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Abstract: Estimating the joint torques of lower limbs in human gait is a highly challenging task and
of great significance in developing high-level controllers for lower-limb exoskeletons. This paper
presents a dependent Gaussian process (DGP)-based learning algorithm for joint-torque estimations
with measurements from wearable smart shoes. The DGP was established to perform data fusion,
and serves as the mathematical foundation to explore the correlations between joint kinematics and
joint torques that are embedded deeply in the data. As joint kinematics are used in the training phase
rather than the prediction process, the DGP model can realize accurate predictions in outdoor activities
by using only the smart shoe, which is low-cost, nonintrusive for human gait, and comfortable to
wearers. The design methodology of dynamic specific kernel functions is presented in accordance
to prior knowledge of the measured signals. The designed composite kernel functions can be used
to model multiple features at different scales, and cope with the temporal evolution of human
gait. The statistical nature of the proposed DGP model and the composite kernel functions offer
superior flexibility for time-varying gait-pattern learning, and enable accurate joint-torque estimations.
Experiments were conducted with five subjects, whose results showed that it is possible to estimate
joint torques under different trained and untrained speed levels. Comparisons were made between
the proposed DGP and Gaussian process (GP) models. Obvious improvements were achieved when
all DGP r2 values were higher than those of GP.

Keywords: dependent Gaussian process (DGP); composite kernel function; human gait;
joint-torque learning

1. Introduction

Lower-limb exoskeletons are desired to replicate human-gait mechanics, and to be “transparent”
to users [1,2]. However, no breakthrough has been made in the field of transparent human–exoskeleton
interaction. In human–exoskeleton systems, a high-level controller should identify humans’ planned
actions, known as motion intents, and accordingly command the robot [3]. Thus, how to determine
future human motion has become a key issue. As the human gait is complex, involving activities in the
nervous system, musculoskeletal dynamics, and co-operation between different joints in the lower
extremity, many reported methods for human-motion-intent learning were based on pattern-recognition
results for simplification [4–6]. Switching rules and if–then decision making were usually used for
designing high-level exoskeleton controllers [7,8]. This means that they are unable to handle the
evolving dynamics that is not included in preset classifications. Although various improvements
on information exchange were made, there are mismatches and disparities in robots’ understanding
of human-motion intents in terms of continuous joint torque, especially when a human walks at
unspecified speed levels [9]. This calls for a robust model to continuously estimate joint torques for the
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optimization of exoskeleton assistance, which can extract the time-varying movement features and
diversity of gait patterns [10–12].

Extensive research has been conducted on developing algorithms for estimating joint torques.
Those algorithms are classified as model- or nonmodel-based strategies. The focus of model-based
algorithms is to put on the estimation of joint torques by forward or inverse dynamics [13,14]. For the
forward dynamics of the human neuromusculoskeletal system, most existing models are based on
Hill’s work. For example, the musculoskeletal model of human lower limbs was derived for the
simulation of human gait in [15]. Ao et al. proposed a surface-electromyography (sEMG)-driven
Hill-type model to estimate ankle-joint torques [16]. However, as muscular contraction is a highly
complex mechanochemical process including the generation of action potentials (APs), the release of
myoplasmic calcium, and the final relative sliding of thin and thick filaments, the transformation from
muscle activation to muscle force is not yet fully understood. Furthermore, modeling parameters may
deviate from initial parameters because of fatigue during walking. In addition, the determination of
muscle geometry for a living person is difficult and time-consuming. Thus, most existing modeling
approaches were inaccurate and did not incorporate the time-varying capabilities of users. To address
these problems, empirical models with greatly improved usability were derived by some researchers,
including phenomenological [17] and semiphenomenological [18] models. Unfortunately, problems
also exist with the application of empirical models, when clear biomechanical interpretations are still
missing, and the model-calibration workload is heavy. Gui proposed a two-step learning strategy
to estimate the active joint torques of the subject for a custom human–exoskeleton system using
sEMG signals [19]. The proposed estimator could update the EMG torque model without calibrations.
Experiments were only conducted for the swing phase. Therefore, it may need further investigation
for the stance phase. On the other hand, the inverse-dynamics approach has been applied to estimate
the resultant moment at a joint in the laboratory using an optical motion-capture system combined
with force plates [20]. However, the equipment is expensive and cannot meet the requirements of
daily activities. These drawbacks hinder its potential use in developing high-level controllers for
walking-aid devices.

With the fast development of machine learning, there are many researchers attempting to estimate
joint torques using nonmodel-based methods, including neural networks (NNs) and the Gaussian
process (GP). These methods are to map the measured signals (e.g., ground reaction force, shank
angular velocity, and joint angles) to the resultant moments at a joint, which can generally be formulated
as a regression problem. As ankle torques are the least variable among joints of lower limbs due to
the constraint by the ground, many reported algorithms are keen on the estimation of ankle-joint
torques [21]. For example, an NN was adopted to estimate ankle-joint torques using a low-cost pressure
insole and tendon sensor in [22]. The GP model was used to estimate ankle angles and torques at
a specified walking speed using shank angular velocity and angle as the inputs [7]. This approach
demonstrated superior performance and was capable of providing credibility to the established
model [23]. However, estimation results on knee and hip torques remain unknown. Estimating
joint torques is a highly challenging task for different levels of walking speed. A central difficulty in
high-precision estimations is in determining a model that can capture dynamic information behind
measured signals. As joint kinematics (e.g., angle and angular velocity) and joint torques definitely have
dependencies, data fusion is recommended to explore correlations between the kinematics and torques
of a joint, and to figure out time-varying movement features in the human gait. More specifically,
the joint kinematics of the lower limbs are the direct description of the human gait, which can be realized
by modulating the joint torques [21]. Thus, the constructed fusion model promises to offer superior
performance by fusing multiple datasets. Recently, the dependent Gaussian process (DGP) was used to
address the data-fusion problems [24,25]. The DGP model can be constructed by regarding the GP as
filters excited with white source noise, which is a powerful mathematical tool to model various dynamic
systems in terms of covariance functions [26]. It enables the exploration of deep-layer relationships
between strongly coupled multisource information by considering spatial correlations with itself in
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each dataset and the spatial-correlation cross-datasets [27]. In addition, the statistical nature of DGP
offers superior flexibility and credibility for risk-based control [23]. With these advantages, this paper
presents a DGP-based data-fusion model for joint-torque estimation in the human gait. As ground
reaction force (GRF) and foot motion are the direct indicators of human gait [28], measurements from
wearable smart shoes were treated as inputs to the model. Joint kinematics were used for training
the DGP model, and it did not need the information of joint kinematics in the prediction process.
Thus, the proposed method could realize accurate predictions only by using the smart shoe, which is
low-cost, nonintrusive for human gait, and comfortable to wearers. On the other hand, the design
methodology of dynamic specific kernel function is presented to transfer prior knowledge of measured
signals, which broadens its applications in engineering. The kernel function is the core of a GP, as it
encodes prior knowledge about the dynamic system that it aims to learn [29]. Every kernel function
has its suitable characteristics to model different dynamic processes [30]. The DGP with the designed
composite covariance kernel could handle the evolving dynamics in human gait.

This study developed a DGP-based data-fusion model for human-lower-limb torque learning
using smart shoes. The model aimed to understand the natural relationships between kinematics and
torques of a joint that are dependent. The design methodology of a dynamic specific kernel function
is proposed to form composite kernel functions by virtue of the sum and product constructions in
which estimation bias and variances of the fused model are served as critical criteria for performance
evaluation. The main contributions of this paper are as follows:

1. A soft smart shoe that is low-cost, nonintrusive for human gait, and comfortable to wearers was
designed to acquire the information concerning GRF and foot motion.

2. The DGP was performed to fuse the joint kinematics and joint torques with measurements from
smart shoes as the inputs. As joint kinematics are only used in the training phase, and it does
not need information on joint kinematics in the prediction process, the proposed method could
realize accurate estimations in outdoor activities by using only the smart shoe.

3. The designed composite covariance kernel function could achieve multiple-feature modeling at
different scales, and cope with the temporal evolution of the human gait. Hence, the proposed
model could extract time-varying gait patterns that were deeply embedded in the data, offering
superior performance. In addition, it enabled generalized joint-torque estimations for different
input types.

Experiments are also presented to demonstrate the flexibility and superior performance in learning
joint torques. To the best of our knowledge, the DGP model with a composite kernel function for
joint-torque estimations has not been reported before. Additionally, the proposed methods could
achieve excellent performance compared with that of the GP model.

2. Materials and Methods

2.1. Wearable Smart Shoes

In this section, we briefly introduce the smart shoe designed for exoskeletons. As shown in Figure 1,
it was developed with a soft sole made of silicone rubber with Hardness Shore 35A (Ecoflex0035,
SmoothOn Inc., Macungie, PA, USA), two 3D motion sensors (MPU9250, InvenSense, San Jose,
CA, USA), and a self-designed data-acquisition instrument. There were three pneumatic chambers at
the heel, arch, and forefoot of the sole, respectively, since the major weight is distributed on the heel
and forefoot in the case of a normal gait, and pressure under the arch helps to detect the midstance
phase [31,32]. A barometer (MS5637-02BA03, Measurement Specialties Inc., Fairfield, NJ, USA) was
enclosed in each chamber to measure air pressure when the wearer walked on the ground. The 3D
motion sensors mounted at the heel and forefoot were developed with a gyroscope, an accelerometer,
and a magnetometer to provide the foot motions. A microprocessor (STM32f103, STMicroelectronics
Inc., Geneva, Switzerland) and a Wi-Fi module (CC3200R1M2, Texas Instruments Inc., Dallas, TX, USA)
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were integrated into a printed circuit board. Air pressure (with an accuracy of ±1.5 mbar in the three
pneumatic chambers, orientations (accuracy of ±0.01◦) of the heel and forefoot, and angular velocities
(accuracy of ±0.05◦) of the heel and forefoot were acquired with a sampling rate of 100 Hz, and then
transported to a personal computer by the Wi-Fi module on the data-acquisition instrument. The soft
wearable shoes have numerous advantages, e.g., low cost, and being nonintrusive for human gait and
comfortable to wearers.
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2.2. DGP-Based Torque Estimation in Human Gait

Generally speaking, joint torques in the human gait are complex, involving musculoskeletal
dynamics, ligament forces, and bone-on-bone forces [21]. The problem of estimating joint torques is to
develop an appropriate mapping function y1 = f (x) between input x and joint torque y1. In the present
paper, the novel smart shoes were used for measuring the system states during human walking. A set
of measured data, such as xl =

[
x1 · · · x15

]
∈ Rn×15, for the left shoe could be acquired, including

air pressure at the heel, arch, and forefoot of the sole, three orientations, and three angular velocities of
the heel along the X, Y, and Z axes, respectively; and three orientations and three angular velocities of
the forefoot along the X, Y, and Z axes, respectively. Similarly, the dataset measured from the right shoe
can be denoted as xr =

[
x16 · · · x30

]
∈ Rn×15. Thus, the model input is x =

[
xl xr

]
, where n is

the lag number of the inputs. DGP was performed to learn mapping function f . DGP belongs to the
framework of Bayesian inference, which is fully specified by its mean and covariance function as given
by Equation (1) [33]:

f (x) ∼ GP(m(x),
∑
(x, x)) (1)

where m(x) is the mean function, and
∑
(x, x) is the covariance function that specifies the covariance

between pairs of random variables. The covariance function evaluated at pairs x1 =
[

x1
1 · · · xn

1

]
and x2 =

[
x1

2 · · · xm
2

]
is defined as follows:

Σ(x1, x2) =


ς(x1, x1) ς(x1, x2) · · · ς(x1, xm)

ς(x2, x1) ς(x2, x2) · · · ς(x2, xm)
...

... · · ·
...

ς(xn, x1) ς(xn, x2) · · · ς(xn, xm)


n×m

. (2)

Covariance specifies which structure the learned function is likely to be, and, in turn, determines
the generalization ability of the model. The squared-exponential (SE) function is the most commonly
used in the field of machine learning:

∑(
xi, x j

)
= σ2 exp

[
−

1
2

sTΛs
]
, (3)

where s = xi − x j; σ and Λ are hyperparameters defining characteristic length scales. The SE is suitable
to model smooth dynamics, and can convert global correlation into local correlation.
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Figure 2 illustrates the framework of the proposed torque-estimation procedure, including
signal acquisition, the design of the composite covariance kernel functions, data fusion, prediction,
and error evaluation. Information concerning GRF and foot motion is treated as the input of the model.
Joint torques, angles, and angular velocity were regarded as the outputs of the model (dependent
Gaussian processes are known as multioutput Gaussian processes that can be used to simultaneously
handle multiple correlated outputs). The kinematics (angle and angular velocity) and torques of a joint
definitely have dependencies. Hence, the fusion of multiple datasets can be formulated as a conditional
estimation problem where the estimation performance of a joint torque is improved by incorporating
information from the measured angle and angular velocity at the same joint. First, appropriate
covariance kernel functions for the kinematics and torques of each joint should be designed in
accordance to prior knowledge of the measured signals. Then, the DGP model and designed composite
covariance functions are used to learn the coupling relationships of the joint kinematics and joint
torques. Lastly, the estimator takes measurements from the wearable smart shoes as inputs to estimate
the joint torques. Estimation bias and variances are used to qualify the reliability of the model.

Sensors 2020, 20, 3685 5 of 17 

( ) 2 1exp
2

T
i j σ   − Λ  

=x , x s s , (3) 

where i j−=s x x ; σ and Λ are hyperparameters defining characteristic length scales. The SE is 

suitable to model smooth dynamics, and can convert global correlation into local correlation. 
Figure 2 illustrates the framework of the proposed torque-estimation procedure, including 

signal acquisition, the design of the composite covariance kernel functions, data fusion, prediction, 
and error evaluation. Information concerning GRF and foot motion is treated as the input of the 
model. Joint torques, angles, and angular velocity were regarded as the outputs of the model 
(dependent Gaussian processes are known as multioutput Gaussian processes that can be used to 
simultaneously handle multiple correlated outputs). The kinematics (angle and angular velocity) and 
torques of a joint definitely have dependencies. Hence, the fusion of multiple datasets can be 
formulated as a conditional estimation problem where the estimation performance of a joint torque 
is improved by incorporating information from the measured angle and angular velocity at the same 
joint. First, appropriate covariance kernel functions for the kinematics and torques of each joint 
should be designed in accordance to prior knowledge of the measured signals. Then, the DGP model 
and designed composite covariance functions are used to learn the coupling relationships of the joint 
kinematics and joint torques. Lastly, the estimator takes measurements from the wearable smart 
shoes as inputs to estimate the joint torques. Estimation bias and variances are used to qualify the 
reliability of the model.  

  
Figure 2. Framework of dependent Gaussian process (DGP)-based data fusion for  
joint-torque estimations. 

Given three measured datasets ( )1 1,x y , ( )2 2,x y , and ( )3 3,x y , estimation performance is 

improved by learning auto-co-variance functions and cross-co-variance functions between them. This 
can be formulated as 

( ) 1 1 1 2 2 2 3 3 3,cov | , , , , , , , , ,f f∗ ∗ ∗X x y x y x yθ θ θ  , (4) 

where 1x , 2x , and 3x  are DGP inputs. In the present paper, 1x , 2x , and 3x  are the same, and all 

of them are equal to x ; 1y , 2y , and 3y are the joint torque, angle, and angular velocity, respectively;

iθ  is the hyperparameter of the ith GP model; ∗X  is an arbitrary location to be evaluated; and f ∗  

and ( )cov f ∗  are the evaluated mean and covariance at ∗X . 

By performing DGP for joint-torque learning, a fused model can be designed by the conditional 
estimation of the three datasets, and it is specified in Equation (5): 

Figure 2. Framework of dependent Gaussian process (DGP)-based data fusion for
joint-torque estimations.

Given three measured datasets
(
x1, y1

)
,
(
x2, y2

)
, and

(
x3, y3

)
, estimation performance is improved

by learning auto-co-variance functions and cross-co-variance functions between them. This can be
formulated as

f ∗, cov( f ∗)
∣∣∣X∗, x1, y1,θ1, x2, y2,θ2, x3, y3,θ3, (4)

where x1, x2, and x3 are DGP inputs. In the present paper, x1, x2, and x3 are the same, and all of them
are equal to x; y1,y2, and y3 are the joint torque, angle, and angular velocity, respectively; θi is the
hyperparameter of the ith GP model; X∗ is an arbitrary location to be evaluated; and f ∗ and cov( f ∗) are
the evaluated mean and covariance at X∗.

By performing DGP for joint-torque learning, a fused model can be designed by the conditional
estimation of the three datasets, and it is specified in Equation (5): f ∗(X∗) =

∑
(X∗, X)

∑
−1(X, X)

[
y1, y2, y3

]
cov( f ∗(X∗)) =

∑
(X∗, X∗) −

∑
(X∗, X)

∑
−1(X, X)

∑
(X, X∗)

(5)

∑
(X, X) =


ΣY

11 ΣY
12 ΣY

13
ΣY

21 ΣY
22 ΣY

23
ΣY

31 ΣY
32 ΣY

33

 (6)

where ΣY
ii = ΣU

ii + σ
2
i I,ΣY

ij = ΣU
ij ; i,j = {1,2,3}; ΣY

ii represents the auto-co-variance matrix of the ith dataset;

ΣY
ij is the cross-co-variance matrix between the ith and jth datasets, and they can be derived through

the convolution integral [24]; and σi denotes the measurement noise component of the ith dataset.
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The covariance matrix between the evaluated point and training points is given as

Σ(X∗, X) =
[

ΣU
i1(X

∗, x1) ΣU
i2(X

∗, x2) ΣU
i3(X

∗, x3)
]
, (7)

where ΣU
i1, ΣU

i2, and ΣU
i3 are the GPs that are evaluated given another GP; Σ(X∗, X∗) represents the

covariance matrix of the location being evaluated, and it can be likewise defined.
Unlike other learning methods, estimation using DGP does not only consider spatial correlations

with itself in each dataset, but also spatial correlations across datasets. The fused GP model can be
constructed by regarding the GP as filters excited with white source noise [26]. The auto-co-variance
and cross-co-variance functions can be computed by the convolution integral as follows:

Yi(s) = Wi(s) + Ui(s) (8)

Ui(s) =
∫
s

ki(s, τ)X(τ)dτ, (9)

where, s is the data domain; Wi represents the stationary white noise; ki denotes the smooth kernel; Yi(s)
is the estimation. Applying the convolution integral technique for SE, for example, the auto-co-variance
and the cross-co-variance are specified as follows:

ΣU
ii = K f (i, i)π

d
2 |Λi| exp

[
−

1
4

sTΛis
]

(10)

ΣU
ij= K f (i, j)(2π)

d
2
∣∣∣Λi + Λ j

∣∣∣− 1
2 exp

[
−

1
2

sTΛi js
]
, (11)

where Λi j = Λi
(
Λi + Λ j

)−1
Λ j.

The estimation bias and variances of the fused model are served as the critical criteria to characterize
the quality of the fused GP model: { ∣∣∣ f ∗ − µ(X∗)∣∣∣ > µ0

cov( f ∗) > σ0
, (12)

where µ(X∗) is the measured value; and µ0 and σ0 are the preset thresholds. When the deviation
between estimated and expected values was greater than the preset threshold, more information
was needed to achieve accurate estimation. If the estimation variance were greater than the given
threshold, the estimation could be trustless. In either case, new training points should be added to
provide more information. In order to meet the requirements of real-time control, the maximal length
of training set S denoted as maxLength was preset. If S > maxLength, the composite covariance
function should be reconstructed to reach the desired accuracy and reliability. Within this framework,
hyperparameters are optimized with incoming data by using the gradient-optimization method to
maximize marginal likelihood. The partial derivatives of the marginal-likelihood function with respect
to the hyperparameters are acquired as follows:

∂ ln p(y|z,θ )
∂θ

= −1/2trace
(∑
−1 ∂

∑
∂θ

)
+ 1/2yT∑−1 ∂

∑
∂θ

∑
−1y. (13)
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The basic steps of DGP for estimation are as follows (Algorithm 1):

Algorithm 1 Basic steps of DGP for estimations.

Input: Y = [y1 y2] (training input) X = [x1 x2] (training target)∑
(covariance function) X
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2.3. Design Methodology of Kernel Function

The kernel function is used to define the covariance. It transfers prior knowledge of the measured
signals, and specifies which structure the learned function is likely to be. A befitting kernel may offer
superior estimation results and determine the generalization ability of the model [34]. Commonly used
base kernel functions include the squared exponential (SE), Matern class (MC), linear (LIN), white noise
(WN), rational quadratic (RQ), neural network (NN), periodic (PER), and sigmoid(SIG) [29,30]. These
kernel functions have different regression characteristics that can be used to model different dynamic
systems. Some interpretations of properties suitable for specific system dynamics are summarized
in Table 1. The human gait contains multiple features at different scales. A single covariance kernel
may not be flexible enough to accurately estimate joint torques. We can combine existing base kernel
functions to make a new one by virtue of the sum and product constructions. The sum of several
kernels can be used to model different dynamic characteristics (periodicity, linear dynamics, nonlinear
dynamics, and noise distribution), while kernels in a product way can improve the flexibility of the
model [24]. The design methodology of the composite kernel function is illustrated in Figure 3.

Table 1. Characteristics of some commonly used kernel functions. Note: SE, squared exponential; MC,
Matern class; LIN, linear; WN, white noise; PER, periodic; NN, neural network; RQ, rational quadratic;
SIG, sigmoid.

Kernel Characteristics

SE Infinitely differentiable, suitable to model smooth dynamics and kinematics.
MC Suitable to model dynamics and kinematics with different roughness.
LIN With linearly varying amplitude, can be used to model linear dynamics and kinematics.
WN Gaussian white noise, can be used to model system noise.
PER With periodic variations, suitable for periodic movements such as the standard gaits.
NN Rapid or large variations, suitable for irregular movements with random features.
RQ Mixture of SE with different length scales, suitable for smooth and unspecified movements.
SIG Suitable for sudden changes, for example, sudden ground contact.
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For instance, when we estimated the ankle-joint torque in the human gait, measurements from
smart shoes were used as the inputs, and the ankle-joint torque as the output. Additionally, the ankle
angle and angular velocity were incorporated to perform data fusion. First, we gathered data, and the
dynamic characteristics of the signals (for example, smooth, rough, linear, nonlinear, system noise,
medium-term irregularities, and periodicity) that could be inferred from the data were considered
as prior knowledge. In this scenario, the leading features of the measured signals were nonlinear,
containing some noise and sometimes some roughness. A summation of three different base kernels,
MC, SE, and WN, was designed to model these leading features. If a certain feature was complex, only
a single kernel was not enough to match the feature well. A new product kernel (e.g., MC × SE) was
designed to enhance the flexibility of the DGP model. In the other scenario, for example, sEMG signals,
were regarded as the inputs of the DGP model. The leading features of the sEMG signals were nonlinear
random features containing some noise and roughness. A summation of NN, MC, and WN may have
been the optimal choice according to the design methodology. The proposed design methodology
enabled generalized joint-torque estimations for different input types.

3. Experiment Study

3.1. Subjects

Five subjects without musculoskeletal or neurological dysfunctions gave written informed consent
prior to participation in the experiments. General information about the subjects is given in Table 2.

Table 2. Subject information used in this study (mean ± standard deviation).

Number of Subjects Age (Years) Height (cm) Mass (kg)

5 26.3 ± 3.4 176.4 ± 5.3 63.3 ± 3.1

3.2. Experiment Protocol

As shown in Figure 4, a gait-analysis system with a treadmill and an optical motion-capture
system (from Vicon Inc., Oxford, UK) were used for validating the proposed method. The treadmill
had independent belts and dual force plates to measure the ground reaction force/moment for each
foot. Sixteen markers (10 mm in diameter) were fixed on the subjects’ lower limbs on the following
anatomical landmarks: right and left anterior superior iliac, right and left posterior superior iliac,
right and left thigh, right and left knee, right and left tibia, right and left ankle, right and left heel,
and right and left toe. Ten high-speed motion-capture cameras captured the markers on the lower
limbs. Signals were acquired with a sampling rate of 100 Hz. After a practice phase, all subjects were
required to walk on the treadmill at three walking-speed levels (0.8, 1.2, and 1.6 m/s). Two trials,
denoted as Trials 1 and 2, were conducted. The subjects walked on the treadmill for 1 min and had
a rest for 2 min between trails to avoid abnormal gaits due to fatigue.
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3.3. Data Processing

Force-plate and marker data were streamed to Nexus 2.5 software (Oxford Metrics Limited
Inc. Oxford, UK), in which joint angles, angular velocities, and torques could be found. The joint
torques were normalized by body weight. The dataset was divided into training and testing groups.
Data of Trial 1 (relating to the three walking-speed levels mentioned above) of a specific subject were
used for training the DGP model, and data from Trial 2 of that subject were used for validation.
The predictor was developed using MATLAB 2015 (MathWorks, Inc., Natick, MA, USA) and run on
a laptop (ThinkServer TS250 from Lenovo Ltd., Beijing, China). A combination of MC, SE, and WN
was designed to model mapping function y = f (x) according to the design methodology. The MC
term enabled the DGP model to regress nonlinear dynamics, whereas the additional SE allowed for the
proposed method to model the local ingredient when estimations were performed near the dataset.
WN was used to figure out the system noise.

RMS =

√
n∑

i=1
( fi − µi)

2/n error was used to evaluate the estimation quality, where n was

the total number of sample points, fi was the estimated value, and µi was the measured value.
The root-mean-square (RMS) error contains information about the distribution of the estimated

values around the expected values [8]. In addition, r2 =

n∑
i=1

( fi−µ)

n∑
i=1

(µi−µ)
was computed to provide a more

comprehensive understanding of the results, where µ was the mean of measured data, r2 values
higher than 0.8 were regarded as acceptable estimations [35], and r2 values lower than 0.6 were
considered failed estimations. r2 values and RMS errors give a comprehensive understanding of the
estimation results.

4. Results

4.1. DGP Algorithm Validity

The DGP was developed in order to provide mapping from inputs to joint torques. The inputs
were related to three walking-speed levels (0.8, 1.2, and 1.6 m/s). The torques were scaled to the
percentage of body mass to assist in comparing different subjects. Figure 5 demonstrates a typical
set of experiment results of a single step presented as percentages of the gait cycle from heel contact,
where 95% confidence interval is shown in gray. With reference to Figure 5, estimation results were
acceptable, with most expected values falling inside the confidence interval. In addition, torques
tended to change magnitude with walking speed. As walking speed increased, the joint torques
increased, since higher torques are needed at faster walking speed.
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To better display the effectiveness of the proposed DGP, the r2 values for the three walking-speed
levels (0.8, 1.2, and 1.6 m/s) were computed and are listed in Table 3. Only 1 out of 45 values (underlined
in Table 3) was unacceptable. About 51% of the r2 values were equal to or greater than 0.90, which
showed the superiority of the algorithm to some extent. In addition, the GP model was used for
estimating the joint torques when the context (including kernels, datasets, and software and hardware
for running the predictor) was the same as that of the DGP model during the estimation; the r2 values of
GP are listed in Table 3. Only 18 values were acceptable when using GP for estimation, and 20% of the
r2 values were lower than 0.6, indicating the failure of the GP model for torque learning. Comparisons
were made between the proposed DGP and GP. All DGP r2 values were higher than those of GP.

The mean, maximal, and minimal r2 values using the proposed DGP model are illustrated in
Figure 6a. Figure 6b shows the mean, maximal, and minimal r2 values using the GP model. The squares
are the mean values of the r2 at every specific speed. The upper and lower bounds are the maximal and
minimal r2 values, respectively. The mean r2 values using the proposed DGP model were all higher
than 0.85 for the three walking-speed levels. The mean, maximal, and minimal values of r2 using the
GP model were all lower than those of DGP model. The proposed model could, therefore, extract
time-varying gait patterns and offer superior performance.
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Table 3. r2 values relating to three walking-speed levels. GP, Gaussian process.

Subject
0.8 m/s 1.2 m/s 1.6 m/s

Ankle Knee Hip Ankle Knee Hip Ankle Knee Hip

A
DGP 0.8690 0.8222 0.9233 0.9491 0.8499 0.9432 0.9594 0.9731 0.8842

GP 0.7698 0.4993 0.7427 0.9265 0.5833 0.8170 0.8565 0.3278 0.8022

B
DGP 0.9897 0.9486 0.8566 0.9773 0.9353 0.9388 0.9764 0.9574 0.9317

GP 0.9856 0.7586 0.8256 0.9747 0.8977 0.9065 0.9675 0.8726 0.9192

C
DGP 0.9294 0.9306 0.8147 0.8845 0.9325 0.8009 0.9397 0.8810 0.8594

GP 0.9104 0.8368 0.6702 0.5009 0.4857 0.7246 0.5536 0.3290 0.6571

D
DGP 0.9900 0.8517 0.8632 0.9619 0.8763 0.9353 0.8966 0.9062 0.8164

GP 0.9871 0.7779 0.8384 0.8488 0.7155 0.5407 0.7123 0.1631 0.7123

E
DGP 0.8502 0.8101 0.9371 0.7983 0.8064 0.8280 0.8093 0.9024 0.8966

GP 0.7994 0.7523 0.6183 0.6773 0.6431 0.7593 0.7411 0.7896 0.7887

Sensors 2020, 20, 3685 11 of 17 

was used for estimating the joint torques when the context (including kernels, datasets, and software 
and hardware for running the predictor) was the same as that of the DGP model during the 
estimation; the r2 values of GP are listed in Table 3. Only 18 values were acceptable when using GP 
for estimation, and 20% of the r2 values were lower than 0.6, indicating the failure of the GP model 
for torque learning. Comparisons were made between the proposed DGP and GP. All DGP r2 values 
were higher than those of GP.  

Table 3. r2 values relating to three walking-speed levels. GP, Gaussian process. 

Subject 
 0.8 m/s  1.2 m/s  1.6 m/s 
 Ankle Knee Hip  Ankle Knee Hip  Ankle Knee Hip 

A 
DGP 0.8690 0.8222 0.9233  0.9491 0.8499 0.9432  0.9594 0.9731 0.8842 
GP 0.7698 0.4993 0.7427  0.9265 0.5833 0.8170  0.8565 0.3278 0.8022 

B 
DGP 0.9897 0.9486 0.8566  0.9773 0.9353 0.9388  0.9764 0.9574 0.9317 
GP 0.9856 0.7586 0.8256  0.9747 0.8977 0.9065  0.9675 0.8726 0.9192 

C 
DGP 0.9294 0.9306 0.8147  0.8845 0.9325 0.8009  0.9397 0.8810 0.8594 
GP 0.9104 0.8368 0.6702  0.5009 0.4857 0.7246  0.5536 0.3290 0.6571 

D 
DGP 0.9900 0.8517 0.8632  0.9619 0.8763 0.9353  0.8966 0.9062 0.8164 
GP 0.9871 0.7779 0.8384  0.8488 0.7155 0.5407  0.7123 0.1631 0.7123 

E 
DGP 0.8502 0.8101 0.9371  0.7983 0.8064 0.8280  0.8093 0.9024 0.8966 
GP 0.7994 0.7523 0.6183  0.6773 0.6431 0.7593  0.7411 0.7896 0.7887 

The mean, maximal, and minimal r2 values using the proposed DGP model are illustrated in 
Figure 6a. Figure 6b shows the mean, maximal, and minimal r2 values using the GP model. The 
squares are the mean values of the r2 at every specific speed. The upper and lower bounds are the 
maximal and minimal r2 values, respectively. The mean r2 values using the proposed DGP model 
were all higher than 0.85 for the three walking-speed levels. The mean, maximal, and minimal values 
of r2 using the GP model were all lower than those of DGP model. The proposed model could, 
therefore, extract time-varying gait patterns and offer superior performance. 

r2

Ankle Knee Hip

0.8 m/s

1.6 m/s
1.2 m/s

0

0.2

0.4

0.6

0.8

1

Ankle Knee Hip

(a)

(b)

0.75

0.8

0.85

0.9

0.95

1

 

r2

0.8 m/s

1.6 m/s
1.2 m/s

 
Figure 6. r2 values of (a) proposed DGP and (b) GP models. 
Figure 6. r2 values of (a) proposed DGP and (b) GP models.

For each speed, the mean, maximal, and minimal values of RMS errors are illustrated in Figure 7.
The squares show the mean of the RMS errors at every specific speed. The upper and lower bounds
were the maximal and minimal RMS errors, respectively. As can be seen from Figure 7, the mean,
maximal, and minimal values of DGP RMS errors were all lower than those of GP. Results indicated
that the proposed DGP-based data-fusion method could understand the natural relationships from the
multisource information to which it is dependent. Thus, learning unspecified human dynamics could
be achieved.
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4.2. Further Investigations 

The performance of the proposed DGP model to estimate joint torques for untrained speed levels 
is investigated in this section. DGP was trained with input data from two of the three walking-speed 
levels (different combinations). Then, estimation quality was tested for another walking-speed level. 
For example, estimation quality was tested for a walking speed of 0.8 m/s, when the DGP was trained 
with input data from walking-speed levels of 1.2 and 1.6 m/s.  

Figure 8 demonstrates the mean, maximal, and minimal values of r2 in that case. The mean, 
maximal, and minimal values of RMS errors for untrained speed levels are shown in Figure 9. Almost 
all estimations of the GP model for untrained speed levels failed. Thus, results are not given here. As 
shown in Figure 8, the mean values of r2 for the three untrained walking-speed levels were all higher 
than 0.6, and most were higher than 0.8. The DGP model could, therefore, be used to estimate joint 
torques for untrained speed levels. However, the performance of the model may have declined in 
comparison to the trained case. This is visible for RMS errors and r2 values. By comparing  
Figure 6a with Figure 8, it is indicated that the mean, maximal, and minimal values of r2 for untrained 
speed levels were all lower than those of the trained cases. By comparing Figure 7a with Figure 9, it 
is indicated that the mean, maximal, and minimal RMS errors for untrained speed levels were all 
higher than those of the trained cases. Results were foreseeable, as gait patterns for different walking-
speed levels are not necessarily the same. Meanwhile, walking-speed levels were changed with a big 
step size of 0.4 m/s. If we expected satisfactory results, the step size should be chosen to be smaller, 
e.g., 0.2 m/s.  
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4.2. Further Investigations

The performance of the proposed DGP model to estimate joint torques for untrained speed levels
is investigated in this section. DGP was trained with input data from two of the three walking-speed
levels (different combinations). Then, estimation quality was tested for another walking-speed level.
For example, estimation quality was tested for a walking speed of 0.8 m/s, when the DGP was trained
with input data from walking-speed levels of 1.2 and 1.6 m/s.

Figure 8 demonstrates the mean, maximal, and minimal values of r2 in that case. The mean,
maximal, and minimal values of RMS errors for untrained speed levels are shown in Figure 9. Almost
all estimations of the GP model for untrained speed levels failed. Thus, results are not given here.
As shown in Figure 8, the mean values of r2 for the three untrained walking-speed levels were all
higher than 0.6, and most were higher than 0.8. The DGP model could, therefore, be used to estimate
joint torques for untrained speed levels. However, the performance of the model may have declined in
comparison to the trained case. This is visible for RMS errors and r2 values. By comparing Figure 6a
with Figure 8, it is indicated that the mean, maximal, and minimal values of r2 for untrained speed
levels were all lower than those of the trained cases. By comparing Figure 7a with Figure 9, it is
indicated that the mean, maximal, and minimal RMS errors for untrained speed levels were all higher
than those of the trained cases. Results were foreseeable, as gait patterns for different walking-speed
levels are not necessarily the same. Meanwhile, walking-speed levels were changed with a big step size
of 0.4 m/s. If we expected satisfactory results, the step size should be chosen to be smaller, e.g., 0.2 m/s.
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Although the untrained-speed result was less acceptable than in the case where there was 
training, the proposed model has a potential use for unspecified walking-speed levels. In the future, 
gait information at various walking-speed levels should be extensively incorporated in the training 
dataset. Then, joint torques can be estimated as well as expected for unspecified walking-speed levels. 
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5. Discussion 

Human gait is definitely complex, involving the nervous and musculoskeletal systems, and 
fascinating co-operation between different joints and segments in the lower extremities [8]. Therefore, 
the human gait can be described by many different states. These different forms of information have 
dependencies and exist simultaneously. Taking multisource information may be the optimal choice. 
The GP was used to estimate the ankle torques using shank angles and angular velocities [8]. The GP 
model to achieve data fusion adds additional information of shank angular velocities to an existing 
GP model, which means that the shank angular velocities are treated as inputs to the GP model. 
Numerous body-attached inertial measurement units (IMUs) are required to measure shank angles 
and angular velocities for prediction. In this paper, the DGP-based data-fusion method was designed 
to explore deep-layer correlations between the kinematics (angle and angular velocity) and torques 
of a joint, and exploit temporal connections between measured signals. The performance of the 
proposed learning algorithm was slightly better than the results in [8]. Strictly speaking, comparisons 
between the proposed method and the algorithm reported in the recent literature are meaningless, 
since sensors used for signal acquisition, the datasets for training and estimating, and subject 
participation in the experiments were not the same. As the sEMG signal reflects human 
neuromuscular activities and implies muscle contraction in advance, it has been widely applied to 
estimate joint torques in the past few years. However, the nonstationarity and nonlinearity of 
physiological signals remain the main obstacles in achieving accurate joint-torque predictions. On 
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Although the untrained-speed result was less acceptable than in the case where there was
training, the proposed model has a potential use for unspecified walking-speed levels. In the future,
gait information at various walking-speed levels should be extensively incorporated in the training
dataset. Then, joint torques can be estimated as well as expected for unspecified walking-speed levels.

5. Discussion

Human gait is definitely complex, involving the nervous and musculoskeletal systems,
and fascinating co-operation between different joints and segments in the lower extremities [8].
Therefore, the human gait can be described by many different states. These different forms of
information have dependencies and exist simultaneously. Taking multisource information may be
the optimal choice. The GP was used to estimate the ankle torques using shank angles and angular
velocities [8]. The GP model to achieve data fusion adds additional information of shank angular
velocities to an existing GP model, which means that the shank angular velocities are treated as inputs
to the GP model. Numerous body-attached inertial measurement units (IMUs) are required to measure
shank angles and angular velocities for prediction. In this paper, the DGP-based data-fusion method
was designed to explore deep-layer correlations between the kinematics (angle and angular velocity)
and torques of a joint, and exploit temporal connections between measured signals. The performance
of the proposed learning algorithm was slightly better than the results in [8]. Strictly speaking,
comparisons between the proposed method and the algorithm reported in the recent literature are
meaningless, since sensors used for signal acquisition, the datasets for training and estimating,
and subject participation in the experiments were not the same. As the sEMG signal reflects human
neuromuscular activities and implies muscle contraction in advance, it has been widely applied
to estimate joint torques in the past few years. However, the nonstationarity and nonlinearity of
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physiological signals remain the main obstacles in achieving accurate joint-torque predictions. On the
other hand, some researchers attempted to estimate joint torques using machine-learning methods.
However, these algorithms treat the entire neuromusculoskeletal system as a black box with no
biomechanical interpretations that can be formulated as a regression problem. Thus, the generalization
of these models requires further investigation in the future.

One of the important merits of the DGP is that joint kinematics are used for training the DGP
model, and it does not need information of joint kinematics in the prediction process. In the training
phase, subjects wear the smart shoes and walk on the treadmill, which has independent belts and
dual force plates to measure the ground reaction force/moment. The optical motion-capture system
is used for acquire the joint kinematics. The inverse-dynamics approach is applied to obtain the
resultant moment at a joint. Then, the DGP is performed to fuse the joint kinematics and joint torques
with measurements from smart shoes as the inputs. It is undeniable that the training phase can be
conducted in the laboratory. In the predicting phase, only measurements from smart shoes are needed.
Thus, the proposed method can realize accurate estimations in outdoor activities by only using the
smart shoe, which is low-cost, nonintrusive for human gait, and comfortable to wearers.

Ankle torques are the least variable since the foot is constrained by the ground. On the other
hand, knee-joint torques are the most variable of the three because the knee joint is responsible
for the control of the lower extremities and torso balance [21]. In this regard, the knee torque is
somewhat hard to estimate. Thus, there are many kinds of studies on estimating ankle-joint torque [7,8].
However, estimation results on the knee and hip torques remain unknown. The design methodology
of a dynamic specific kernel function is proposed here. Modeling multiple features at different scales is
accomplished via the design of appropriate composite covariance functions. Thus, the proposed model
could extract time-varying gait patterns, and promises to offer superior performance. For the trained
cases, about 98% of the total r2 values were acceptable. Unacceptable r2 values may have been the
result of markers shifting during walking, which could contaminate datasets with noise. Comparisons
were made between the proposed DGP and GP models. All DGP results were better than those of GP.
Of GP r2 values, 20% were lower than 0.6, indicating the failure of the GP model for torque learning,
while all r2 values of the proposed DGP model were higher than 0.79. Thus, correlations between joint
kinematics and torques may be the key to determine the success or failure of the learning process.
RMS errors contain information about the distribution of the estimations around the expected values.
The distribution of RMS errors was basically irregular since the proposed DGP could figure out the
deterministic structure of the system, and residual errors were random and unpredicted.

In the case of untrained speed levels, the performance of the predictor may decline, which is
foreseeable. Although estimation quality was not as good as before, the proposed DGP model could
still be used to estimate joint torques for untrained speed levels with most r2 values higher than 0.8.
In this study, walking-speed levels were changed with a big step size of 0.4 m/s. Thus, gait patterns for
these walking-speed levels sharply differed, resulting in significant decline. In the future, the step size
should be chosen to be smaller, and multisensor foot information at various walking-speed levels can
be measured for training the model. Then, joint torques can be accurately estimated at unspecified
speed levels for designing high-level controllers.

A balance between model precision and complexity must be reconciled, which is rarely discussed
in the existing literature. The dilemma can be solved by the Bayesian information criterion [36]. In this
study, prediction accuracy and computation cost were most balanced at maxLength = 500. The average
time cost for estimating torques at a certain moment is about 7 ms when the predictor was developed
using MATLAB 2015 and run on a laptop (ThinkServer TS250 from Lenovo Ltd., Beijing, China).
Thus, it could meet the requirements of real-time control. Additionally, numerous researchers suggested
various approximations to improve computation efficiency, such as the sparse-matrix method and fast
matrix-vector multiplication, which are still active fields [37]. These methods can be adopted to further
reduce the computation burden of the proposed DGP model. This requires more investigation in the
future. Another aspect that should be considered is that any information may contain noise. In some
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special cases, noisy information may greatly deteriorate estimation results, although the WN kernel
can remove some Gaussian white noise. Filtering is required, especially by using IMUs to measure the
biomedical signals.

6. Conclusions

This paper presented a DGP-based algorithm for joint torque learning in the human gait using
wearable smart shoes that are low-cost, nonintrusive for human gait, and comfortable to wearers. DGP is
established to perform multisource data fusion which can figure out the natural relationships among
the correlated biomedical signals. The design methodology of kernel function enables multifeature
modeling at different scales and can cope with temporal evolution of human gait. The experiment
results showed that the proposed data-fusion model had excellent performance in the estimation
of joint torques, with most expected values falling in the confidence interval; 98% of the r2 values
were higher than 0.8 for the trained speed levels. Comparisons were made between the proposed
DGP and GP models. Obvious improvements were achieved through the application of the proposed
method over the GP model when all DGP results were better than those of GP. Although estimation
quality for untrained speed levels was not as good as before, the proposed DGP model could still
be used to estimate joint torques for untrained speed levels, with most r2 values higher than 0.8.
In the future, multisensor foot information at various walking-speed levels could be measured for
training the model. The proposed learning algorithm can be put to practical use in applications like
the optimization of exoskeleton assistance, the control of active prostheses, and modulating the joint
torque for humanlike robots.
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