to an endemic 
DENV serotype provides protection against sylvatic strains from this 
serotype, while cross- protection against sylvatic strains from other 
serotypes is limited.37

In general, the rate of DENV evolution may be different between 
sylvatic and endemic cycles, but there is no conclusive evidence 
for differences in replication capacity within vertebrates or adap-
tive evolution between endemic and sylvatic DENV.12,16 Therefore, 
it was suggested that there may be a high risk of sylvatic DENV 
spreading into human populations and subsequent formation of 
new endemic strains in humans, but this risk clearly needs further 
investigation.12,38

5  |  THE E VOLUTIONARY DRIVERS OF 
DENV

5.1  |  Replication errors

Due to the relatively low fidelity of RNA- dependent RNA poly-
merases, the number of DENV replication errors is estimated to be 
around one nucleotide mutation per whole genome replication.18,39 
The errors caused by these enzymes lead to the accumulation of 
different genomes in vertebrate hosts, resulting in a population 
with genetic variation.18 However, infection bottlenecks between 

vertebrate hosts and vectors, which means reductions in viral popu-
lation size when arbovirus is transmitted between hosts and vectors, 
have resulted in only a small proportion of the intra- host variants 
shaping the inter- host diversity.40,41 As with other flaviviruses, pop-
ulations of DENV variants within the vector have also been found, 
which may be due in part to immune mechanisms such as RNAi in the 
vector.18,42 In addition, bottlenecks of vector to host transmission 
are one of the reasons limiting the spread of variant populations in 
vectors.18 Changes in mosquito population dynamics could further 
limit the effect of intravector variance in DENV epidemiology, as has 
been observed for other flaviviruses.43

5.2  |  Purifying selection pressure

As an RNA virus, DENV is often subject to strong purifying selection 
pressure.11,44 Interestingly, the extent of the DENV dataset, which 
contains continent- wide pandemic data, is comparable to local out-
breaks in individual countries.45 This is consistent with the fact that 
the virus is subject to massive negative selection as it switches be-
tween vectors and vertebrate hosts.16 While it has been suggested 
that strong purifying selection contributes to lineage extinction and 
replacement, this was not explicitly demonstrated in a study exam-
ining the role of adverse selection in lineage shifts or extinction of 
variants within a lineage.46 Purifying selection has also been shown 
to affect population variation in humans, but less so on population 
variation in vectors.18

5.3  |  Positive selection pressure

Positive selection was thought to be responsible for the emergence 
of an epidemic DENV lineage in Puerto Rico.47 It was also associ-
ated with an A811V mutation in the DENV NS5 protein in clade II of 
Asian- American DENV- 2 genotypes from an epidemic in Peru, but it 
was not accompanied by increased in vitro replication.48

Analysis of positive selection pressure on the ancestral DENV 
strains did not reveal a general and consistent relationship between 
adaptive evolution and the emergence of the four distinct serotypes.49 
However, during the divergence of DENV- 2, −3, and − 4 lineages, 
positive selection occasionally occurred,50– 52 and previous work has 
shown that there was weak positive selection pressure in these lin-
eages, suggesting that adaptive evolution does indeed affect DENV 
strain diversity. When interpreting these results, it is important to 
note that estimates of selection pressure vary considerably between 
methods and often depend on the constituents of the sequence data-
set in detecting statistically significant selection pressure.53,54

5.4  |  Lineage shift and replacement

DENV has been repeatedly introduced at different spatial scales, 
leading to reports of persistence of a single DENV strain in an 
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area.55– 57 These introductions often replace existing clades within 
genotypes53 or serotypes,58– 60 but co- dispersal of genotypes and 
serotypes can also occur.61,62 New serotypes can also cause bottle-
necks and replace previously dominant serotypes,63,64 contributing 
significantly to DENV diversity in a given spatial region.39 This pat-
tern of strain introduction, exchange, and migration often limits the 
long- term persistence of a given strain in a given region.65

In Nicaragua,66 Malaysia,67 Peru,48 Paraguay,58 and Sri Lanka,68 
serotype or subserotype switching coincided with DENV outbreaks, 
probably because the DENV primed population was infected by a 
new lineage and more cases with severe symptoms occurred. The 
expanding epidemic and successful evolution of DENV is thought 
to result from the increased disease transmission caused by this se-
rotype interaction.12 In addition to the effect of prior immunity in 
populations, other factors have been proposed for DENV lineage 
shift and displacement, including differences in vector compe-
tence,69– 71 viral fitness, host viral loads,72 seasonal bottlenecks in 
vector populations,12 human migration,39 and random events,12 but 
these hypotheses still need further research. Another hypothesis 
that requires careful investigation is whether dengue vaccination 
leads to changes in regional or local DENV population diversity and 
the adaptive evolution of lineages that escape herd immunity to the 
vaccine.73

5.5  |  Recombination

The possibility that DENV can recombine in the host is plausible and 
is supported by phylogenetic studies.74 For example, during the out-
break on the island of New Caledonia, it was found that one of the 
patients harbored a mixed infection of DENV- 1, containing viruses 
assigned to both genotypes I and II, as well as a number of inter- 
genotypic recombinants.74 Intra- serotypic recombination of DENV- 1, 
DENV- 2, and DENV- 3 has been demonstrated in studies, but is rela-
tively rare.74– 77 Although coinfection with DENV serotypes has been 
reported, no recombination between serotypes has been reported.78

It is important to note that the presence of recombination in 
DENV is confirmed only by phylogenetic mismatches in the wild- 
type viral sequence and cannot be reproduced in vitro. As a result, 
the actual frequency of occurrence is controversial.9,16 The lack of 
significant spread and persistence of circulating forms of recombi-
nant DENV suggests that recombinants do not have a significant ad-
vantage in viral replication and transmission, and that the effect of 
recombination is much weaker in the emergence of DENV diversity 
than in cases of other viruses.79,80

6  |  APPLIC ATION OF THE STUDY 
OF DENV E VOLUTION TO EPIDEMIC 
SURVEILL ANCE

Phylogenomic analysis of DENV genome can be utilized to im-
prove epidemic surveillance and speed up responses to DENV 

outbreaks. Phylogeographic analysis is a method that examines 
the correspondence between phylogenetic and geographic rela-
tionships among organisms, thereby clarifying the processes un-
derlying the genetic diversity of populations in space and time. 
A phylogeographic analysis of the American- Asian genotype of 
DENV- 2 in South America suggests that this serotype has spread 
southward from the Caribbean.81 This north– south spreading 
pattern was also seen in reports of the prevalence of DENV- 1 
genotype V and DENV- 3 genotype III in Latin America and can 
serve as a basis for predicting future routes of DENV strains in 
this region.82– 84 Globally, DENV genotypes are distributed dis-
tinctly across continents. For example, only the American and 
Asian- American DENV- 2 genotypes have been found in North and 
South America, while the Asian- I DENV- 2 genotype is restricted to 
Southeast Asia.16,85 Thus, some regions may be naive to genotypes 
that these regions have not been exposed to and surveying these 
genotypes using sequence data can provide early warning of fu-
ture epidemiological threats.

Phylogeographic studies can also provide insight into the extent, 
pathways, and dynamics of transmission within and between differ-
ent DENV endemic regions. Spatial distribution of DENV has been 
observed in the Caribbean, and a Bayesian analysis of information 
from 11 countries in the Caribbean shows that the proximity among 
these countries is a crucial indicator of cross- national transmission 
of DENV strains.56,86

Phylogenetic approaches have also provided important informa-
tion on the spatial distribution patterns of dengue fever at national 
and smaller scales. Local studies in Thailand have reported the epi-
demiological dynamics of school cohorts within villages, describing 
local transmission within and between schools and niche aggrega-
tion within households, which can be achieved by analyzing genomic 
data.87,88 A series of DENV infections in Thailand with a micro- 
spatial pattern of high resolution has been reported, and it matches 
with the restricted flight distance of vectors and human movements 
in many regions with a dengue epidemic, with most DENV infec-
tions occurring near patients' homes.89 The study suggests that this 
micro- spatial pattern was time- related and that local persistence of 
DENV strains was not more than half a year, with mixed strains oc-
curring in all parts of Thailand after one dengue season. On the other 
hand, approximately eight seasons are needed for DENV strains to 
be mixed thoroughly in other nearby Southeast Asian regions, sug-
gesting that international transmission of the virus is limited. These 
results contribute to public health interventions as they are useful 
for predicting the future pathways and dynamics of DENV strains 
into the tropics.

Using genomic data to parameterize DENV epidemic dynamics 
over time is important because it provides an estimate of when a 
new strain of DENV emerged in a particular region and how long 
it has been circulating before being detected by the surveilling 
systems. These modern molecular methods can be used to test 
the reliability of DENV surveillance systems and reveal whether 
an outbreak is the result of a single infection or co- infection in a 
particular location.90,91
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7  |  LIMITATIONS AND FUTURE 
DIREC TIONS

Current investigation of the evolution and epidemiology of DENV is 
largely constrained by the severe lack of sequence data from Africa 
(according to NCBI GenBank). Given that human cases have been 
reported since the late 19th century in Africa and that the name of 
the virus is thought to originate from the Swahili language, Africa 
may have played an important role in the early emergence of DENV, 
and addressing the deficiency of sequence information should be a 
priority issue.92 Efforts to reconstruct the early epidemic period of 
human DENV are limited by the lack of such data.12 Recent global 
efforts to map DENV have shown that DENV circulates in Angola, 
Gabon, Burkina Faso, Mali, Kenya, and Nigeria,15 with severe cases 
of DENV infection in humans reported in Senegal.16,93 To date, all 
four serotypes have been found in Africa, and there is evidence that 
these serotypes are becoming more widespread. All four DENV 
serotypes have also been isolated from sentinel monkeys (and still 
circulate in the community) in Malaysia, and DENV serotypes iso-
lated from Malaysia and Africa are genetically distinct from each 
other. Phylogenetic studies have described the presence of a wider 
diversity of sylvatic DENV strains in Malaysia compared to those 
in Africa.16,61,93,94 In addition, Africa has several sylvatic niches of 
DENV and a history of viral spill- over that has resulted in human epi-
demics of various RNA viruses such as HIV and Ebola.16,95– 97 Thus, 
there is a possibility that new DENV serotypes may emerge in the 
region.

Genetic studies of DENV have greatly improved our understand-
ing of the patterns of disease transmission. Further advances in the 
technology of nucleotide sequencing have made it possible to study 
DENV strains in natural hosts from the perspective of population, 
providing opportunities to investigate novel aspects of DENV evolu-
tion and epidemiology. New deep sequencing methods can provide 
a more detailed picture of DENV population size and dynamics at 
all steps of infection and transmission and contribute to the iden-
tification and isolation of sequence variants with a relatively small 
population.

Little attention has been paid to the ecology and epidemiology 
of sylvatic DENV, which is critical to understanding and predicting 
DENV occurrence. Human infection with sylvatic DENV strains 
has already been observed in West Africa in small epidemics.37 
Unfortunately, the ecological contact between the sylvatic cycle 
and the epidemic cycle of DENV has rarely been studied. Further 
comprehensive and prospective studies of DENV epidemiology and 
ecology are therefore needed to understand the incidence of DENV 
epidemics and predict the pattern of DENV re- emergence.
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