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Cheminformatics-driven discovery of polymeric micelle
formulations for poorly soluble drugs
Vinicius M. Alves1,2*, Duhyeong Hwang3*, Eugene Muratov1,4, Marina Sokolsky-Papkov3,
Ekaterina Varlamova2, Natasha Vinod3,5, Chaemin Lim3, Carolina H. Andrade2,
Alexander Tropsha1†, Alexander Kabanov3,6†

Many drug candidates fail therapeutic development because of poor aqueous solubility. We have conceived a
computer-aided strategy to enable polymeric micelle-based delivery of poorly soluble drugs. We built models
predicting both drug loading efficiency (LE) and loading capacity (LC) using novel descriptors of drug-polymer
complexes. These models were employed for virtual screening of drug libraries, and eight drugs predicted to
have either high LE and high LC or low LE and low LC were selected. Three putative positives, as well as three
putative negative hits, were confirmed experimentally (implying 75% prediction accuracy). Fortuitously, simvastatin,
a putative negative hit, was found to have the desired micelle solubility. Podophyllotoxin and simvastatin (LE of
95% and 87% and LC of 43% and 41%, respectively) were among the top five polymeric micelle-soluble
compounds ever studied experimentally. The success of the strategy described herein suggests its broad utility
for designing drug delivery systems.
INTRODUCTION
One of themajor obstacles for the development of highly potent phar-
maceuticals is their poor aqueous solubility, which is characteristic of
approximately 40% of drug candidates (1). This undesired property
could substantially delay or even halt the progression of drug candi-
dates to the clinic. Various drug delivery systems based on liposomes
(2), nanoparticles (3), nanogels (4), and polymeric micelles (5) have
been studied intensely to improve the solubilization of drugs and
drug candidates (6), but relatively few of them have been advanced
to clinical products. Various characteristics of these systems have
been considered such as physiological barriers, physicochemical
properties of drugs, and carrier-forming materials. However, despite
certain progress in developing practically useful delivery systems,
this experimental approach has remained time-consuming and ex-
pensive. The need to use rational, computer-aided approaches to
designing delivery systems for drug molecules has been previously
articulated in the literature (7). These approaches can enable early
decisions to streamline the development process and decrease the
attrition of drug candidates by matching them with their preferred
delivery systems. However, while computational methods have found
broad application in the field of drug discovery, they have not yet be-
come equally popular in the area of drug delivery.Most computational
studies have relied on molecular docking and molecular dynamics to
offer insights concerning molecular interactions between drugs and
carriers (8–10). For instance, molecular dynamics approaches have
been applied to better understand the micelle structure of polymers
(11) and to simulate drug loading into a delivery system (12), while
mathematical modeling has been applied to investigate the hydrogel
drug release (13). Shi et al. (14) have applied molecular docking to
identify small molecules as optimal building blocks for designing an
optimal telodendrimer for doxorubicin. The authors synthesized a
series of nanocarriers and experimentally validated their findings.
One of the nanocarriers has shown improved delivery properties,
lower toxicity, and superior anticancer effects. More recently, another
docking-basedmethod to predict the drug affinity for PLA [poly(lactic
acid)]–PEG [poly(ethylene glycol)] nanoparticles and their effective
drug loading was reported (15). While targeting mechanistic aspects
of drug loading into delivery systems or drug release from these
systems, these approaches are computationally expensive, whichmakes
it difficult to expect their routine application in pharmaceutics; besides,
these approaches do not target directly the prediction of drug loading
efficiency (LE) and/or loading capacity (LC).

There have also been some studies using statistical approaches
as applied to modeling and design of drug delivery systems. These
approaches, known as quantitative structure-property relationships
(QSPR) modeling, found especially prolific use in both medicinal
chemistry and chemical toxicology (16, 17) but much less so in drug
delivery, perhaps mostly due to the scarcity of experimental data. A
recent study reported the development of a series of QSPR models
to assess the loading of doxorubicin in polymeric micelles using the
genetic function approximation algorithm (18), but since thesemod-
els were developed for one drug only, they are not generalizable
across multiple drugs. In another recent study, the authors predicted
fouling release activity for polymer coatingmaterials (19). Transgene
expression efficacy of polymers obtained from aminoglycoside anti-
biotics has been modeled using an online web tool named “Support
vector regression-based Online Learning Equipment” (SOLE) (20).

Previously, we have successfully developed (21) and applied (22)
QSPR models to predict loading of amphiphilic drugs into lipo-
somes. However, liposomes by design are not the best system for in-
corporation of various poorly water-soluble molecules since loading
of thesemolecules is constrained by the structure of the lipid bilayers.
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Recently, we have developed a novel polymericmicelle system formed
by amphiphilic block copolymers of hydrophilic poly(2-methyl-2-
oxazoline) (PMeOx) and hydrophobic poly(2-butyl-2-oxazoline)
(PBuOx). This system exhibited an exceptionally high solubiliza-
tion for some hydrophobic drugs such as taxanes (23, 24). How-
ever, poly(2-oxazoline) (POx) micelles could not solubilize every
poorly water-soluble drug equally well. Mechanisms of encapsulation
of poorly water-soluble drugs into the polymeric micelle systems
have been previously studied (25, 26), but they continue to be poorly
understood, and so far, there have been no approaches that would
assure success of loading experiments for any selected drugs or drug
candidates.

Our previous studies have led us to assert that POx micelles with
very high solubilization of some drugs and very poor solubilization
of others represent both practically important and descriptive exam-
ple to evaluate a computer-aided approach to rational design of a
polymeric micelle-based delivery systems for poorly soluble drugs.
Here, as a proof of concept, we have (i) rationally selected a set of
about 21 poorly soluble and chemically diverse drugs from the Selleck
Chemicals library (www.selleckchem.com/) and tested them for LE
and LC to supplement previously collected data on 20 compounds;
(ii) compiled, curated, and integrated all LE and LC data for all drugs
tested experimentally in one of our laboratories; (iii) developed novel
chemical descriptors for polymers and drug-polymer complexes;
(iv) generated and interpreted QSPR models for drug loading into
polymeric micelle-based delivery systems; (v) identified, by virtual
screening, drugs with poorly aqueous solubility predicted to have
either high or low LE and LC; and (vi) experimentally measured LE
and LC values of selected virtual screening hits and successfully vali-
dated model predictions. To the best of our knowledge, this is the first
study on rational design of drug delivery systems that combines, in a
single workflow, rationally designed experimental data collection to
enable model development, computational modeling of drug loading
Alves et al., Sci. Adv. 2019;5 : eaav9784 26 June 2019
into polymeric micelles, and effective experimental validation of pre-
dicted formulation properties for the studied drug delivery systems.
The success of this investigation suggests that computational approaches
could substantially streamline and accelerate the development of novel
and effective drug delivery systems.
RESULTS
Rational design of a diverse set of poorly soluble drugs
In the absence of rational approaches to the experimental design, the
discovery of suitable drug-POx systems is left to serendipity, implying
high cost and time-consuming effort. Thus, we endeavored to develop
computational QSPR models capable of accurate prediction of drug
molecules with high LE and LC values in POx micelles that could
be formulated using this drug delivery system and thereby achieve
much greater therapeutic efficacy (see Fig. 1 and the “Study design”
section). Before this study, only 20 compounds were tested for solubi-
lization in POx micelles. Among these, we have serendipitously dis-
covered several drugs with good or excellent solubilization in POx
micelles, whereas at the same time many compounds were found to
have poor micelle solubilization properties. These data were not suf-
ficient for building predictive QSPRmodels. Furthermore, chemical
diversity of these compounds was limited as compared to that of a
drug library represented by 768 chemicals from the Selleck collec-
tion of U.S. Food and Drug Administration (FDA)–approved drugs
(Fig. 2). Therefore, using a diversity sampling approach, we rationally
selected a set of chemically diverse drug molecules that were poorly
soluble or insoluble. The resulting expanded set of 61 molecules was
chemically diverse and structurally representative of the chemical space
of FDA-approved drugs (Fig. 2). From these 61 compounds, 21 drugs
were selected on the basis of their clinical indications and respective
biological pathways, as well as price and availability, followed by their
testing using our standard experimental protocols to ensure data
Fig. 1. Study design.
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consistency. Combining the results of testing obtained on these 21
compounds as well as on 20 compounds tested previously, we thus
obtained a unique training set of 41 compounds comprising 408 ex-
perimental data points. The complete micelle solubilization data for
single and binary drug combination are given in data file S1. These
data were used for molecular modeling studies (see the next section).

Cheminformatics analysis
We have compiled a dataset of 41 compounds investigated in several
concentrations and under different experimental conditions. Origi-
nally, our collection included 408 data points for these 41 compounds,
reflecting different drug concentrations, structural diversity of POx
polymers, and experimental conditions (see Materials and Methods).
In our previous studies, we have used standard chemical descriptors
of molecules and/or certain experimental conditions to establish a
correlation with drug loading or bioactivity, respectively. Modeling
of drug loading into polymeric micelles proved to be a more challeng-
ing exercise, as drug chemical descriptors and experimental conditions
were found insufficient to enable the development of statistically signif-
icant models.

To address this challenge in this study, we have developed novel
descriptors of drug-polymer systems reflective of the chemical struc-
tures of both small molecules and polymers. These new descriptors
were developed on the basis of SiRMS (simplex representation of
molecular structure) descriptors (27) originally devised for small or-
ganic molecules and later adapted for mixtures of organic molecules
(28, 29). These new descriptors were obtained by considering drug-
POx systems as stoichiometric mixtures of polymers (represented by
unique monomeric blocks used for their synthesis) and drug molecules
(see Materials and Methods for more details).

We have also observed (see the “Data curation” section) that drug
concentration and other experimental conditions had a strong influ-
ence on both LE and LC. For instance, although drug concentration
does not influence the encapsulation effectiveness, most of the com-
pounds that could be solubilized had both high LE and high LC values
for low drug concentration. When the polymeric micelle is saturated
with the drug and if the drug concentration is higher than the satu-
ration point, then the polymer may collapse. Therefore, to achieve
the best LE and LC, compounds were tested using a variety of con-
Alves et al., Sci. Adv. 2019;5 : eaav9784 26 June 2019
centrations and experimental conditions. All the concentrations and
experimental conditions were used as additional descriptors of drug-
polymer complexes for both model building and virtual screening to
improve model accuracy.

To illustrate the influence of polymer structure, experimental
conditions, molecular weight (MW), and lipophilicity (LogP) on the
compound solubilization in POxmicelles, we have identified clusters of
drugs tested at 8mg/ml, i.e., at the highest concentration used for testing
the largest number of drugs. For this analysis, original SiRMS descrip-
tors were normalized and low variance descriptors (threshold = 0.1)
were removed. Hierarchical clustering was performed using SciPy
package (www.scipy.org/) in Python 3.6 (www.python.org/) on the
basis of Euclidean distance and the Ward method (30). A heat map
of proximity matrix and dendrogram are reported in fig. S1. The sum-
mary of clusters showing the LE and LC (mean, SD, andmaximum val-
ue) for the drugs tested at 8 mg is shown in table S1.

As can be seen in table S1, similar compounds belonging to the
same cluster could have considerably different LE values. For instance,
the cisplatin prodrug derivatives (cluster 1) had optimal chain length
of six carbons [cisplatin prodrug (C6)], with maximum LE = 85.1%.
The analogs with 4 and 10 carbons had similar LE, while the one with
eight carbons had the lowest LE. VE-822 andNVP-BEZ235 have sim-
ilar LogP and MW, which, in turn, were different from those of the
remaining compounds (LY364947 and imiquimod) in cluster 2. There,
onlyVE-822 showed high LEmax (83.34%), but imiquimod, LY364947,
and NVP-BEZ235 were not soluble in POx micelles. Compounds in
cluster 3 contain similar chemical features, but only AZD5363 shows
high LE (63.8%, respectively). In cluster 4, LY294002 and EFV also have
similar LogP and MW, but only EFV presents high LE max (86.23). In
cluster 7, ABT-263 and ABT-737 have similar chemical structures and
similar MW and LogP, but the LE max values for both compounds are
drastically differentwith amaximal LE of 100% forABT-263 and amax-
imal LE of 7.3% for ABT-737.

These results show that the knowledge of chemical structure alone
is not sufficient to evaluate whether a compound has a good chance to
be highly soluble in polymericmicelles. Moreover, even the same drug
combined with different polymers or even with the same polymer but
under different experimental conditions may exhibit a very different
LE. Variable importance estimated from all developed models indi-
cated that some experimental conditions (hydration solvent, hydra-
tion temperature, and total solvent volume before evaporation) had
very high scores (fig. S2). For instance, combination of docetaxel
(DTX) (10 mg/ml) and polymer P6 has been tested twice under the
same experimental conditions, varying only the hydration solvent.
When DTX was dissolved in deionized water, an LE of 81.8% and
an LC of 44.9% were observed; using a mix of deionized water, saline,
and phosphate-buffered saline led to the increase of both LE and LC to
90 and 47.4%, respectively.

This analysis illustrates the need to consider the experimental
conditions that define the outcome of the loading process as important
descriptors of the system. To reflect on this point further, we shall
highlight several factors that need to be considered to enable predic-
tivemodels withmuch higher accuracy than historical success rate of
purely experimental investigations: (i) close interaction between ex-
perimental and computational groups; (ii) rational design of the train-
ing set; (iii) special descriptors of drug-polymer complexes reflecting
the interactions between drugs andmicelles; (iv) the use of experimen-
tal conditions available for our datasets as descriptors, such as solvents,
in which both polymer and drug samples were prepared, their volumes
Fig. 2. Coverage of chemical space by previously tested drugs and compounds
rationally selected to increase structural diversity. Barycentric coordinates are
calculated using two-dimensional SiRMS (molecular fragments) descriptors differ-
entiated by atom type.
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before evaporation, hydration solvent, and hydration temperature; and
(v) experimental validation of drug delivery properties for selected both
negative and positive hits. Our analysis further highlights the impor-
tance of recording and using all parameters/characteristics related to
the experiment. For instance, we have traced the size and morphology
data for 15 drug-polymer complexes (see data file S1). Although these
data are insufficient to be used for model building, our preliminary ob-
servations show that most drug-polymer complexes look like worms or
spheres, while the specific polymer used in this study alone only forms
worm-like structures. The particle size also changes upon the transition
from worms to spheres induced by the drug, and the transition point
depends on the selected drug. In addition, at a certain point, which is
different for each drug, we have observed saturation and sediment for-
mation. The particle size andmorphology along with the micelle stabil-
ity and drug release characteristics are important parameters for the
pharmacological performance of these drug delivery systems (31). We
anticipate that aswe generate and collect newdata on size andmorphol-
ogy and other parameters, we will be able to explicitly incorporate these
data into our models.

Our data analysis showed that the optimal combination of the ex-
perimental conditions varies from case to case. Overall, this indicates
the following: (i) the importance of experimental conditions for drug
solubilization; (ii) the necessity of choosing the optimal solvent, tem-
perature, etc., for each specific drug-polymer combination; (iii) the
need to use experimental conditions as descriptors during modeling
and virtual screening; and (iv) the requirement to select not only the
computational hits for experimental confirmation but also the opti-
mal experimental conditions (solvent, temperature, etc.) to improve
the success rate.

In addition, the type and length of block chains of polymers are
shown to be important, as we shall discuss below. Table S2 presents
summary data for three drugs tested at 8 mg/ml with the highest ex-
perimental variability. As one can see, LE values for DTX vary from
1.56 to 80.06%. Three variables that change their values include poly-
mer batch, mass of the polymer, and hydration temperature. It is pos-
sible to see that, when tested in different polymers, DTX is more
soluble in polymer P8 (LE = 57.59%) than in polymer P2 (LE = 1.56%)
when themass of the latter polymer is 10mg.However, when themass
of polymer P2 increased to 20 mg, an LE of 80.06% was achieved. For
LDN-57444, the variation in the polymer and drug solvent, the total
solvent volume before evaporation, and hydration temperature led to
a difference of 26% in the LE. Last, the LE of paclitaxel (PTX) varied
from2.44 to 100%. In this case, the difference ismostly due to different
polymers. Both P2 (LE = 2.44%) and P8 (35.72%) presented low LE,
while P1 (LE = 86.1%), P4 (100%), and P6 (LE = 91.18%) presented
high LE.

Most of the POx polymers used in our studies (P1, P3, P4, P5, and
P6) are triblock copolymers: poly(2-methyl-2-oxazoline)-block-poly(2-
butyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline) [P(MeOx-b-
BuOx-b-MeOx)], differing in the chain length of each block. These
differences, however, all within 10 to 15% variability typical for batch-
to-batch variations, were not expected to result in any substantial
difference in solubilization. Polymer P2 is a diblock copolymer,
P(MeOx-b-BuOx); it had a decreased ability to solubilize PTX and
DTX compared to the respective triblock, which illustrated the effect
of the copolymer architecture (32). The triblock polymer P8 contains
a few aromatic 2-benzyl-2-oxazoline (BzOx) units copolymerized
with aliphatic BuOx [P(MeOx-b-co-BuOx/BzOx-b-MeOx)]. Another
polymer (P7) is a triblock containing 2-nonyl-2-oxazoline (NOx)
Alves et al., Sci. Adv. 2019;5 : eaav9784 26 June 2019
units instead of BuOx units in the hydrophobic block [P(MeOx-b-
NOx-b-MeOx)]. Both modifications obtained by adding aromatic
groups or long-chain alkyl groups to the core of the POx micelle ap-
pear to have adverse effects on the solubilization of PTX (33). These
observations reinforce the importance of building QSPR models
incorporating all available information about both chemical structures
of drugs and polymers as well as the experimental conditions to pre-
dict putative positive hits with high confidence.

The results of the cluster analysis confirmed that LogP and MW
alone are not sufficient to predict drug loading. Thus, we developed
a series of robust and externally predictive [correct classification rate
(CCR), 0.76 to 0.85] binary QSPR models for forecasting LC and LE.
Corresponding statistical characteristics estimated by fivefold external
cross-validation are summarized in table S3. All models showed both
high sensitivity (>70%) and specificity (>76%), as well as high positive
predictive (PPV; >75%) and negative predictive (NPV; >76%) values.

Virtual screening of DrugBank and experimental evaluation
We have used our QSPR models for virtual screening of the DrugBank
database to identify drugs predicted to have both high LE and high LC
for POx micelles. Aqueous solubility of drugs was used for initial
filtering. Only compounds classified as poorly soluble (<10 mg/ml)
including those defined as practically insoluble (<0.1mg/ml) (34) were
selected. All remaining compounds were paired with the polymer of
interest, and the LE and LC values for the drug loading into polymeric
micelles were predicted by respective models. Rational design of the
training set allowed all DrugBank compounds chosen for virtual
screening to be inside models’ applicability domains. Selected hits
were dissimilar from the training set, but they were still found inside
the applicability domain of themodel, which increased our confidence
in predictions.

Then, four compounds (podophyllotoxin, rutin, teniposide,
and diosmin) predicted to have high solubilization in POx micelles
and four compounds (olanzapine, simvastatin, spironolactone, and
tamibarotene) predicted to be insoluble in POx were selected for ex-
perimental validation. Low aqueous solubility of these compounds
was confirmed experimentally before the experimental evaluation
of the LE and LC in POx.

Experimental results for these eight drug-POx complexes are
shown in Table 1. Overall, we have reached 75% experimental hit
rate. Thus, three of four drugs predicted as positive hits displayed
moderate to excellent solubilization inPOxmicelles. Podophyllotoxin,
rutin, and teniposide could be solubilized under certain experimental
conditions (i.e., feed ratio of polymer, 10 mg/ml) at concentrations as
high as 8 mg/ml. Podophyllotoxin presented exceptional ability for
incorporation into POx micelles, as it could be solubilized under the
experimental conditions at concentrations as high as 8 mg/ml, with
LE=95.2%andLC=43.2%.Teniposide showedLE=85%andLC=14.5
at 8mg/ml, while rutin presented LE = 45.1% and LC= 26.5%. Diosmin
was a false positive, i.e., insoluble in POx micelles. Conversely, one of
the predicted negative hits, olanzapine, showed very low or negligible
LC and LE at all studied drug feed concentrations. Specifically, the
concentration of olanzapine did not exceed 1 mg/ml. The very low
LC and LE of this drug implies that at least about 90% or even 99%
of the drug is lost upon formulation. Spironolactone and tamibarotene
showed high solubilization, but only at low concentrations. These
drugs were solubilized at 2 mg/ml with an LE of 89.7 and 82.9%, re-
spectively, and an LC of 14.2 and 15.2%, respectively, but both featured
very low solubilization when tested at 8 mg/ml (LE = 20.9% and
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Table 1. List of positive and negative hits with experimental values. NA, not available.
Alv
Name
es et al., Sci. Adv. 2019;5 :
Water solubility
eaav9784 26 June 2019
Concentration (mg)

Predicted by QSPR
 Experimental
LE 80
 LC 10
 LC 20
 LC 30
 LE (%)
 LC (%)
Positive hits
Podophyllotoxin
 Very slightly soluble
15
 NA
 NA
 NA
 NA
 23.8
 26.3
10
 1
 1
 1
 1
 58.7
 37.0
8
 1
 1
 1
 0
 95.2
 43.2
4
 1
 1
 0
 0
 95.6
 27.7
2
 1
 1
 0
 0
 100.0
 16.7
Rutin
 Slightly soluble
15
 NA
 NA
 NA
 NA
 3.9
 5.6
10
 1
 1
 1
 1
 6.5
 6.1
8
 1
 1
 1
 0
 45.1
 26.5
4
 1
 1
 1
 0
 60.3
 19.5
2
 1
 1
 0
 0
 74.5
 13.0
Teniposide
 Insoluble
15
 NA
 NA
 NA
 NA
 1.5
 2.2
10
 1
 1
 1
 1
 6.1
 5.7
8
 1
 1
 1
 1
 85.0
 14.5
4
 1
 1
 1
 0
 76.1
 23.3
2
 1
 1
 0
 0
 85.0
 14.5
Diosmin
 Slightly soluble
15
 NA
 NA
 NA
 NA
 Insoluble
 Insoluble
10
 1
 1
 1
 1
 Insoluble
 Insoluble
8
 1
 1
 1
 0
 Insoluble
 Insoluble
4
 1
 1
 1
 0
 Insoluble
 Insoluble
2
 1
 1
 0
 0
 Insoluble
 Insoluble
Negative hits
Olanzapine
 Insoluble
15
 NA
 NA
 NA
 NA
 9.7
 12.7
10
 0
 0
 0
 0
 6.1
 5.8
8
 0
 0
 0
 0
 4.1
 3.2
4
 0
 0
 0
 0
 7.0
 2.7
2
 0
 0
 0
 0
 42.3
 7.8
Simvastatin
 Insoluble
15
 NA
 NA
 NA
 NA
 5.0
 7.0
10
 0
 0
 0
 0
 19.9
 16.6
8
 0
 0
 0
 0
 87.2
 41.1
4
 0
 0
 0
 0
 74.6
 23.0
2
 0
 0
 0
 0
 87.2
 14.8
continued on next page
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LC = 14.3% for spironolactone and LE = 9.9% and LC = 7.4% for
tamibarotene). As an instance of fortuitousmisprediction, simvastatin
was found to be a false negative, i.e., it was soluble in POx micelles at
concentrations as high as 7 mg/ml, with an LE of 87.2% and an LC of
41.1%. Most likely, simvastatin was mispredicted because its nearest
neighbor, wortmannin (Tc = 0.72), has poor solubility in POxmicelles.
Although wortmannin presents moderate solubility in POx micelles
when tested mixed with PTX, this drug alone has both low LE (2.3 to
5.8%) and low LC (0.9 to 2.2%). Irrespective of the reasons, mispredic-
tion of simvastatin represents a fortuitous prediction error, as this drug
appears to greatly benefit from POx solubilization.

Overall, four compounds showed good solubility, with both LE
and LC values among the top 15 compounds ever tested by our group
(Table 2). Podophyllotoxin and simvastatin demonstrated excep-
tional ability for incorporation into POx micelles. Podophyllotoxin
and its analogs have shown several important biological activities
(e.g., cytotoxic, antiviral, and antifungal) (35); therefore, the discovery
of previously unidentified formulations described here may have a
substantial impact on the development of this drug candidate. The
case of simvastatin (negative hit) with high LE and LC is an example
of a fortuitous error of prediction, since this drug appears to be a great
candidate for POx solubilization. Simvastatin depends on solubiliza-
tion enhancement techniques to achieve optimal bioavailability, and
the improved solubilization with POx could potentially improve its
bioavailability and pharmacological response (36). Overall, three of
four positive hits and one negative hit showed highly desirable solu-
bilization properties.

As one can see from Table 2, variation of both LE and LC values is
small for almost all drugs. At the same time, both PTX and DTX had
much higher SD than the other compounds. In the course of preclinical
development, these two compounds have been studied very extensively
in a variety of experimental conditions. This observation reinforces the
high impact of experimental conditions on the studied properties.
DISCUSSION
We have developed and successfully used a computer-aided strategy
for the rational design of novel drug-polymeric micelle combinations.
Alves et al., Sci. Adv. 2019;5 : eaav9784 26 June 2019
Our approach used special, novel descriptors of drug-polymer com-
plexes for building predictive models of drug solubility in polymeric
micelles, virtual screening of drug library, and experimental valida-
tion of selected hits. Another unique aspect of this investigation was
that, in addition to previously collected data, we have generated new
experimental data for compounds selected rationally from the library
of approved drugs. This was done solely to enable model development
for a sufficiently large and chemically diverse dataset. In total, 41 drugs
Name
 Water solubility
 Concentration (mg)

Predicted by QSPR
 Experimental
LE 80
 LC 10
 LC 20
 LC 30
 LE (%)
 LC (%)
Spironolactone
 Insoluble
15
 NA
 NA
 NA
 NA
 3.4
 4.9
10
 0
 0
 0
 0
 31.8
 24.1
8
 0
 0
 0
 0
 20.9
 14.3
4
 0
 0
 0
 0
 53.8
 17.7
2
 0
 0
 0
 0
 82.9
 14.2
Tamibarotene
 Insoluble
15
 NA
 NA
 NA
 NA
 0.9
 1.3
10
 0
 0
 0
 0
 2.0
 1.9
8
 0
 0
 0
 0
 9.9
 7.4
4
 0
 0
 0
 0
 87.3
 25.9
2
 0
 0
 0
 0
 89.7
 15.2
Table 2. Top 15 compounds ranked by LE and LC for 8-mg drug
versus 10-mg polymer.
Compound name
 LE % (mean)
 LC % (mean)
ABT-263
 100
 44.4
Podophyllotoxin
 95.2
 43.2
Etoposide
 91.83 ± 2.92
 42.33 ± 0.75
Simvastatin
 87.2
 41.1
Efavirenz
 86.23
 40.82
Cisplatin prodrug (C6)
 84.8
 40.4
VE-822
 80.17 ± 4.48
 26.65 ± 18.88
PTX
 63.09 ± 42.16
 30.38 ± 18.54
AZD5363
 62.27 ± 1.93
 33.27 ± 0.68
Cisplatin prodrug (C4)
 58.5
 31.9
Teniposide
 57.2
 31.4
Cisplatin prodrug (C10)
 53.65
 23.85
AZD8055
 50.8
 28.9
DTX
 46.40 ± 40.43
 18.99 ± 15.81
Rutin
 45.1
 26.5
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tested in different concentrations both individually and in binary com-
binations for loading into four different polymeric micelles (408 data
points) were used for modeling. This allowed us to develop the set of
binary QSPR models for predicting both LE and LC of drugs in poly-
meric micelles.

The high predictive power of the developed models (external bal-
anced accuracy of 76 to 85%) was confirmed by the “mixtures out”
approach (28, 29) especially designed for estimating true predictivity
of the QSPR model obtained for compound mixtures (see Materials
andMethods for additional details). The developed models were used
for virtual screening of the DrugBank database, and four drugs with
high (positive hits) along with four drugs with low (negative hits)
predicted LE and LC were prioritized for testing. Predicted LE and
LC values for three positive and three negative computational hits
were confirmed experimentally. Luckily, the remaining negative hit,
simvastatin, with an LE of 87% and an LC of 41%, had desired delivery
properties. Moreover, simvastatin and podophyllotoxin (LE = 95% and
LC = 43%) were among the top five compounds ever studied in POx
loading experiments. This is especially important because simvastatin’s
solubilization rate is too low to achieve optimal bioavailability (36),
and podophyllotoxin has several desired biological properties (e.g.,
cytotoxic, antiviral, and antifungal) (35); therefore, the discovery of
new formulations described here may have a significant impact on the
further development of both drugs.

Another significant advantage of the proposed computer-aided
strategy for rational design of formulations for poorly soluble drugs
is the significant increase in success rate. Thus, our modeling set of
41 compounds tested in advance of model development included
20 compounds with significant solubility in POx micelles (that were
used to develop models reported here), implying an experimental hit
rate of ca. 48%. In contrast, the use of models developed with this
modeling set to design new formulations increased the hit rate from
48 to 75%, i.e., nearly twofold. The success of this study illustrates the
power of computer-aided design of novel drug delivery systems and
calls for a broader application of computational modeling approaches
in drug delivery.
MATERIALS AND METHODS
Study design
The overall workflow for computer-aided design of novel polymeric
micelle-based delivery systems for poorly soluble drugs is shown in
Fig. 1. Before this study, 20 compounds were tested for solubilization
in POxmicelles (step 0), whichwas not enough for building predictive
QSPRmodels. Therefore, we rationally selected an additional set of 21
poorly soluble and chemically diverse drugs from the Selleck Chemicals
library and tested them for LE and LC to supplement previously
collected data (step 1). The full dataset for all drugs tested experimen-
tally was compiled, curated, integrated, and analyzed (step 2), and
chemical descriptors for polymers and drug-polymer complexes that
were developed specifically for this study were calculated (step 3). Then,
QSPR models for drug loading into polymeric micelle-based delivery
systems were generated and validated (step 4). Last, we applied these
models for virtual screening of the available drug library to identify
compounds with poor aqueous solubility predicted to have either high
or low LE and LC. We selected four putatively positive and four puta-
tively negative hits for the experimental validation. In summary, this
workflow combines rational design of the experimental data collection
to enable model development, computational modeling of drug loading
Alves et al., Sci. Adv. 2019;5 : eaav9784 26 June 2019
into polymeric micelles, and experimental validation of predicted for-
mulation properties for selected drug delivery systems.

Polymeric micelle preparation
POx micelles loaded with single drug or multiple drugs were prepared
via the thin-film hydration method (23). Predetermined amounts of
polymer and drugs were solubilized in an organic solvent [e.g., acetone,
acetonitrile (ACN), and ethanol] and mixed together. The organic sol-
vent was then removed under a stream of nitrogen gas or air (40°C) to
produce a thin film of intrinsicallymixed drug-polymer blend. To com-
pletely remove the residual solvents and obtain a dry film, the filmswere
deposited in the vacuum chamber (approximately 0.2 mbar) overnight.
Subsequently, the formed thin films were rehydrated with the desired
amounts of aqueous saline or bidistilled water and then solubilized
either at room temperature or upon heating at 50° to 60°C for 5 to
20 min to produce drug-loaded polymeric micelle solutions. The
rehydration time was dependent on either the drug concentration or
the composition of the drugs or the multidrugmixtures. The polymeric
micelles loaded with the single drug were prepared accordingly with a
final polymer concentration of 10 g/liter and each drug feed concentra-
tion of 2, 4, 6, 8, 10, and sometimes 15 g/liter. The polymeric micelles
coloaded with multiple drugs were prepared using the same final poly-
mer concentration (10 g/liter) and predetermined concentrations of
each drug components of multiple drug mixtures. The polymers used
in this work are presented in table S4.

In every case, the formulations were stable for at least 24 hours when
the analysis of the drug incorporation was done. Prepared micelle
samples were allowed to cool to room temperature and centrifuged at
10,000 rpm for 3 min (Sorvall Legend Micro 21R Microcentrifuge,
ThermoFisher Scientific) to removeprecipitates. The transparent super-
natant solutions of micelle samples were used for the quantification of
the amounts of drugs solubilized in the polymericmicelle. The amounts
of drugs encapsulated in polymeric micelles were analyzed with a high-
performance liquid chromatography (HPLC) system (Agilent Technol-
ogies 1200 series). The micelle samples were diluted with mobile phase
(specified below) and injected (10 ml) into the HPLC column [Agilent
Eclipse Plus C18, 3.5 mm column (4.6 mm × 150 mm)]. Predetermined
mixtures of ACN/water (v/v) were used as the mobile phase. For PTX,
AZD8055, olaparib, imiquimod, NVP-BEZ235, ABT-263, ABT-737,
sabutoclax, LY2109761, AZD5363, LY364947, and the combination of
each of these drugs with PTX, a mixture of ACN/water (50%/50%, v/v;
0.01% trifluoroacetic acid) was used as the mobile phase. For VE-822,
vismodegib, and their combination, a mixture of ACN/water (35%/
65%, v/v; 0.01% trifluoroacetic acid) was used as the mobile phase.
For PTX, wortmannin, LY294002, LY294002 HCl, etoposide (ETO),
cisplatin prodrug (C6) (37), and the combination of wortmannin/
PTX, LY294002/PTX, LY294002HCl/PTX, and ETO/cisplatin prodrug
(C6), a mixture of ACN/water (50%/50%, v/v) was used as the mobile
phase. For PTX, brefeldin, cisplatin prodrug (C6), and the combination
of brefeldin/PTX and cisplatin prodrug (C6)/PTX, a mixture of ACN/
water (40%/60%, v/v)was used as themobile phase. For PTX,KU55933,
LDN-57444, and the combination of KU55933/PTX and LDN-57444/
PTX, a mixture of ACN/water (70%/30%, v/v) was used as the mobile
phase. For PTX, ETO, VE-822, and the combination of PTX/ETO/VE-
822, a stepwise gradient was used. First, the analyte was eluted for
13 min with ACN/water (30%/70%, v/v; 0.01% trifluoroacetic acid)
followed by a second 2-min elution change from ACN/water (30%/
70%, v/v; 0.01% trifluoroacetic acid) to ACN/water (60%/40%, v/v;
0.01% trifluoroacetic acid). Then, the analyte was eluted for 15 min.
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These measurements produced each drug concentration for each poly-
meric micelle composition (mg/ml). The flow rate was 1 ml/min, and
the column temperature was 40°C. Detection wavelengths were
determined by the drugs solubilized. The full description of platinum
complexes with sufficient hydrophobicity for encapsulation in POx
micelles is described in the Supplementary Materials (“Description of
platinum complexes” section), as well as the compilation of all experi-
mental data on solubilization of drugs in POx micelles (“Compiling all
experimental data” section).

LE (Eq. 1) and LC (Eq. 2) were calculated as follows:

LE ð%Þ ¼ mdrug

mdrug added
� 100 ð1Þ

LC ð%Þ ¼ mdrug

mdrug þmpolymer
� 100 ð2Þ

Datasets
Creation of drug-polymer micellar solubilization dataset
Before this study, we had collected LE and LC data on 20 drugs chosen
from the DrugBank (www.drugbank.ca/) that belonged to different
structural classes. All these compounds had considerable issues with
aqueous solubility. Many of these compounds were not approved by
the FDA or failed as treatments for solid tumors because of their toxic-
ity. We hypothesized that solubilization of these compounds using our
POx micelle system would greatly improve their anticancer efficacy.
However, althoughwe have demonstrated a very high solubilization ca-
pacity of some of the drugs using POx micelles, we have also seen
compounds where this technology was less helpful (23, 24).
Rational design of a chemically diverse library of poorly
soluble drugs
The chemical space formed by 20 previously tested compounds com-
bined with the Selleck library of FDA-approved drugs was analyzed by
plotting the barycentric coordinates in the space of SiRMSdescriptors of
all the 788 drugs. Barycentric coordinates correspond to the location of
points of a simplex (a triangle, tetrahedron, etc.) in the space defined by
the vertices (38). In this case, a simplex is defined by all the SiRMS de-
scriptors of a particular chemical substance. Barycentric coordinates
were determined using the Methods of Data Analysis module of the
HiT QSAR software (39). Then, we selected the insoluble or poorly
soluble drugs as preliminary candidates for solubilization in POx poly-
meric micelle delivery systems. The selected compounds were subject
to further chemical diversity sampling following a procedure similar
to that described by Kuz’min et al. (40). Ultimately, a collection of 61
molecules covering maximal chemical space for investigation of their
LE was obtained. Twenty-one compounds were selected from this col-
lection on the basis of diversity of both clinical applications and
mechanisms of action as well as availability and cost, and these
compounds were tested for LC and LE. Thus, the total experimental
dataset for model building included 20 compounds tested previously
and 21 new compounds selected from the Selleck library as described
above.
Selleck database
This dataset containing 853 FDA-approved drugs was retrieved from
www.selleckchem.com/. After curation, 768 compounds remained,
and a diverse subset of 61 molecules was selected from this dataset as
described above (see also step 1 in Fig. 1).
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DrugBank database
This dataset containing 7133 drug entries, including FDA-approved
small-molecule drugs, nutraceuticals, as well as illicit, withdrawn, and
experimental drugs, was retrieved from the DrugBank website (www.
drugbank.ca/). After curation, 6461 drugs were kept for virtual screening.

Data curation
We compiled all the data on drug loading into polymeric micelles gen-
erated over the years in our experimental laboratory. Originally, the
dataset consisted of 408 records for 41 compounds tested in different
concentrations and combinations for loading intomicellesmade of sev-
en different polymers. Most of the compounds were tested in different
concentrations and under different laboratory conditions. As part of the
data curation procedure, each recordwasmanually inspected. Chemical
structures were retrieved from either ChemSpider (www.chemspider.
com/) or SciFinder (https://scifinder.cas.org) databases using the
Chemical Abstracts Service (CAS) registry numbers and chemical
names. The dataset was thoroughly curated according to the workflows
developed by our group (41–43). Briefly, structural normalization of
specific chemotypes, such as aromatic and nitro groups, was performed
using ChemAxon Standardizer (v. 16.10.24.0, ChemAxon, Budapest,
Hungary; www.chemaxon.com). Organometallic compounds andmix-
tures were kept. After structure standardization, the structural dupli-
cates were identified using HiT QSAR (39). During this process, we
identified 33 records that appeared more than once (up to 12 times),
totaling 108 duplicates. The records describing the mixtures containing
three drugs (nine records) and eight cases of real duplicates, where the
experiment was performed more than once for the same drug-polymer
complex, were removed from the modeling process. The concordance
of property values for duplicated records was very high (average devi-
ation was equal to 7.6%); thus, only one record associated with the aver-
aged property value was kept for modeling. The high concordance
between values for true duplicativemeasurements indicated high exper-
imental reproducibility. The following experimental conditionswere re-
tained and used as descriptors for model building: polymer and drug
solvent, total solvent volume before evaporation, hydration solvent,
and hydration temperature. The final curated dataset of 391 records
is available in data file S1.

Molecular descriptors
SiRMS descriptors
Two-dimensional (2D) SiRMS descriptors (27) (number of tetratomic
fragments with fixed composition and topological structure) were gen-
erated by the HiTQSAR software (39). At the 2D level, the connectivity
of atoms in a simplex, atom type, and bondnature (single, double, triple,
or aromatic) was considered. SiRMS descriptors account not only for
the atom type but also for other atomic characteristics that may influ-
ence biological activity of molecules, e.g., partial charge, lipophilicity,
refraction, and atom ability for being a donor/acceptor in hydrogen-
bond formation (H-bond). For atom characteristics with continuous
values (charge, lipophilicity, and refraction), the division of the entire
value range into definite discrete groups was carried out. The atoms
were divided into four groups corresponding to their (i) partial charge
A ≤ −0.05 < B ≤ 0 < C ≤ 0.05 < D, (ii) lipophilicity A ≤ −0.5 < B
≤ 0 < C ≤ 0.5 < D, and (iii) refraction A ≤ 1.5 < B ≤ 3 < C ≤ 8 < D.
For the H-bond characteristic, the atoms were divided into three groups:
A (acceptor of hydrogen in the H-bond), D (donor of hydrogen in the
H-bond), and I (indifferent atom). The usage of sundry variants of dif-
ferentiation of simplex vertexes (atoms) represents the principal feature
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of the SiRMS approach (44). Detailed description of HiT QSAR and
SiRMS can be found elsewhere (27, 39).
Polymer descriptors
Each block of the polymer was described by the number of its repeti-
tions in the polymer. In addition, traditional SiRMS descriptors were
calculated for simplified polymer representation as a pseudo small mol-
ecule, with all repetitive monomers introduced only once. Overall
scheme of descriptor calculation for polymers developed for this study
for the first time is shown in Fig. 3.
Descriptors for drug-polymer complexes
We modified the SiRMS approach developed earlier to calculate de-
scriptors for organic compound mixtures (28, 29) to make it suitable
for theQSPR analysis of drug-polymer complexes as follows. Each com-
plex was represented as a binary mixture consisting of the drug mole-
Alves et al., Sci. Adv. 2019;5 : eaav9784 26 June 2019
cule and a simplified representation of a polymer as a pseudo small
molecule as described in the previous section. Then, the simplex de-
scriptors were calculated as usual. Bounded simplexes describe only
single components of the mixture (compound A or B), when un-
bounded simplexes can describe both the constituent parts and the mix-
ture as awhole. It is necessary to indicatewhether the parts of unbounded
simplexes belong to the same molecule or to different ones. In the latter
case, these unbounded simplexes will not reflect the structure of a single
molecule but will characterize a pair of different molecules. Simplexes of
this kind are specific for a given drug-polymer complex (Fig. 4). Special
mark was used during descriptor generation to distinguish these “mix-
ture” simplexes from ordinary ones. Themixture composition was taken
into account, i.e., descriptors of constituent parts (compounds A and B)
were weighted according to their molar fraction andmixture descriptors
Fig. 3. General scheme of descriptor calculation for polymers.
Fig. 4. Descriptor calculation of drug-polymer complexes. nA and nB are molar fractions of components A and B (nA < nB).
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weremultiplied by the doubledmolar fraction of the minor component.
If in the same task both drug-polymer complexes (mixtures) and pure
compounds had been considered, pure compoundswere considered as a
mixturewith compositionA1B0. In this case, only descriptors of the pure
compound A would be generated with the weight equal to 1. Thus, the
structure of every mixture was characterized by both descriptors of the
mixture and descriptors of its individual constituents.

A simpler approach was used for complexes consisting of a polymer
and a mixture of drugs. Here, the polymer was represented in the same
way, but descriptors for all the members of such mixture of drug-
polymer complex were calculated separately, weighted according to
their concentration, and then summarized in one string corresponding
to a given complex. This approachwas used for datasets containing both
drug-polymer and mixture of drug-polymer complexes. It allowed the
use of the maximal amount of available experimental data for model
building. In the end, constant, near-constant, and cross-correlated
variables (r ≥ 0.9) were removed to reduce the dimensionality of the
chemical space without loss of important information.

Experimental conditions
Certain experimental conditions were used as features, in addition to
molecular descriptors, to describe the system under the investigation.
Specifically, we considered solvents used to prepare both polymer and
drug samples, total solvent volume before evaporation, hydration sol-
vent, and hydration temperature.

Cluster analysis
Chemical clusters were generated by the sequential agglomerative hier-
archical nonoverlapping method implemented in the ISIDA/Cluster
software (45). Briefly, the software generates a dendrogram of the
parent-child relationships between clusters and a heat map of the
proximity matrix colored according to the pairwise chemical similarity
between compounds. This approach is well known; it has been exten-
sively used by our (46–48) and other groups (45, 49). Of course, clusters
are data specific, e.g., if the new data would be introduced to the dataset,
clusters might change. However, repeating cluster analysis for the same
dataset will result in the same clusters. In this study, we used clustering
only to analyze whether LogP andMW are relevant for drug loading of
similar compounds. We did not use cluster analysis to predict loading
parameters, which was done by QSPR models.

QSPR modeling
Binary QSPR models were developed and rigorously validated ac-
cording to the best practices of QSPRmodeling (50). Models were de-
veloped with random forest (RF) algorithm (51). One thousand trees
were built for each forest, and the outputs of all trees were aggregated
to obtain one final prediction. In each tree, about one-third of the set
of N compounds were sampled by bootstrap as out-of-bag (OOB) set
and the remaining compounds were used as a training set. The best
split by the CART algorithm (52) among them randomly selected de-
scriptors from the entire pool in each node was chosen, and each tree
was then grown to the largest possible extent; there was no pruning.
The predicted classification values are defined by the majority voting
for one of the classes. Thus, each tree predicts values for only those
compounds that are not included in the training set of that tree (for
OOB set only). The final model is chosen by the lowest error for pre-
diction of the OOB set.

Models were built using R (www.r-project.org/) and implemented in
a KNIME (www.knime.com/) workflow (available at https://figshare.
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com/s/69c56ca431c4963b0ecf). We followed the mixtures out pro-
cedure for the validation of QSAR models of mixtures described by
Muratov et al. (28). In this method, all data points corresponding to
mixtures composed of the same constituents, but in different ratios,
are simultaneously removed and placed in the same external fold. Thus,
every mixture is present in either the training or external set, but never
in both sets. This approach allows one to minimize the influence of
known information on the prediction and obtain reliable results for pre-
dicting novel drug-polymer complexes created by a known polymer
and a new drug. Thus, we combined the mixtures out strategy with a
fivefold external cross-validation procedure (16, 53).

Briefly, the full set of compounds with known experimental activity
was divided into five subsets of equal size. Each subset (20% of the
compounds) was selected once as a test set, while the other subsets
(80% of the compounds) were merged into a training set to develop a
model. This procedurewas repeatedwith the other subsets, allowing each
of the five subsets to be used once as a test set. In addition, 30 rounds of
Y-randomization test (40)were performed for eachdataset to ensure that
the accuracy of models was not obtained due to chance correlations.

The QSPR models were built for two endpoints: LE and LC. For
LE, the model was generated using a threshold of 80%. Thresholds of
10, 20, 30, and 40% were separately applied to build four models for
LC. This system of binary models would allow us to predict LC with-
in certain ranges (0 to 10%, 10 to 20%, 20 to 30%, 30 to 40%, and 40
to 50%), which is more informative than standard binary prediction.
Compounds predicted above the threshold by all the individual
models were selected as positive hits, while those predicted below
the threshold were selected as negative hits. The applicability domain
of the models was calculated as Dcutoff = <D> + Zs, where Z is a si-
milarity threshold parameter defined by a user (0.5 in this study)
and <D> and s are the average and SD, respectively, of all Euclidian
distances in the multidimensional descriptor space between each
compound and its nearest neighbors for all compounds in the training
set (54).

Statistical analysis
The following statistical metrics were used to assess different as-
pects of performance of classification models (Eqs. 3 to 7):

CCR

CCR ¼ ðsensitivity þ specificityÞ
2

ð3Þ

Sensitivity (Se)

Se ¼ NTruePositives

NTruePositives þ NFalseNegatives
ð4Þ

Specificity (Sp)

Sp ¼ NTrueNegatives

NTrueNegatives þ NFalsePositives
ð5Þ

PPV

PPV ¼ NTruePositives

NTruePositives þ NFalsePositives
ð6Þ
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NPV

NPV ¼ NTrueNegatives

NTrueNegatives þ NFalseNegatives
ð7Þ

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/6/eaav9784/DC1
Description of platinum complexes
Compiling all experimental data
Fig. S1. Results of cluster analysis of 25 compounds tested alone at 8 mg.
Fig. S2. Variable importance for the five models developed.
Table S1. List of 25 compounds tested alone at 8 mg with their respective clusters, LE and
LC (minimum, maximum, mean, and SD values), LogP, MW, and number of performed
experiments.
Table S2. List of three drugs with highest LE variability tested at 8 mg/ml.
Table S3. Statistical characteristics of LC and LE QSPR models based on fivefold external
cross-validation.
Table S4. List of eight polymers used in this study with specification of block sizes and end group.
Data file S1. Curated solubilization data for a single drug or a two-drug combination loaded
into polymeric micelles. This file contains all the data on compound solubilization generated in
this study subject to curation protocols as described in Materials and Methods.
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