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Abstract

Objective: This paper describes the Precision Medicine Knowledge Base (PMKB; https://pmkb.weill.cornell.edu),

an interactive online application for collaborative editing, maintenance, and sharing of structured clinical-grade

cancer mutation interpretations.

Materials and Methods: PMKB was built using the Ruby on Rails Web application framework. Leveraging exist-

ing standards such as the Human Genome Variation Society variant description format, we implemented a data

model that links variants to tumor-specific and tissue-specific interpretations. Key features of PMKB include

support for all major variant types, standardized authentication, distinct user roles including high-level

approvers, and detailed activity history. A REpresentational State Transfer (REST) application-programming in-

terface (API) was implemented to query the PMKB programmatically.

Results: At the time of writing, PMKB contains 457 variant descriptions with 281 clinical-grade interpretations.

The EGFR, BRAF, KRAS, and KIT genes are associated with the largest numbers of interpretable variants.

PMKB’s interpretations have been used in over 1500 AmpliSeq tests and 750 whole-exome sequencing tests.

The interpretations are accessed either directly via the Web interface or programmatically via the existing API.

Discussion: An accurate and up-to-date knowledge base of genomic alterations of clinical significance is critical

to the success of precision medicine programs. The open-access, programmatically accessible PMKB repre-

sents an important attempt at creating such a resource in the field of oncology.

Conclusion: The PMKB was designed to help collect and maintain clinical-grade mutation interpretations and fa-

cilitate reporting for clinical cancer genomic testing. The PMKB was also designed to enable the creation of clin-

ical cancer genomics automated reporting pipelines via an API.
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BACKGROUND AND SIGNIFICANCE

A growing number of medical institutions have started genomic

testing–driven precision medicine programs.1–3 A critical component of

clinical genomic testing is the generation of accurate and informative

reports containing clinical-grade interpretations of genomic alterations.

Such reports must not only list which variants and mutations were

found in a given clinical sample, but also provide interpretations of

these variants in the context of available and relevant clinical informa-

tion. In cancer, the clinical significance and interpretation of somatic

mutations and germline variants often depends on the tumor context,

that is, tumor type and site. At Weill-Cornell Medicine’s (WCM)
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Institute for Precision Medicine, together with New York Presbyterian

Hospital, we routinely conduct genomic sequencing using both tar-

geted testing of hotspot mutations (AmpliSeqTM Cancer Hotspot Panel

v2, Life Technologies) and whole-exome sequencing.3 These tests are

approved by the New York State Department of Health. After se-

quencing and analyzing the data using either commercial (Torrent

Suite, Life Technologies) or custom (whole-exome sequencing) pipe-

lines, the position and effect of mutations on coding sequences are de-

termined using publicly available tools including the Ensembl Variant

Effect Predictor (VEP),4 snpEff,5 and Annovar.6 Molecular patholo-

gists who sign out genomic testing reports need to interpret the clinical

relevance of each annotated mutation, summarizing their findings in a

molecular report. This is usually a tedious task that requires extensive

literature curation. Some resources, such as ClinVar, have started

cataloguing the clinical significance for variants relative to disease phe-

notypes.7 To facilitate the task of interpreting cancer mutations, several

online resources have attempted to curate and catalogue clinically rele-

vant mutations. These include Washington University’s CiViC DB

(https://civic.genome.wustl.edu), MD Anderson’s Personalized Cancer

Therapy (https://pct.mdanderson.org), Vanderbilt-Ingram Cancer

Center’s MyCancerGenome (https://www.mycancergenome.org), and

several others. While they are helpful resources, in our experience few

of these databases contain clinical-grade interpretations actually appli-

cable to clinical reporting. In some instances, mutation interpretations

do not meet required levels of brevity and specificity. In some data-

bases, mutations are not interpreted in the context of specific tumor

types. In others, only point mutations and indels are catalogued, while

common clinically relevant mutations such as gene fusions and copy

number alterations/variations are not included. Several clinically criti-

cal features may be missing from these databases for integration into

routine workflows, such as whether a variant is a pertinent negative in

a given tumor type (i.e., a variant for which information regarding the

accuracy of negative calls must be reported). Some databases may have

limited ability to maintain up-to-date information content or may lack

versioning. Finally, while some databases have application-

programming interfaces (APIs) for integration into automated work-

flows, most do not. To overcome these collective limitations, we cre-

ated the Precision Medicine Knowledge Base (PMKB). The PMKB is

currently restricted to variant interpretations for oncology. It was

designed in close collaboration with pathologists to ensure accurate

and standardized terminology and workflows compatible with clinical

use. Importantly, all interpretations are either written or approved by

board-certified molecular pathologists. The PMKB’s interpretations

have been used in over 1500 AmpliSeq tests and 750 whole-exome se-

quencing tests and are accessed either directly via a Web interface or

programmatically via an API.

MATERIALS AND METHODS

Design
PMKB began development in 2015, in order to aid pathologist signout

of AmpliSeq 50-gene panel results, and was later expanded to support

a broad array of features for signing out whole-exome sequencing re-

ports, such as copy number variations, germline variants, pertinent

negatives, and many more. PMKB was built using the Ruby on Rails

Web application framework, chosen for its popularity as a platform

for complex moderate-load Web applications, wide variety of open-

source library extensions, and ease of use. Ruby on Rails provides an

interface with a relational database by default, giving users the advan-

tage of a database system that promotes data uniqueness and atomic-

ity. PMKB uses a straightforward database schema that structures

aspects of an interpretation in a modular way (Supplementary Figure

S1). The design considerations of PMKB’s design and data fields are 2-

fold: (1) to provide data granularity in a way that makes automatic re-

trieval of interpretations possible, and (2) to provide a convenient ex-

perience for pathologists, who will be classifying variants and writing

interpretations as part of clinical genomics sign-out.

Data granularity – interpretations
An interpretation in PMKB requires associations with 3 different kinds

of elements as part of its identity: (1) gene-variant descriptions, (2)

cancer and tumor-type descriptions, and (3) tissue-type descriptions.

The interpretation object itself contains the textual interpretation, sup-

ported by relevant literature, and a numeric tier. The tier is a category

indicating how clinically actionable an interpretation is. This type of

association captures the level of specificity expected in a clinical-grade

report’s interpretations. When adding an interpretation to the PMKB,

one can associate as many of each element (i.e., cancer or tumor and

tissue types) as are applicable to the interpretation. For example, an

interpretation for a mutation in BRAF may be relevant to several dif-

ferent tissue types. This multiple-association structure avoids repeti-

tion of interpretation text, since the mutation information is primarily

linked to the cancer and tumor types. Associations can be as broad or

as specific as necessary. For example, an interpretation could be speci-

fied for a variant in “any tumor type” or “any tissue” for more gen-

eral comments. Separating the tumor type and tumor site also allows

for more flexibility when generating new interpretations.

Data granularity – variant descriptions
We developed a system for variant description that incorporates exist-

ing standards such as those of the Human Genome Variation Society

(HGVS)8 (Figure 1). At the highest level, a variant is described by the

gene it is associated with and a variant category. Variant categories

include small, localized mutations (single nucleotide variants, indels),

copy number alterations, and gene fusions. Descriptions of small, lo-

calized mutations such as single nucleotide variants and indels can be

broken down into 2 groups: a specific mutation described using

HGVS protein-change and DNA-change notation, and a gene region–

based description. Gene regions can be further divided into specific
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Figure 1. Diagram of the variant description data types.
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codons, specific exons, and the entire gene (Figure 1). The variant

type, eg, deletion, insertion, missense, nonsense, etc., must be speci-

fied. Fusions are described as a pair consisting of the primary gene

and the partner gene. Copy number alterations are described as either

a gain or loss of copy number, pertaining to either a gene or a chro-

mosome region, using arm and cytoband notation, eg, 17p13.1.

When variants are entered, PMKB automatically retrieves specific

gene region information from Ensembl, based on Ensembl’s canonical

transcript for a gene and its GRCh37-based API.9

Separating variant descriptions into discrete fields facilitates the

process of matching them against existing annotations. PMKB’s

REpresentational State Transfer (REST) API is set up to take a vari-

ant’s HGVS protein notation as input and match that variant against

multiple levels of variant descriptions, then return all relevant interpre-

tations. For example, in the case of a mutation, PMKB’s REST API

would take KRAS p.G12A as input (Figure 2) and match it against all

KRAS mutations in its database. This API query could return interpre-

tations for KRAS p.G12A, KRAS codon 12 missense, KRAS exon 2

missense, KRAS exon 2 any mutation, and KRAS any mutation

(Figure 2). These matches are ranked in order of specificity, based on

the width of the sequence they fall in and whether the variant type is a

match or “any.” Extra fields in the search query can make PMKB re-

turn only those interpretations that are linked to a specific tumor type

and tissue type, if desired.

Tumor type and tissue type objects
Tumor types correspond to possible diagnoses, such as melanoma or

adenocarcinoma. Tissue types correspond to the primary site of a di-

agnosis. We have adopted a standard terminology for both tumor

types and tissue types that was assembled by a team of highly experi-

enced molecular pathologists. As part of the clinical genomics report-

ing process, patients’ diagnoses need to be assigned according to this

standardized terminology (such terminology may coexist with a free-

text diagnosis). These lists of tumor types (https://pmkb.weill.cornell.

edu/tumors) and tissues (https://pmkb.weill.cornell.edu/tissues) are

expanded and edited as needed to accurately categorize new and

evolving diagnoses.

RESULTS

User interface
The PMKB currently consists of a multiuser interface for entering,

editing, browsing, and querying variants. Entering variant descrip-

tions into PMKB is done via a hypertext markup language (HTML)

form. For convenience, the user may enter a Catalogue of Somatic

Mutations in Cancer (COSMIC) ID and autofill the form with an

HGVS description from a locally stored version of the COSMIC data-

base.10 Otherwise, the user may choose a gene from a dropdown list

or type text in a search box to search for any gene symbol accepted

by the Human Genome Organization.11 Once a gene is chosen, the

user will choose a variant type, which determines what other fields

are required. For small and localized mutations, the user can choose a

description type — HGVS notation, codon, exon, or “anywhere in

gene” — bringing up a field with the HGVS notation, codon range,

or exon range, respectively. Additionally, the user can flag a variant

description as germline using a separate checkbox. If “CNV” is se-

lected as the variant type, the user will have to specify either gain or

loss, and can select a checkbox if he or she wishes to use a

chromosome-based location instead of a gene-based location.

Chromosome-based locations use extra fields for the chromosome

and cytoband. Choosing “rearrangement/fusion” for the variant type

will bring up another field for partner gene that also allows choosing

from any Human Genome Organization symbol. Finally, the user

must provide a versioning comment that will be preserved in the

change log for that entry. Once a variant is submitted, PMKB auto-

matically adds region information using Ensembl’s API, which is use-

ful for putting variants in the proper standardized context.

Figure 2. Illustration of information returned by the PMKB API when querying a variant.
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The user interface for entering interpretations also uses an

HTML form (Figure 3a). This form allows the user to first select

from any gene in PMKB that has at least 1 variant description. The

user will then see a list of variant descriptions for that gene and can

check off as many as are relevant. This is a very powerful feature

that greatly facilitates applying a single interpretation to many vari-

ants, including new variants that are encountered on a rolling basis

that warrant the same interpretive comment. In addition, this fea-

ture also allows the user to easily edit/modify an interpretive com-

ment already present in the knowledge base and apply that newly

edited comment to 1 or more specific variants among the many vari-

ants present for that gene. Tumor types and sites are also available

in dropdown lists, and users may add as many entries as they see fit.

Radio buttons are used to select a tier, and the actual text of the in-

terpretation goes into a specific text field. Citations are entered us-

ing PubMed IDs, 1 per line in a text box. After the interpretation is

submitted, the PubMed API will be used to turn these IDs into cita-

tion strings, allowing for greater consistency and convenience in ci-

tation formatting (Figure 3b). All interpretations must be supported

by at least 1 literature citation. Finally, the user should enter a ver-

sioning comment that will be preserved in the entry’s change log.

Interpretation pages provide links to associated variants, tumor

types, tissue types, and PubMed entries, including links to external

online resources such as Ensembl, COSMIC, PubMed, etc.

A search engine with auto-complete function helps query the

PMKB for specific genes and variants. PMKB’s repository of infor-

mation has been growing steadily, thanks to continuous curation

efforts by our molecular pathology team (Figure 4). At the time of

writing, PMKB contains 457 variant descriptions with 281 interpre-

tations (Figure 4). Genes including EGFR, BRAF, KRAS, and KIT

are associated with the largest numbers of interpretable variants

(Figures 5a and b). Adenocarcinomas are by far the largest tumor

type, followed by acute myeloid leukemia and myelodysplastic syn-

dromes (Figure 5c). The usage pattern and content are a result of the

tumor types and tissue types that are currently being tested by the

different platforms at our institution, and are expected to expand

over time.

User roles
Within the PMKB application, users have 3 different levels of privi-

lege: a high-level “approver,” who can review and approve others’

entries; standard users, who can submit edits; and guests, who can-

not make changes. The first role is reserved for the PMKB’s molecu-

lar pathologists, who can enter any changes to variant descriptions

or interpretations directly for publication on the site. The second

role is intended for general users, such as clinical fellows, medical

students, members of the computational team, etc., who can create

and edit variant descriptions and interpretations, but their new

entries and modifications must be approved by an approver

pathologist before being published on the site. A pathologist can

also choose to edit another user’s entry before approval. Since

interpretations are used for clinical reporting, signing-out molecular

pathologists can be guaranteed that all changes have been approved

Figure 3. Screenshots of (a) the interface for entering an interpretation in PMKB, and (b) summary view of an interpretation after entry/edit. This also demon-

strates how PubMed IDs in the citations entry were resolved to complete citations in the display.
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by a board-certified pathologist. All changes are also tracked in an

audit log for each entry. Administrators and users in the first-tier

role can restore any variant description or interpretation to a previ-

ous state based on the audit log. Auditing is an important part of

clinical workflows, and PMKB can provide this capability in a ro-

bust capacity.

For potential collaborations outside of WCM, security assertion

markup language (SAML)-based authentication allows a wider vari-

ety of users to access and make edits to PMKB. SAML is a format

that allows for standardized exchange of authentication data, pro-

viding the capability to use institution-based logins within external

Web applications. WCM is part of the SAML-based InCommon fed-

eration, and the registration of PMKB as an InCommon website

opens it up to collaborations with pathologists and researchers at

other institutions. As curating interpretations is a common activity

related to genomic testing reports, this could potentially reduce repe-

tition of that work between institutions.

An example of API integration
To illustrate integration with PMKB’s API and the use of PMKB

to retrieve interpretations, we describe a tool called the AmpliSeq

Results Converter that was developed in the Institute for Precision

Medicine (IPM) specifically to aid processing of variants in

variant call format (VCF) for the AmpliSeq assay (Ion

AmpliSeqTM Cancer Hotspot Panel v2, Life Technologies). The

AmpliSeq Results Converter converts annotated VCFs into more

human-friendly spreadsheets and text reports to facilitate report-

ing in electronic health records. The AmpliSeq Results Converter

is a Python script that queries the PMKB based on a sample’s

tumor and primary site and variants’ HGVS annotations within

the VCF. Queries occur via the PMKB’s REST API through hyper-

text transfer protocol (HTTP) requests. PMKB returns the most

relevant interpretation for each request, and the AmpliSeq Results

Converter generates a report suitable for upload into the labora-

tory information system Cerner Millennium Helix. The AmpliSeq

Results Converter has greatly facilitated the laboratory’s work-

flow by eliminating the need to manually copy interpretations

from an Excel spreadsheet into the diagnostic report. Use of this

pipeline allows the appropriate interpretations to be pulled auto-

matically from the PMKB into Millennium Helix, our clinical re-

porting system. All final reports are reviewed by molecular

pathologists prior to case signout to ensure that the proper associ-

ations are made between tumor type, tissue type, gene variant,

and interpretive comment. The lab has used PMKB as its primary

tool for entering and retrieving interpretation information starting

in late December 2015. Use of PMKB’s API has significantly facili-

tated the process of retrieving interpretations for variants, espe-

cially when the interpretations were generalized for gene regions

(eg, EGFR exon 19) rather than specific point mutations (eg,

EGFR p.L858R). Currently, PMKB’s API for interpretation re-

trieval has been used for several hundred cases, and the PMKB is

used routinely as part of the clinical workflow.

Figure 4. Growth of the knowledge base over time. Entries created prior to December 2015 represent work that IPM pathologists had saved in Excel spreadsheets.

Currently, a small team at the IPM makes contributions to PMKB, and expansion in PMKB’s user base could result in a much higher rate of growth.
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CONCLUSION

We have herein described the Precision Medicine Knowledge Base,

an interactive online application for collaborative editing, mainte-

nance, and sharing of structured clinical-grade cancer mutation in-

terpretations. All interpretations are available free of charge to the

community under the Creative Commons Attribution 4.0

Internation license and can be accessed either via the Web interface

(https://pmkb.weill.cornell.edu) or programmatically via the existing

API. Within our institution, the PMKB has already proven to be an

enormously useful tool for storing and retrieving interpretation in-

formation amenable to use by pathologists and reporting pipelines.

It has led to significant improvements in the laboratory workflow

for the AmpliSeq 50-gene panel assay, saving considerable time and

effort, and is currently being used to report WES results.3

Since many institutions face similar problems with reporting, it

is our hope that the success of PMKB at Weill-Cornell Medicine/

New York Presbyterian Hospital can be replicated and expanded

with potential collaborators at other institutions. To support both

larger assays in-house and potential traffic from collaborators,

PMKB’s infrastructure, SAML authentication capabilities, and API

can readily be leveraged, while continuing to serve results reliably at

acceptable speeds. The speed of computation becomes highly rele-

vant with larger panels of genes that can return calls for hundreds of

different variants, an issue that can be addressed with further paral-

lel processing and database query optimization within PMKB’s API.

DISCUSSION

In addition to improving PMKB’s technical performance, there is the

challenge of increasing the output of the interpretations themselves.

Quality and quantity of interpretations are what will make PMKB at-

tractive to potential collaborators and will set a standard for future

contributions to the knowledge base. Since interpretations must be

written by qualified individuals, the PMKB software tries to ease the

burden of storing and organizing interpretations, allowing patholo-

gists to focus on writing interpretive comments and signing out cases.

Along with writing new interpretations comes the labor of keeping in-

terpretations and tier information up to date with current information

on published literature, clinical trials, and US Food and Drug

Administration drug approvals. Bringing in clinicians and physicians

(currently only on the receiving end of the reporting process), collabo-

rators, and outside contributors could significantly increase the out-

put, quality, and maintainability of interpretations, but this must be

managed carefully within PMKB to ensure that all edits are up to par.

It is important to make sure that PMKB has tools for managing users

and user-produced content to prepare for a growing user base.

PMKB will need to continue to adapt based on feedback from users,

in order to make sure a variety of needs around reporting are met.

Some examples are tumor type–specific pertinent negatives (already

supported in PMKB but not yet systematically annotated) and ongoing

improvements to interpretation content. Another future feature includes

adding a “talk page”–style interface for users to communicate with one

another about potential edits and entries, which will become important

to track discussions in an expanded user base, especially when an inter-

pretation needs to be brought up to date with new literature.

Extensions of the API will provide more functions for retrieving inter-

pretations and address some of the ongoing issues described above.

Ideally, this knowledge base will serve as an open tool amenable to

crowdsourcing of content over time by experts in specific subspecialties.
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