
REVIEW

Genome integrity and disease prevention
in the nervous system
Peter J. McKinnon

Department of Genetics, St Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA

MultipleDNA repair pathwaysmaintain genome stability
and ensure that DNA remains essentially unchanged over
the life of a cell. Various human diseases occur if DNA re-
pair is compromised, and most of these impact the ner-
vous system, in some cases exclusively. However, it is
often unclear what specific endogenous damage under-
pins disease pathology. Generally, the types of causative
DNA damage are associated with replication, transcrip-
tion, or oxidative metabolism; other direct sources of en-
dogenous lesions may arise from aberrant topoisomerase
activity or ribonucleotide incorporation into DNA. This
review focuses on the etiology of DNA damage in the ner-
vous system and the genome stability pathways that pre-
vent human neurologic disease.

Genome stability is critically important for human
health. This is apparent from amyriad of inherited human
syndromes characterized by defective DNA damage re-
sponses (McKinnon 2013; Madabhushi et al. 2014). These
syndromes reveal that the nervous and immune systems
are particularly susceptible to the consequences of DNA
damage. Cancer is also a frequent feature of DNA repair
deficiency syndromes. Defects in genome integrity are
also increasingly being linked to broader health issues, in-
cluding age-related degenerative events that mar cogni-
tive ability and quality of life (Qiu et al. 2014; Chow and
Herrup 2015; Suberbielle et al. 2015; Hill et al. 2016;
Sepe et al. 2016; Barzilai et al. 2017). Clearly, understand-
ing the mechanistic connections between faulty DNA
damage signaling and human disease is of fundamental
biomedical importance.

The nervous system is an integrated and expansive col-
lection of different cell and tissue types. More than other
organ systems, this tissue has amultitude of levels of con-
trol, including homeostasis within the brain, and control-
ling roles in fundamental aspects of human physiology,
including breathing, heart function, endocrine control,
and integration of environmental cues (Stiles and Jernigan
2010). Consideration of howDNA damage impacts neural

function encompasses several areas, including neuro-
development, where neurogenesis involves widespread
cellular proliferation and, subsequently, migration, differ-
entiation, and maturation, as well as synaptic connectiv-
ity to establish the functional nervous system. After
birth, some ongoing neurogenesis occurs, but, for the
bulk of this tissue, genome maintenance is needed in
long-lived nonreplicating neurons. Over the life of an or-
ganism, comprehensive genome maintenance machinery
is in place to prevent and correct DNA lesions that fre-
quently occur.

An early appreciation of the potential importance of
DNA repair pathways in the brain came from the study
of human syndromes such as ataxia telangiectasia (A-T),
which is characterized by hypersensitivity to ionizing ra-
diation and neurodegeneration, implying a connection be-
tween these two features. Subsequently, a firm link
identifying specific mutation of DNA damage response
factors that cause neurodegenerative or neurodevelop-
mental syndromes has emerged during the last few de-
cades. These human diseases are direct indicators of the
importance of specific DNA repair pathways, as they re-
veal the resultant neuropathology arising when DNA re-
pair is defective. Details of the physiologic impact of
DNA damage have been greatly aided by the development
of disease models that recapitulate many (although not
all) of the effects of defective genome maintenance ob-
served in humans. Thus, based on human inherited dis-
eases and various mammalian experimental systems
with engineered defects in DNA damage signaling, it is
abundantly clear that the neural genome is constantly un-
der threat from endogenous events that damage DNA.

The molecular details of genome maintenance process-
es are well understood in the immune system, where they
involve controlled rearrangements via RAG1/2 such as V
(D)J recombination or class switch recombination, which
drives T-cell and B-cell maturation to form a functional
immune system (Helmink and Sleckman 2012; Alt et al.
2013; Tubbs and Nussenzweig 2017). Early studies identi-
fied expression of RAG1 transcripts in themurine nervous
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system (Chun et al. 1991), although the implication of this
finding is unclear, as evidence for recombination process-
es similar to those in T cells and B cells in the immune
system have not been identified in the brain. While the
nervous system ismarkedly impacted byDNA repair defi-
ciency, far less is known in this tissue about the actual
mechanisms causing neurodegenerative syndromes, and,
in this setting, much of the etiology leading to persistent
genome damage that derails normal cellular homeostasis
remains unclear.
This review considers the causative agents that lead to

neuropathology in various human genome instability syn-
dromes and details the functional relevance ofDNA repair
and response factors in the nervous system. This includes
the key neurodevelopmental events at threat from DNA
damage and the central genome maintenance pathways
that preserve the integrity of DNA in the mature nervous
system. As the bulk of the mature nervous system is non-
replicating, the maintenance factors during development
(replicating and immature, nonreplicating) and those crit-
ical in the adult (mature, nonreplicating) are different.

Endogenous DNA damage in the nervous system

To understand how DNA repair-deficient syndromes re-
sult in genome instability and neuropathology, two broad
unanswered questions exist: (1) What are the responsible
endogenous pathogenic lesions? (2) How do these selec-
tively impact the nervous system in a cell type-specific
or tissue-specific manner? For instance, why is the cere-
bellum so often a prevalent site of neuropathology? Is it
due to increased oxidative metabolism, aspects of postna-
tal development, or transcriptional activity in certain cer-
ebellar cell types that drive genome instability?
The lesions that cause neurologic disease inDNA repair

deficiency syndromes can be partitioned between those in
the developing or mature nervous system. During neuro-
genesis, where proliferation is a driving force for neural de-
velopment, replication stress (abnormal replication fork
progression) is a major source of DNA damage that can
perturb neural development. Other sources of DNA dam-
age are likely to be more pertinent in the mature nervous
system but can also occur during neurogenesis. These in-
clude transcriptional disruption or oxidative damage,
where reactive species chemically modify DNA, or free
radicals that generate DNA strand breaks. Finally, other
metabolic products may also be genotoxic, such as alde-
hydes (Langevin et al. 2011). Most DNA repair deficiency
syndromes present relatively early in childhood, tacitly
implying a developmental component of the disease.
Thus, a reasonable assumption for many syndromes is
that the impact of DNA damage happens during develop-
ment. There is also likely to be a progressive phase, where
cumulative genome damage worsens the presentation of
the disease. Mouse models with targeted mutations in
various DNA repair factors important for maintaining
the genome—such as XRCC1, which suppresses single-
strand break (SSB) accumulation, or those necessary to
prevent DNA double-strand breaks (DSBs; e.g., TOPBP1

or DNA ligase IV)—show that endogenous DNA damage
is a frequent event in the nervous system (Barnes et al.
1998; Gao et al. 1998; Lee et al. 2009, 2012b; Shimada
et al. 2015).

Replication stress in the nervous system

An early source of DNA damage in the developing ner-
vous system is replication-associated damage during neu-
rogenesis (Lee et al. 2012b; McKinnon 2013; Magdalou
et al. 2014; Zeman and Cimprich 2014; O’Driscoll 2017).
Replication stress is connected to a variety of syndromes
that have neurologic involvement (Table 1; Harley et al.
2016; O’Driscoll 2017; Reynolds et al. 2017). A key re-
sponder to replication stress is the DNA damage response
serine/threonine kinase ATR (A-T and rad3-related) (Nam
and Cortez 2011; Marechal and Zou 2013). ATR is an es-
sential kinase that prevents DNA damage accumulation
during replication, and hypomorphic mutation of this ki-
nase can result inATR-Seckel syndrome, a developmental
disorder that affects multiple organs, including the ner-
vous system (O’Driscoll et al. 2003). Many of the DNA
damage response factors that prevent replication-associat-
ed lesions are essential for proliferation, and mutations
causing dysfunction in these factors are generally hypo-
morphic, thereby maintaining some level of function in
the defective protein (Baple et al. 2014; O’Driscoll 2017).
ATR is activated by replication protein A (RPA)-coated
stretches of ssDNA that accumulate at stalled replication
forks (Marechal and Zou 2013). ATR signaling depends on
the RAD9–RAD1–HUS1 (9-1-1) complex that recognizes
DNA termini adjacent to RPA-bound ssDNA (Delacroix
et al. 2007). TOPBP1 (topoisomerase II-binding protein 1)
is required for ATR activation in conjunction with the
ATR-interacting protein (ATRIP), which targets ATR to
RPA-coated ssDNA (Kumagai et al. 2006; Wardlaw et al.
2014). The ATR-dependent DNA damage response in-
volves multiple components, including those that acti-
vate ATR to phosphorylate downstream substrates such
as CHK1 that modulate cell cycle progression (Nam and
Cortez 2011; Marechal and Zou 2013; Zeman and Cim-
prich 2014).
Mouse models of ATR deficiency further highlight the

essential requirement for this DNA damage response ki-
nase (Brown and Baltimore 2000; de Klein et al. 2000;
Ruzankina et al. 2007; Murga et al. 2009). Deletion of
ATR in cortical progenitors results in a reduced cortical
size, although with the six-layer lamination (that reflects
functional compartmentation in the cortex) still present,
suggesting a generalized cellular attrition (Lee et al.
2012c). In contrast, deletion of ATR in the developing cer-
ebellum has little apparent effect until embryonic day 16,
a stage when granule neuron progenitor numbers rapidly
increase via sonic hedgehog-driven proliferation from
the rhombic lip (Hatten and Heintz 1995; Leto et al.
2016). At this point in cerebellar development, ATR-null
granule neuron expansion ceases, and cerebellar develop-
ment is stalled (Lee et al. 2012c). This indicates the critical
need for ATR to monitor replication stress during this
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phase of rapid granule neuron progenitor proliferation.
Furthermore, in the neocortex, ATR can modulate apo-
ptosis of DNA-damaged progenitors in the proliferating
ventricular zone and is also essential for establishment
of a G2 cell cycle checkpoint after DNA damage in these
progenitors (Enriquez-Rios et al. 2017). Thus, not all neu-
ral tissues respond identically when ATR is defective, and
the impact of ATR loss and subsequent defective replica-
tion stress signaling can vary between brain regions.

TOPBP1 is critical for signaling replication stress, and
this function occurs via its activation of ATR (Nam
and Cortez 2011; Marechal and Zou 2013). While ATR
activation is a key role of TOPBP1, the consequences of in-
activation of this gene in the nervous system are substan-
tially different from that of ATR loss (Lee et al. 2012b,c).
Comparative analysis of ATR or TOPBP1 loss specifically
in cortical progenitors (where deletion is driven by EMX1-
cre) shows that, whereas ATR loss results in a smaller cor-
tex, loss of TOPBP1 causes a complete ablation of this
structure, suggesting that TOPBP1 has a broader role in
signaling replication stress. Moreover, p53 inactivation
substantially rescues this cortical deletion, indicating
that while TOPBP1 loss promotes DNA damage-induced
p53-dependent apoptosis and that TOPBP1 functions as

a damage transducer, it is nonetheless dispensable for pro-
liferation per se (Lee et al. 2012b).

Furthermore, frequent stochastic events such as DNA
SSBs can occur during neurogenesis. If these encounter a
replication fork, they can form DSBs, a potentially cata-
strophic lesion that can result in apoptosis, to which neu-
ral progenitors are particularly susceptible (McKinnon
2009). Transcriptional complexes can also collide with
the replication process, eliciting a repair response similar
to replication fork collapse (Hamperl and Cimprich 2016).
Thus, endogenous replication-associated damage can
have catastrophic effects in the nervous system, and this
is likely to be a main etiology involved in neurodevelop-
mental disease. In contrast to many other DNA lesions,
replication stress is a generalized genotoxic insult, com-
pared with the relatively nervous system-selective effects
of other types ofDNAdamage, such as those involving ox-
idative or transcription-associated damage.

Ribonucleotide (rNTP) incorporation into DNA

While DNA strand breaks and chemical modifications
(e.g., base damage, DNA cross-links, etc.) cover a broad

Table 1. Human neurologic syndromes resulting from defects in the DNA damage response

DNA lesion Syndrome DNA repair pathway Neuropathology

SSBs AOA, AOA1, AOA4,
SCAN1

MCSZa

Base excision repair Neurodegeneration

DSBs
Top2cc

Lig4 syndrome
MCSZa

Nijmegan breakage
syndromes

Ataxia with seizures

Nonhomologous end-joining
Homologous recombination
tyrosyl DNA phosphodiesterase
2 and nonhomologous
end-joining

Microcephaly

DNA cross-links Fanconi anemia Fanconi anemia/homologous
recombination

Brain tumors
Neurodevelopmental defects, among
which can be microcephaly and
hydrocephalus

Bulky adducts and
helix-distorting
lesions

XP
TTD
CS

Nucleotide excision repair Neurodegeneration
Complex clinical phenotypic spectrum,
including neurodevelopmental
abnormalitiesb

Replication stress ATR-Seckel syndrome and
various other
microcephalic disordersc

Replication stress
Replication-associated breaks

Microcephaly

Defective DNA damage
signaling

A-T
ATLD

DNA breaks
Replication stress

Neurodegeneration
Neurodevelopmental

Misincorporated bases
in DNA

Lynch syndrome
Constitution mismatch
repair deficiency

Mismatch repair Brain tumors

Misincorporated
ribonucleotides in
DNA

Aicardi-Goutières syndrome Ribonucleotide excision repair Microcephaly, neuroinflammation

(AOA) Ataxia with oculomotor apraxia; (SCAN) spinocerebellar ataxia with axonal neuropathy; (MCSZ) microcephaly with seizures;
(XP) xeroderma pigmentosum; (TTD) trichothyrodystrophy; (CS) Cockayne’s syndrome; (ATLD) A-T-like disease.
aMCSZ is characterized by microcephaly, not neurodegeneration, and this might be related to the role of polynucleotide kinase/phos-
phatase in DSB repair.
bPresentation of CS is very different from XP, as this disease affects transcription to generate a complex phenotype.
cDisruption of many factors involved in preventing replication stress can lead to microcephalic syndromes.
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group of well-studied types of DNA damage (De Bont and
van Larebeke 2004; Helleday et al. 2014), there are also
other commonDNA lesions that have been recognized re-
cently to substantially impact genome stability (Fig. 1).
Among these, rNTP incorporation into DNA, genome
damage from transcription-associated R-loop formation
(hybridization of nascent primary RNA transcripts to
the transcribed DNA strand), and aberrant topoisomerase
activity are potential threats to the neural genome
(McKinnon 2016; Williams et al. 2016).
The incorporation of rNTPs into DNA may be one of

the most frequent mistakes that occur during DNA repli-
cation, with estimates suggesting that on the order of
>1,000,000 rNTPs are incorporated during replication in
amammalian cell (NickMcElhinny et al. 2010a; Potenski
and Klein 2014; Wallace and Williams 2014; Cerritelli
and Crouch 2016; Williams et al. 2016, 2017). In fact,
this lesion may be the most common type of endogenous
DNA damage encountered by a proliferating cell. A main
source of rNTP incorporation is the activity of DNA poly-
merases during replication (Nick McElhinny et al. 2010a,

b; Potenski and Klein 2014; Crespan et al. 2016).While po-
lymerase proofreading to detect base mismatches during
DNA synthesis is very efficient, detection of rNTPs is
less so, and thus many rNTPs are erroneously incorporat-
ed in each cycle of replication. The mismatch repair path-
way can work in conjunction with DNA polymerases to
remove bothmismatched bases inDNAand also rNTP in-
corporation into DNA (Ghodgaonkar et al. 2013; Lujan
et al. 2013). rNTP incorporation into DNA is problematic
for DNA integrity, as the defining 2′-OH moiety on the
rNTP sugar is particularly reactive and can cause strand
breaks via hydrolysis, generating an aberrant 5′-OH end
or nucleophilic attack forming a 2′–3′-cyclic phosphate
(Williams et al. 2016). Incorporated rNTPs can also pro-
mote helical distortions, which can be sensed as DNA
damage (Wallace and Williams 2014).
Removal of rNTPs incorporated into DNA is termed

rNTP excision repair (RER), and a central player in this
process is RNase H2, amultimeric enzyme complex com-
posed of three separate polypeptides: RNase H2A, H2B,
and H2C (Sparks et al. 2012; Potenski et al. 2014; Cerri-
telli and Crouch 2016; Williams et al. 2017). RNase H2
eliminates rNTPs in DNA via an initial 5′ incision to
the rNTP followed by flap endonuclease activity prior to
ligation (Sparks et al. 2012). These enzymes can also pro-
cess/remove Okazaki RNA primers remaining after repli-
cation (Cerritelli and Crouch 2016). Inactivation of
murine RNase H2B results in early embryonic lethality,
which is linked to p53 signaling and genome instability,
confirming the in vivo importance of RNase H2 during
mammalian development (Hiller et al. 2012; Reijns et al.
2012). Hypomorphic mutations in any of the three sub-
units of human RNase H2 can lead to the human neuro-
logic/neuroinflammatory syndrome known as Aicardi-
Goutières syndrome (AGS) (Crow et al. 2006b; Reijns
et al. 2011; Cerritelli and Crouch 2016). This syndrome
is characterized by severe neurologic issues, includingmi-
crocephaly (clinically defined as a head circumference
three or more standard deviations below the mean for
age and gender), and is considered to arise because of failed
nucleic acid clearance, resulting in an interferon response
leading to severe neuroinflammation (Crow and Manel
2015).
Mutations in other nucleases also give rise to AGS, in-

cluding the major 3′ exonuclease TREX1 (Crow et al.
2006a). Studies with TREX1 knockout mice show elevat-
ed cytoplasmic DNA and inflammatory defects and
chronic ATM (A-T, mutated)-dependent cell cycle check-
point activation, suggesting that a prime TREX1 function
is to activate DNA damage signaling (Morita et al. 2004;
Yang et al. 2007). Since RNase H2 loss is also linked to a
DNA damage response, the characteristic microcephaly
inAGSmay reflect elevatedDNAdamage during develop-
ment, as it does in other DNA repair deficiency syn-
dromes (McKinnon 2013). Thus, it is possible that DNA
damage-induced cell loss (independent of the nucleic
acid-induced inflammatory response) accounts for impor-
tant aspects of the clinical presentation of AGS. Although
the RER pathway is essential for genome stability during
neurogenesis, its activity and contribution to neural

Figure 1. Endogenous DNA damage relevant to diseases of the
nervous system.Multiple types of endogenous lesions can impact
the nervous system at all stages of development and maturity.
Replication stress primarily affects proliferating neural progeni-
tors. rNTPs can become incorporated into the DNAvia DNA po-
lymerases during neurogenesis. While this substantially impacts
neural progenitors, it is also likely to occur throughout the devel-
oping and mature nervous system during DNA repair processes.
In the mature nervous system, transcription-associated damage
and aberrant topoisomerase activity will be a constant source of
potential DNA damage. Oxidative damage can also impact im-
mature cells but will be an ongoing threat to the mature nervous
system.

DNA damage in the nervous system
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homeostasis in post-mitotic neurons in the mature brain
is unclear. Nonetheless, as neurons are long-lived, the fail-
ure to prevent accumulation of rNTPs during repair pro-
cesses may also pose a threat in the mature brain.

While RNase H activity is essential for most rNTP re-
moval activity, another enzyme that processes rNTPs in
DNA is topoisomerase I (Top1). This function is in addi-
tion to the essential role that Top1 plays in the modula-
tion of torsional stress during DNA transactions,
including transcription (Pommier et al. 2016). Top1 pos-
sesses an endonuclease activity, and this activity has
been shown to act on rNTP–DNA substrates (Sekiguchi
and Shuman 1997). Recent studies in yeast reveal that,
in the absence of RNase H2, rNTPs incorporated in
DNA can be excised by TopI (Williams et al. 2013; Sparks
and Burgers 2015; Huang et al. 2017). However, there ap-
pears to be some selectivity in the rNTP excision by
Top1, as not all genomic rNTPs appear to be targets
(Kim et al. 2011). Much of these data derive from yeast
studies, and, in this organism, cells lacking RNase H2
do not exhibit growth defects, suggesting that cells must
have other pathways allowing them to replicate rNTP-
containing chromosomes. This is in contrast to mam-
malian cells, where loss of RNase H2 activity compromis-
es proliferation (Hiller et al. 2012; Reijns et al. 2012).
Therefore, assessment of the real impact of misincor-
porated rNTPs toward human neurologic disease, particu-
larly in the mature nervous system, will require analysis
of mammalian models to reveal the impact of compro-
mised RER.

R loops and transcriptional damage

Another endogenous lesion that is potentially detrimen-
tal for neural genome stability is transcription-associated
R loops (Aguilera and Garcia-Muse 2012; Groh and Gro-
mak 2014; Skourti-Stathaki and Proudfoot 2014; Santos-
Pereira and Aguilera 2015; Sollier and Cimprich 2015).
During transcription, RNA polymerase generates forward
positive torsional stress that impedes further DNA un-
winding, and this is relieved by topoisomerase activity
(Pommier et al. 2016). In contrast, negative torsion occurs
in thewake of the polymerase and can lead to DNA strand
separation and opening of the duplex. The resulting
ssDNA region formed during transcription can base-pair
with the nascent RNA transcript, generating an RNA–

DNA duplex and an unpaired nontemplate DNA strand,
giving rise to the term “R loop” for such structures. Other
features such as highGC content (termed “GC skew”) can
also predispose to R-loop formation (Ginno et al. 2012).
Because R loops can form frequently and lead to genome
instability, there are multiple DNA damage response fac-
tors that function to suppress or relieve R loops (Mischo
et al. 2011; Bhatia et al. 2014; Sollier et al. 2014; Garcia-
Rubio et al. 2015; Hatchi et al. 2015; Santos-Pereira and
Aguilera 2015).

Some of the factors required to prevent R loops from be-
coming genotoxic, including RNase H2 and senataxin
(SETX; a putative DNA/RNA helicase), are directly impli-

cated in neurologic disease (Moreira et al. 2004; Mischo
et al. 2011; Groh and Gromak 2014; Bennett and La Spada
2015). Inactivation of SETX, which has been linked to res-
olution of 3′ R loops during transcription, can result in
ataxia with oculomotor apraxia 2 (AOA2) or amyotrophic
lateral sclerosis, depending on whether it is an inactiva-
tion or a gain-of-function mutation (Skourti-Stathaki
et al. 2011; Groh and Gromak 2014; Bennett and La Spada
2015). R loops have also been implicated in fragile X-asso-
ciated tremor/ataxia syndrome, where they occur at the
FMR1 locus and may affect gene function, leading to neu-
ronal toxicity (Loomis et al. 2014). RNase H1 and H2 are
also important for R-loop resolution in addition to their
roles in rNTP removal from DNA (Chon et al. 2013;
Amon and Koshland 2016; Williams et al. 2016). Impor-
tantly, if a main physiologic function of SETX is R-loop
resolution, then this implicates R loops as a major source
of endogenous genomic damage in the nervous system.
However, in Setx−/− mice, R loops have been identified
in testis but were not observed in the mature brain, per-
haps implicating R-loop regulation by SETX as a patho-
genic event primarily during neural development (Yeo
et al. 2014). The way R loops generate genome instability
remains unclear, although the displaced DNA loop might
be susceptible to DNA breaks or the action of the APO-
BEC (apolipoprotein B mRNA-editing enzyme, catalytic
polypeptide-like) family of cytidine deaminase enzymes,
and transcription-coupled DNA repair could also poten-
tially generate breaks (Sollier and Cimprich 2015). It is
also possible that R-loop formation could promote tran-
scriptional disruption without generating frank DNA
strand breaks.

DNA breaks in the nervous system

In contrast to neural development, sources of endogenous
damage in themature brain no longer include ongoing rep-
lication-associated lesions. Rather, the high oxygen con-
sumption of the brain (Barzilai 2007) leads to increased
respiration, oxidative lesions, and free radical production,
which can result in oxidative DNA base damage and
breakage of the DNA phosphodiester linkage. Further-
more, the high transcriptional activity of large neurons
and their requirement to function for the life of the organ-
ism proportionally increase the probability of genotoxic
events arising from normal cellular activities (Marguerat
and Bahler 2012; Padovan-Merhar et al. 2015).

An additional prime source of endogenous damage in
both developing and mature brains is the activity of topo-
isomerases. These enzymes function to introduce con-
trolled breaks into DNA, and any aberrant activity can
lead to DNA damage accumulation with pathogenic con-
sequences (McKinnon 2016). All three classes of topo-
isomerase have been directly or indirectly linked to
neurologic disease, including defects in enzymes that re-
move trapped Top1 and Top2 (Takashima et al. 2002; Go-
mez-Herreros et al. 2014); perturbation of long-gene
expression, including genes linked to autism after Top1
or TOP2 inhibition (King et al. 2013); and Top 3b loss,
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which has been directly linked to schizophrenia (Stoll
et al. 2013). Additional details concerning the role of topo-
isomerase-induced breaks in the nervous system are dis-
cussed later in the section on A-T and base excision
repair (BER).

DNA strand break repair deficiency leads
to neurologic disease

While the endogenous threats outlined above constantly
occur to the genome, the real pathologic impact of these
insults is revealed when the cellular response mechanism
needed to alleviate theDNAdamage is disabled. Formany
inherited neurologic diseases, the impact on the nervous
system is startling in severity. Surprisingly, germline mu-
tations in many ubiquitous DNA repair factors (particu-
larly those responsible for preventing oxidative damage
or the accumulation of DNA nicks) seem to affect only
the nervous system (McKinnon 2013). In some cases, the
biochemical function of the defective enzymes in inherit-
ed neurologic disease is to specifically process modified 3′

or 5′ DNA ends. However, the disease neuropathology in-
dicates that these lesions, often associated with DNA
nicks, are of profound systemic consequence to the ner-
vous system and therefore must be a relatively frequent
event needing timely resolution. Furthermore, the fact
that individual enzymatic defects result in such profound
neuropathology indicates that DNA repair redundancy is
unavailable. This might be viewed as somewhat surpris-
ing given that the early onset of many of these syndromes
suggests an overlap with development/neurogenesis,
where some redundancy between repair pathways is po-
tentially available, particularly in the cerebellum, a tissue
that continues to develop postnatally for a period of ∼2 yr
(Leto et al. 2016).
The following sections consider specific disease scenar-

ios that illuminate the signaling pathways dealing with
the diverse types of DNA damage encountered in the ner-
vous system and how a failure to limit this damage leads
to pathogenicity. Defects in all five major DNA repair
pathways have been directly implicated in neurologic dis-
ease, and, although their detailed biochemistry is not dis-
cussed here, comprehensive recent reviews are available:
nucleotide excision repair (Scharer 2013), the Fanconi ane-
mia pathway (Walden and Deans 2014; Michl et al. 2016),
homologous recombination (Jasin and Rothstein 2013),
nonhomologous end-joining (Lieber 2010; Williams et al.
2014), mismatch repair (Kunkel and Erie 2015), and BER
(Dianov and Hubscher 2013; Krokan and Bjoras 2013;
Abbotts and Wilson 2017).

A-T and ATM: a paradigm for DNA damage-related
neurodegeneration

The first inklings that DNA damage was a prominent
etiologic agent in neurologic disease came from the reali-
zation that the childhood neurodegenerative syndrome
A-T was intimately linked to radiosensitivity (Taylor
et al. 1975). Subsequently, as the genetic basis for A-T

was shown to be mutation of a DNA damage-responsive
kinase, ATM (Savitsky et al. 1995), it became clear that
genome instability was driving pathology in this neurode-
generative syndrome. The extreme radiation sensitivity of
A-T suggested that defective DNA damage responses un-
derpinned this disease and, accordingly, that the neurode-
generative phenotype reflected aspects of DNA damage
(McKinnon 2012). Despite amultitude of systemic defects
that includes the immune system, germinal tissues (mei-
osis is defective, and individuals with A-T are sterile)
(Lange et al. 2011), and a predisposition to hematopoietic
malignancy (T-cell and B-cell tumors), the hallmark and
the most clinically intractable feature of A-T is neurode-
generation (Lavin 2008; McKinnon 2012; Shiloh and Ziv
2013; Rothblum-Oviatt et al. 2016). Cerebellar ataxia is
apparent at a quite early age, and individuals with A-T
are typically wheelchair-bound during their first decade
of life. Characteristic neuropathology in A-T includes
widespread loss of cerebellar granule and Purkinje neu-
rons, white matter abnormalities (the loss of oligodendro-
cyte myelination), and a progressive nervous system-wide
degenerative pathology (McKinnon 2012). Similar fea-
tures also occur in many other DNA repair deficiency
syndromes.
More compelling evidence that DNA damage under-

pins the neurodegeneration in A-T came from the discov-
ery that, in a related neurologic syndrome called A-T-like
disease (ATLD), the causative mutations were found in
the DNA damage sensor MRE11, a component of a
DNA damage-dependent ATM activation complex (Stew-
art et al. 1999; Stracker and Petrini 2011; Paull 2015). Al-
thoughATLDhas an early onset ataxia similar to A-T, it is
less severe, and this disease also lacks the extraneurologic
features of A-T (Taylor et al. 2004, 2015; Palmeri et al.
2013).
Mre11 together with RAD50 and NBS1 form the MRN

complex, which activates ATM after DNA damage
(Stracker and Petrini 2011; Paull 2015). MRE11 and
RAD50 cooperate to tether brokenDNA ends and, togeth-
er with NBS1, localize activated ATM to DNA damage
(Hopfner et al. 2002; Kitagawa et al. 2004; Lee and Paull
2004; Falck et al. 2005; Wiltzius et al. 2005; Williams
et al. 2010). Mutations of NBS1 are causative in the Nij-
megen breakage syndrome (NBS), another radiosensitivity
disorder that is characterized by prominent microcephaly
rather than neurodegeneration (Varon et al. 1998; Chrza-
nowska et al. 2012). NBS also has many phenotypic
similarities to A-T, including chromosomal instability,
immunodeficiency, and predisposition to hematopoietic
malignancies (Shiloh 1997; Chrzanowska et al. 2012). Ad-
ditionally, microcephaly has also been associated with
RAD50 mutation (Waltes et al. 2009). In contrast to
ATM, the disease-causing mutations in ATLD and NBS
are hypomorphic, as the MRN complex is indispensable
for completion of DNA replication and survival (de Klein
et al. 2000; Zhu et al. 2001), and while they disable impor-
tantMRN functions, they nonetheless retain essential ac-
tivity, allowing overall development.
Notably, mutations in MRE11 can influence disease

phenotype, as specific MRE11 mutations can result in
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microcephaly rather than the neurodegeneration charac-
teristic of ATLD (Matsumoto et al. 2011). The distinct
phenotypes arising from various MRN hypomorphic al-
leles are likely to reflect the impact on replication in the
case of microcephaly or on ATM activation when the
outcome is neurodegeneration, probably via attenuating
ATM-dependent apoptosis (Shull et al. 2009).

While the activation of ATM by DNA DSBs has been
well established over the past decades (Lavin 2008; Shiloh
and Ziv 2013; Paull 2015), it is less clear whether this is
the lesion responsible for neurodegeneration in A-T.
This is particularly so, as syndromes linked to DSB repair
(DSBR) defects typically feature with microcephaly and
not neurodegeneration. This is highlighted by (among
others) ligase IV syndrome (Altmann and Gennery 2016)
and theMRN-related diseasesmentioned above. The con-
nections between ATM and DSBs that might suggest a
causative role in neurodegeneration include overall radia-
tion sensitivity, defective DNA damage signaling after
DSBs in the nervous systems of ATM-null mice (Herzog
et al. 1998), and because the MRN complex activates
ATM.

However, a spectrum of other possibilities for the un-
derlying etiology in A-T has been proposed to explain
the neurodegeneration that occurs early in A-T. While
some of these also include DNA strand breaks, other sug-
gestions involve oxidative stress, mitochondrial dysfunc-
tion, and altered ATM cytoplasmic (non-DNA damage)
functions (Eaton et al. 2007; Guo et al. 2010; Valentin-
Vega et al. 2012; Zhang et al. 2015; Fang et al. 2016). Cur-
rently, the important etiologic agents and the actual basis
for cell loss that results in neurodegeneration remain un-
certain. Despite this, strong clues exist as to what is likely
to be the critical neuroprotective events requiring ATM,
and these mostly involve DNA damage.

Aberrant regulation of Top1 has been identified recent-
ly as a potential endogenous pathogenic event in the
brains of ATM-null mice (Katyal et al. 2014). Top1 cova-
lently binds DNA and introduces a single-strand nick (in
contrast, Top2 creates a DSB), and this activity is critical
in a cell for multiple DNA transactions, including modu-
lation of supercoiling and transcriptional regulation
(Nitiss 2009; Pommier et al. 2016). Although the normal
cellular activity of Top1 involves the covalent attachment
of topoisomerases to DNA prior to cleavage, this transient
DNA break is not detected as damage. However, if topo-
isomerase activity is perturbed, the enzyme can become
trapped on DNA that activates DNA damage signaling
(Pommier et al. 2006). Topoisomerases are critical for nor-
mal brain function, and dysregulation of all classes of
topoisomerases have been strongly linked to a variety of
neurologic diseases (McKinnon 2016).

ATM prevents the accumulation of endogenous Top1
cleavage complexes (Top1ccs) in mammalian brains and
cultured cells by promoting the degradation of Top1 via
ubiquitin/sumoylation, thereby minimizing the DNA
damage generated by the Top1cc (Alagoz et al. 2013; Car-
lessi et al. 2014; Katyal et al. 2014). Thus, this Top1 com-
plex represents the first identified endogenous pathogenic
lesion in the mammalian brain attenuated by ATM

(Katyal et al. 2014). As Top1cc generates DNA damage,
this lesion may contribute importantly to the neurode-
generative phenotype of ATM. In nonreplicating cells,
treatment with the Top1 inhibitor camptothecin results
in transcription-associated DNA damage, as observed by
γH2AX formation. This is ATM-dependent, as, in noncy-
cling ATM-null cells, γH2AX is not formed after Top1 in-
hibition, indicating that Top1cc can specifically activate
ATM (Sordet et al. 2009; Sakasai et al. 2010; Katyal et al.
2014). Although Top1 produces SSBs, if a Top1cc occurs
in replicating cells (for instance, during postnatal cerebel-
lar development), then they may become converted to
DSBs, thus activating ATM via theMRN complex, poten-
tially resulting in apoptosis (Shull et al. 2009).

ATM may also be important for preventing R-loop ac-
cumulation after spliceosome displacement at trans-
cription-blocking lesions in noncycling primary cells
(Tresini et al. 2015). This could be relevant to ATM regu-
lation of Top1cc, as formation of these cleavage complex-
es can also result in increased R-loop formation and
transcriptional disruption (Tuduri et al. 2009; El Hage
et al. 2010). Because ATM prevents the accumulation of
Top1ccs in the nervous system and because these lesions
are potentially pathogenic, persistent Top1cc may be an
important contributor to neurodegeneration in A-T. No-
tably, DNA SSBs associated with Top1cc accumulation
in an ATM-null setting may be relevant to the neurode-
generation observed in inherited syndromes associated
with defects in the BER pathway (see the next section).
In fact, neurodegeneration in syndromes characterized
by SSB repair (SSBR) defects have a neuropathology simi-
lar to that of A-T. For instance, the neurologic presenta-
tion of AOA1 (see below) is almost identical to that of
A-T, leading to this distinct neurodegenerative disease
initially being classified as an A-T variant (Aicardi et al.
1988).

Recently, accumulation of trapped Top2 (Top2cc) was
found in various MRE11-deficient cells and also endoge-
nously in the brains of Nbs1Nes-cre mice (Lee et al.
2012a; Aparicio et al. 2016; Deshpande et al. 2016; Hoa
et al. 2016). Importantly, no Top1cc accumulation was
found in response to specific defects in theMRNcomplex,
consistent with ATM regulation of Top1 likely being in-
dependent of theMRNcomplex (Katyal et al. 2014). These
data suggest distinct roles for ATM and MRN indepen-
dently preventing Top1cc and Top2cc accumulation.
Because these trapped topoisomerase complexes are path-
ogenic, it is possible that ATLD is a phenocopy of A-T,
with both syndromes resulting from the aberrant regula-
tion of different topoisomerases.

BER is critical in the nervous system

From a pathologic standpoint, defective DNASSBR exclu-
sively impacts the nervous system. While other types of
DNA damage, such as bulky DNA adducts, DSBs (occur-
ring during replication), and interstrand cross-links, im-
pact the nervous system, they also affect other tissues
throughout the body. As SSBs can be a product of
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oxidative metabolism and mitochondrial activity, it is
likely that the substantial oxygen consumption of the
brain underscores the critical need for BER (Attwell and
Laughlin 2001; Barzilai 2007). Currently, germline muta-
tions in four components of the BER pathway have been
identified in neurologic disease, and, in all cases, these in-
dividuals are characterized by ataxia and exhibit patholo-
gy exclusively in the nervous system (Fig. 2).
The BER pathway repairs DNA SSBs or damage to bases

via insults such as oxidation. The repair of a damaged base
initially involves the action of a lesion-specific DNA gly-
cosylase followed by the apurinic/apyrimidinic endonu-
clease-1 to generate a DNA strand break (Krokan and
Bjoras 2013; Li and Wilson 2014). Strand break repair
uses XRCC1 and PARP (poly-ADP-ribose polymerase) to
recruit repair factors involved in DNA end modification
and DNA polymerase for gap filling and ligation via ligase
III or ligase I (Caldecott 2008; Gao et al. 2011). Defects in
this pathway are associated with multiple forms of AOA,
including AOA1 and AOA4; spinocerebellar ataxia with
axonal neuropathy (SCAN1) neurodegenerative syn-
dromes; and, in certain cases, microcephaly with seizures
(MCSZ) (Table 1; Date et al. 2001; Moreira et al. 2001;
Takashima et al. 2002; Shen et al. 2010; Hoch et al. 2017).

Aprataxin (APTX), mutated in AOA1, is a member of
the histidine triad superfamily of nucleotide hydrolases
and possesses an AMP-lysine hydrolase activity, required
for the repair of 5′-AMP intermediates that arise from
failed DNA ligation reactions (Seidle et al. 2005; Ahel
et al. 2006). APTX has also been implicated in the removal
of rNTPs from DNA and can deadenylate RNA–DNA
junctions to facilitate repair and removal of misincorpo-
rated rNTPs (Tumbale et al. 2014). Tyrosyl DNA phos-
phodiesterase 1 (TDP1) mutations can result in SCAN1.
This enzyme repairs altered 3′ DNA ends arising from
Top1–DNA covalent complexes or oxidative damage (El-
Khamisy et al. 2005; Interthal et al. 2005; Zhou et al.
2005). TDP1-deficient neural cells have a pronounced
defect in the repair of camptothecin-induced Top1ccs
and hydrogen peroxide-induced SSBs (Hirano et al. 2007;
Katyal et al. 2007). Although it is likely, but not certain,
that the main role for TDP1 is repair of Top1cc damage
in the brain, this is the case for TDP2, whose sole role ap-
pears to be repairing Top2cc (Cortes Ledesma et al. 2009;
Nitiss and Nitiss 2013). Inactivating mutations in TDP2
leads to a neurologic disease associated with intellectual
disability, seizures, and ataxia, underscoring the patho-
genic impact of Top2cc in the nervous system (Gomez-
Herreros et al. 2014; McKinnon 2016). As some gene ex-
pression regulated by Top2 involves DNA DSBs that acti-
vate DNA damage signaling (Ju et al. 2006; Bunch et al.
2015), in the brain, this activity is associated with specific
types of gene expression programs (Madabhushi et al.
2015). Abnormal regulation of this process might contrib-
ute to tissue-specific DNA damage.
The pathology resulting from BER defects is associated

with increased SSBs, a lesion known to activate PARP-
mediated ADP ribosylation (Caldecott 2008). Increased
PARP activity can deplete cellular NAD levels, leading
to neurotoxicity (Gupte et al. 2017; Narne et al. 2017).
This was confirmed in mice with XRCC1 deleted in the
brain (Lee et al. 2009), in which the characteristic loss of
cerebellar interneurons was rescued by coincident dele-
tion of PARP1 (Hoch et al. 2017). These data implicate
PARP1 hyperactivity as a major source of disease pathol-
ogy induced by unrepaired SSBs in the brain. Pathology
may also arise from the conversion of SSBs to lethal
DSBs during cerebellar development, which can activate
apoptosis or cell cycle arrest and could account for the ad-
ditional rescue of affected XRCC1 tissues, such as cerebel-
lar granule neurons, by p53 loss (Lee et al. 2009).
While the functional relationships between XRCC1,

APTX, and TDP1 during DNA repair offer a logical expla-
nation for their roles in preventing neurodegeneration, a
more enigmatic example of defects in this pathway lead-
ing to neurologic disease is that of the end-processing en-
zyme polynucleotide kinase/phosphatase (PNKP).
Mutation of this enzyme can lead to either the neurode-
generative syndrome AOA4 or MCSZ. Notably, these
are clinically distinct neurologic syndromes despite the
fact that both can result from similar mutations in
PNKP (Shen et al. 2010; Bras et al. 2015). Why similar
gene mutations in PNKP lead to different diseases is un-
known. In one family, siblings from consanguineous

Figure 2. The BER pathway is essential in the nervous system.
The BER system is required to correct SSBs and oxidative dam-
age and is a critical main DNA repair pathway in the nervous
system. The BER components listed in red have been identified
in human neurodegenerative disease. The scaffold protein
XRCC1 is key for efficient BER, and the repair enzymes apra-
taxin (APTX) and tyrosyl DNA phosphodiesterase-1 (TDP1)
modify the 5′ and 3′ DNA ends, respectively, after damage to al-
low for religation/repair of the DNA break. Polynucleotide ki-
nase/phosphatase (PNKP) has a dual kinase/phosphatase
activity and can process both ends of a DNA break. Mutations
in PNKP can result in different neurologic disease characterized
by either microcephaly or neurodegeneration.
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parents developed both microcephaly and ataxia but
had mutations identical to those of individuals with
MCSZ who did not develop ataxia; thus, it is likely that
genetic modifiers influence the outcome of PNKP muta-
tions (Poulton et al. 2013; Dumitrache and McKinnon
2017).

PNKP contains a C-terminal catalytic region with a
fused bifunctional phosphatase and kinase domain and
an N-terminal forkhead-associated (FHA) domain (Wein-
feld et al. 2011). Correspondingly, PNKP has both a 3′

phosphatase and 5′ kinase activity for modifying the
ends of a DNA break (Jilani et al. 1999; Weinfeld et al.
2011). Interestingly, this enzymatic activity of PNKP is
used for both SSBR and DSBR (Whitehouse et al. 2001;
Chappell et al. 2002; Koch et al. 2004; Karimi-Busheri
et al. 2007; Zolner et al. 2011; Shimada et al. 2015). The
FHA domain of PNKP is important for interactionwith ei-
ther the XRCC1 or XRCC4 scaffold proteins, which are re-
quired for assembling SSBR or DSBR (nonhomologous
end-joining) components, respectively (Whitehouse et al.
2001; Koch et al. 2004; Bernstein et al. 2005; Ali et al.
2009; Zolner et al. 2011; Shimada et al. 2015). PNKP mu-
tant mice also show both SSBR and DSBR defects in neu-
ral (and other) cells (Shimada et al. 2015). Biochemical
studies showed that disease-causing mutations affecting
PNKP resulted in compromised phosphatase activity,
and MCSZ-derived lymphoid lines had very low PNKP
protein expression that compromised enzymatic activity
(Reynolds et al. 2012). Based on other syndromes, it seems
likely that theDSBR defects account for themicrocephaly
in MCSZ and that the SSBR defect promotes ataxia in
AOA4. However, if DSBR is an important function of
PNKP, then why is the phenotype of MCSZ restricted to
the nervous system?

Oxidative damage may also underpin expansion of trip-
let nucleotide repeats that appear in >40 human neurolog-
ic syndromes (McMurray 2010; Liu and Wilson 2012). In
these diseases, somatic expansion of triplet repeats occurs
in the nervous system until it reaches a threshold, after
which neuropathology is apparent. The process that
drives somatic expansion of these repeats appears to be
linked to BER activity, and inactivation of various BER
components has been shown to dramatically exacerbate
triplet repeat expansion (McMurray 2010; Liu and Wilson
2012).

Maintenance of the mitochondrial genome is also criti-
cal for neural homeostasis, and the BER pathway has been
directly implicated in mitochondrial DNA (mtDNA) re-
pair (Sykora et al. 2011; Prakash and Doublie 2015). How-
ever, it appears that the key general event for widespread
mtDNAmaintenance involvesDNA ligase 3 duringmito-
chondrial genome replication (Gao et al. 2011). Moreover,
although multiple BER factors have been identified in the
mitochondria, clear evidence for mitochondriopathy do
not feature in BER syndromes. It is possible that the het-
erogeneity and abundance of mitochondria make stochas-
tic damage to mtDNA less consequential than nuclear
DNA. Furthermore, other generalized processes have
been identified that can clear damaged mtDNA, such as
mitochondrial fusion (Chen et al. 2010).

Perspectives and future directions

Collectively, the details above indicate that the nervous
system requires an armamentarium of factors to guard ge-
nome integrity. This is apparent both during neurogene-
sis, when replication is a driving force of development,
and also in long-lived neural cells, where high oxidative
metabolism and transcriptional activity cause a constant
barrage of potentially deleterious DNA lesions.

Our knowledge regarding the physiologic importance of
DNA repair factors derives from human syndromes and
genetic manipulation in mouse models, although how
the many potential endogenous lesions ultimately lead
to neuropathology still remains unclear. A challenge in
understanding disease etiology comes from disentangling
the relative impact of DNA lesions during DNA replica-
tion in stem and progenitor cells, immature (noncycling)
cells, or fully differentiated cells. Most DNA damage re-
sponse defects are apparent early in childhood, suggesting
a neurodevelopmental involvement to varying degrees.
However, for many disease phenotypes that are restricted
to the nervous system, a fundamental role for the defec-
tive protein in suppressing replication stress seems un-
likely. Furthermore, syndromes resulting from DNA
replication defects also do not show progressive degenera-
tion in the nervous system. It is more likely that the im-
pact of DNA repair defects in the nervous system is
related to the profound physiologic change that happens
after birth, where respiratory metabolism takes over
from placental oxygen use. Notably, loss of DNA ligase
III (a BER factor required for mtDNA maintenance)
throughout the developing mouse nervous system has lit-
tle consequence until after birth, where the sudden burst
of respiration results in early lethality associated with
widespread death throughout the nervous system (Gao
et al. 2011). Consequently, in the perinatal period, neural
tissuemust deal with the impact of respiration and higher
oxygen utilization. Thus, the genome maintenance fac-
tors needed at this stage differ dramatically from those re-
quired to maintain genomic integrity in rapidly
proliferating neural tissues. The pathways most critical
at this stage are those that deal with oxidative DNA dam-
age; thus, defects in BER substantially impact the young
nervous system. The progressive decline associated with
most DNA repair diseases also indicates that critical
maintenance functions are required in differentiated neu-
ral cells to offset the effects of a continual threat of differ-
ent DNA lesions.

Mammalian genomes are also characterized by long in-
terspersed element 1 (L1) retrotransposons distributed
throughout the genome, accounting for up to 20% of hu-
man genomic sequences (Muotri et al. 2005; Erwin et al.
2014). Insertion of this DNA can result in genome diver-
sity that could potentially influence individual cellular
identity. As ATM signaling has been reported to restrict
L1 transposition in human brains (Coufal et al. 2011), it
is possible that there are pathogenic consequences for
this retrotransposition event. Recently, the advent of sin-
gle-cell genomic sequencing has revealed somatic copy
number variation in a large portion of cortical neurons;
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among the changes in individual neuronal DNA are dele-
tions and aneuploidy (McConnell et al. 2013). Notably,
loss-of-function mutations associated with these single-
nucleotide variants have been linked to autism spectrum
disorder risk (D’Gama et al. 2015). Thus, these somatic
mutations may have particular consequences associated
with neurologic disease predisposition in the human pop-
ulation (McConnell et al. 2017). Although these genomic
changes are prevalent in the brain, the underlying mecha-
nism associated with DNA damage/repair resulting in al-
tered individual genomes is presently unknown.
Other data integrating various genome transactions

with DNA damage responses are also expanding our
understanding relevant to genome maintenance in the
nervous system. For instance, chromatin remodeling in-
fluences broad aspects of DNA repair, perhaps by regulat-
ing the accessibility of repair factors to chromatin (Price
and D’Andrea 2013). Defective chromatin remodel-
ing during development can also compromise genome
stability of neural progenitors (Nechiporuk et al. 2016).
Connecting DNA repair pathways and chromatin modi-
fication will continue to integrate more general cellular
processes that respond to and facilitate DNA repair
with modulation of chromosome integrity and cellular
homeostasis.
The establishment of consortia to investigate uncharac-

terized neurologic diseases as well as the increased avail-
ability of genomics resources such as high-throughput
sequencing will further reveal the importance of DNA
damage response components not previously identified
in disease, as was recently discovered for XRCC1 (Hoch
et al. 2017). With the emergence of precision medicine,
it is apparent that therapeutic intervention to ameliorate
genome stability defects requires a detailed understanding
of the central sources of genome damage and a greater un-
derstanding of how this impacts physiologically. Further
elucidation of cellular strategies for genomemaintenance
in the nervous system will allow for the design of neuro-
protective agents to prevent disease progression. En-
hanced understanding of DNA maintenance pathways
in a tissue-specific context could also identify potential
cellular vulnerabilities that can be leveraged as anti-can-
cer strategies.
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