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Abstract: The gut microbiome is a microbial ecosystem which expresses 100 times more genes than
the human host and plays an essential role in human health and disease pathogenesis. Since most
intestinal microbial species are difficult to culture, next generation sequencing technologies have been
widely applied to study the gut microbiome, including 16S rRNA, 18S rRNA, internal transcribed
spacer (ITS) sequencing, shotgun metagenomic sequencing, metatranscriptomic sequencing and
viromic sequencing. Various software tools were developed to analyze different sequencing data.
In this review, we summarize commonly used computational tools for gut microbiome data analysis,
which extended our understanding of the gut microbiome in health and diseases.

Keywords: gut microbiota; fungi; virus

1. Introduction

The gut microbiome is a complex ecosystem with great impacts on the overall health of the
host [1–3]. These microorganisms living in the gastrointestinal tract have various functionalities,
such as absorption of nutrients and minerals, fermentation of fibers to short-chain fatty acids,
synthesis of vitamins, breakdown of toxic components, and regulation of the immune system.
The gut microbiome changes over time depending on host’s age and dietary habits [4]. Its status
is in close correlation to many diseases such as liver diseases [5–7], diabetes [8], inflammatory
bowel disease [9,10], autoimmune diseases [11,12], colorectal cancer [13] and diseases of the
central nervous system [14].

Widely used high-throughput sequencing methods in microbiome research include
PCR amplicon-based sequencing, e.g., 16S rRNA, 18S rRNA, internal transcribed spacer
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(ITS) sequencing, DNA-based shotgun metagenomic sequencing, RNA-based metatran-
scriptomic sequencing, and viromic sequencing (Figure 1). The first decade of gut mi-
crobiome research has mainly focused on DNA-based 16S rRNA gene sequencing and
shotgun metagenomic sequencing, which elucidate the microbial composition and gene
content. Recently, more attention has been drawn on RNA-based approach, metatranscrip-
tomic sequencing, as well as on fungi and viruses, instead of solely focusing on bacteria.
Various computational techniques have been developed to analyze different types of high-
throughput sequencing data. The best practice for performing a microbiome study has
been reviewed by Knight et al., including experiment design, choice of molecular analysis
technology, etc. [15]. In this review, we will summarize commonly used computational
tools used for the analysis of different types of sequencing data in the gut microbiome
studies, which help to extend our knowledge in the role gut microbiome plays in human
health and disease pathogenesis.

Figure 1. Commonly used sequencing techniques for the gut microbiome study.

2. 16S rRNA Sequencing

16S ribosomal RNA subunit gene contains both regions that are conserved throughout
bacterial species and hypervariable regions that are unique for specific genera. 16S rRNA
sequencing has been widely used to characterize the bacterial community, which utilizes
PCR to target and amplify portions of the hypervariable regions (V1–V9) of the bacterial
16S ribosomal RNA subunit gene. Various bioinformatics tools have been developed in
the last decade to analyze the 16S rRNA sequencing data, with most of them containing
three core steps, including data preprocessing and quality control, taxonomic assignment,
and community characterization (Figure 2). Quality control is the first step in the analysis
pipeline, which includes quality checking, adapter removal, filtering and trimming to
remove artifacts, low-quality and contaminant sequencing reads resulting from sample
impurities or inadequate samples preparation steps [16]. Many quality control software
packages use PHRED algorithm score to assess the base quality [17].
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Figure 2. 16S rRNA sequencing data analysis pipeline.

The taxonomic assignment is a key step in the 16S rRNA sequencing data analysis
pipeline. Currently, there are two different strategies to perform this analysis: opera-
tional taxonomic unit (OTU)-based analysis and amplicon sequence variant (ASV)-based
analysis. OTUs are determined by the sequence similarity. Reads are considered as the
same OTU when their sequence similarity reaches a predefined similarity threshold, most
commonly 97% [18]. Generally, an OTU-based analysis first clusters sequences into differ-
ent OTUs and then performs taxonomic assignment. Many OTU-based methods have been
developed, such as UCLUST [19], UPARSE [20], CD-HIT [21], hc-OTU [22], ESPRIT [23],
ESPRIT-TREE [24]. On the other hand, an ASV-based analysis does not resolve sequence
variants by an arbitrary dissimilarity threshold as used in the OTU-based analysis. Instead,
ASV-based methods utilize a denoising approach to infer the biological sequences in the
sample before the introduction of amplification and sequencing errors, which allows to
resolve sequences differing by as little as a single nucleotide [25]. Therefore, an ASV-based
analysis is able to provide a higher-resolution taxonomic result. Several ASV-based meth-
ods have been developed, including DADA2 [26], UNOISE 2 [27], and Deblur [28]. In the
following part, we will introduce three representative tools that have been successfully and
widely applied in 16S analysis starting from raw sequencing data, including Quantitative
Insights Into Microbial Ecology (QIIME) [29,30], Mothur [31], and DADA2 [26].

QIIME 1 [29] and its next-generation, QIIME 2 [30], are open-source bioinformatics
platforms for microbial community analysis and visualizations. A typical 16S analyzing
workflow in QIIME 1 is:

(1) Demultiplexing and quality filter, which assigns the multiplexed reads to each sample
and filters sequences that cannot meet defined quality thresholds;

(2) Chimera detection and filter, which applies ChimeraSlayer or USEARCH 6.1 to
remove chimeric sequences;

(3) OTU picking and taxonomy assignment, in which sequences will be clustered into
OTUs based on their sequence similarity, and taxonomy will be assigned to each
representative sequence of OTUs;

(4) Community analysis, in which the community composition, phylogenetic tree, alpha-
and beta-diversity can be computed or analyzed based on OTU tables.

QIIME 2 allows third parties to contribute functionality, and many latest-generation
tools are embedded into the system as QIIME 2 plugins, such as DADA2 denoising and
filtering. Moreover, in addition to the command-line interface like QIIME 1, QIIME 2
provides the QIIME 2 Studio graphical user interface, which is much friendlier for end-user
biologists. Comparing with most of the software, both QIIME 1 and QIIME 2 provide many
interactive visualization tools that allow users to generate principal coordinate analysis
(PCoA) plots, alpha rarefaction plots and taxonomic composition bar plots.

Mothur is another well-known package [31]. Mothur website provides examples for
data acquired from different sequencing platforms, including Illumina, Pyrosequencing,
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and Sanger sequencing. For Illumina 16S data, a typical analyzing workflow includes
the following steps: quality control, sequence alignment, chimera removal, assignment of
sequences to OTUs, analysis of community characters including taxonomy composition
and diversities. Mothur is originally designed for OTU-based analysis, but the current
version of Mothur also supports ASV-based analysis, in which cleaned sequences can be
assigned to ASVs and taxonomy information can be analyzed based on the ASV table. The
performance of Mothur and QIIME system in 16S data analysis has been compared by
many previous studies in different contexts [32–34]. Although several differences were
found between these two tools, both Mothur and QIIME can provide reliable bacterial
community information and generate comparable results in general [32,33].

DADA2 is an ASV-based analysis package that utilizes DADA2 algorithm [26], a
model-based approach for correcting amplicon errors without constructing OTUs. The
basic analyzing workflow in DADA2 includes the following steps: quality control which
filters and trims low-quality reads; sample inference and ASV table construction in which
sequence variants are inferred by DADA2 algorithm and ASVs are summarized; removal
of chimeric ASVs; taxonomic assignment to generate taxonomy tables. DADA2 can resolve
fine-scale variation and thus provide a more accurate analysis than other OTU-based
methods. DADA2 can perform species-level analysis by matching ASVs to sequenced
reference strains, while traditional OTU-based methods only can provide genus or above
level taxonomic information.

Although both OTU- and ASV-based methods provide the phylogenetic information,
basic 16S analysis methods generally cannot provide the functional gene composition
of a bacterial community. However, phylogeny is strongly correlated with biomolecular
function which thus makes it is possible to predict metagenome functional content from
16S data. Several software tools have been developed to predict the functional composition
of a microbial community’s metagenome from 16S data, such as phylogenetic investigation
of communities by reconstruction of unobserved states (PICRUSt) [35,36] and Tax4Fun [37].

The PICRUSt algorithm composes two steps [35]. The first is called “gene content
inference”, which predicts gene content for organisms in the Greengenes phylogenetic
tree by using existing annotations of gene content and 16S copy number from sequenced
bacterial and archaeal genomes in the IMG database. This step is pre-calculated and thus
users are not required to do it in data analysis. The second step is “metagenome inference”,
in which the functional gene family counts as well as the abundance of functional pathways
for each sample will be predicted and summarized based on the input OTU table. The
input OTU table could be generated by other 16S analyzing software, such as QIIME and
Mothur. PICRUSt2 [36] is the optimized version of PICRUSt. In addition to the updated
and larger database of gene families and reference genomes, PICRUSt2 is compatible with
ASV-based 16S analysis. Its input file could either be an OTU table or an ASV table, while
PICRUSt input is restricted to OTU tables. Now, PICRUSt2 is embedded in QIIME 2 system
as a QIIME 2 plugin [30].

The R package, Tax4Fun [37], also predicts the functional capabilities of microbial
communities based on 16S data but adopts a different strategy than PICRUSt. Tax4Fun
predicts the metagenome functional content by the nearest neighbor identification based
on a minimum 16S rRNA sequence similarity, while PICRUSt performs this by analyz-
ing the topology of the Greengenes phylogenetic tree as described above. The input of
Tax4Fun could be the OTU table obtained through QIIME analysis (against the SILVA
database) or from the analysis in SILVAngs web server. The functional capabilities of the
inputted microbial community are predicted using the precomputed reference profiles
of the KEGG organisms. A recent study has indicated that the application of PICRUSt,
PICRUSt2, and Tax4Fun on non-human and environmental samples is limited by their
default databases [38]. Tax4Fun2 [39] is the updated version of Tax4Fun. Compared with
the old version, Tax4Fun2 allows users to build their own reference data sets, which may
enhance the accuracy and robustness of predicted functional profiles by utilizing user-
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defined, habitat-specific metagenome databases. Moreover, Tax4Fun2 also can be used to
calculate functional gene redundancies based on 16S data.

There are some other tools that have been developed for estimating the functional
capacity of a microbial community based on 16S sequencing data, such as Piphillin [40] and
Vikodak [41], and each of them has some distinct features. Whole metagenome sequencing
is more expensive than 16S amplicon sequencing. Therefore, functional prediction of micro-
bial community based on 16S data will be used more frequently, in part due to substantial
improvement of the accuracy of these bioinformatics tools. In addition to the tools for one
or a few specific utilizations in 16S data analysis, some platforms embed various different
individual tools, such as the Galaxy server (The Huttenhower Lab; https://huttenhower.
sph.harvard.edu/galaxy/), MicrobiomeAnalyst (https://www.microbiomeanalyst.ca/),
as well as QIIME 2 (https://qiime2.org/). These platforms allow users to perform a more
comprehensive 16S analysis using a single platform.

The gut microbiome data sets are compositional, sparse and high-dimensional, which
makes identifying differentially abundant microbial taxa between communities challenging.
Widely used software tools optimized for statistical analysis of the microbiome data analy-
sis includes LEfSe, MaAsLin2, etc. LEfSe discover biomarker by way of class comparison,
biological consistency tests and estimation of effect size [42]. MaAsLin2 relies on general
linear models to accommodate and determine multivariable association between microbial
data and phenotypes, which offers a variety of methods for data normalization and transfor-
mation [43]. SparCC [44], SPEIC-EASI [45] address the compositional problem by assuming
that few species are correlated, and BAnOCC [46] makes no assumptions about the microbial
data. Ilr (isometric log ratio transform) is another approach controlling for false positives by
testing for changes in log ratios between abundances, which does not assume few species are
correlated [15]. Machine learning approaches, such as random forest, have also been applied to
gut microbiome data to separate samples based on their categories, which requires a relatively
larger sample size to train the model.

3. 18S rRNA Amplicon Sequencing and Internal Transcribed Spacer (ITS) Sequencing

Previously, researchers have mainly focused on studying the bacterial community in
the gut microbiome because bacteria constitute a majority part of the gut microbiome [1,47],
but recently more studies are analyzing the fungal community. The human mycobiome
diversity is relatively low compared with bacterial communities and is dominated by
yeast such as Candida, Saccharomyces and Malassezia [48]. Dysbiosis of intestinal fungi has
been observed in various diseases, such as alcohol-associated liver disease [5,49], hepatitis
B [6], inflammatory bowel disease [9,50–52], colorectal cancer [13,53], autism spectrum
disorders [54], Parkinson’s disease [55].

When it comes to molecular identification of fungi, amplicon sequencing based on
18S rRNA and ITS are the most widely used methods, both of which use PCR to amplify
the DNA with a specific primer, and after sequence processing, sequence analyzing, and
comparing the resulting ITS sequence with the known database, the species of fungi can be
identified [56,57]. 18S rRNA is a basic component of fungal cells comprising both conserved
and hypervariable regions. Similar to 16S rRNA, 18S rRNA gene has nine hypervariable
regions. Another commonly used barcoding marker in eukaryotic phylogenetic studies
is ITS region, a 500–700 base pair (bp) nuclear ribosomal DNA sequence [56,58]. The ITS
region is further separated into two regions: ITS1 (between 18S and 5.8S) and ITS2 (between
5.8S and 28S), where ITS2 is less taxonomically biased than ITS1 [56,59].

Comparing with ITS sequencing, one advantage of 18S rRNA sequencing is that it
allows alignment across taxa above species level. ITS sequencing is not able to do so
because of its lack of reference sequences. However, this is also a drawback for 18S rRNA
sequencing because for some species, 18S rRNA sequencing can only provide information
regarding taxonomic levels above species. Whereas ITS sequencing can provide lower-level
information at species and subspecies levels because there is more variation in the ITS1
and ITS2 regions than 18S rRNA regions. 18S rRNA sequencing has a relatively large set of

https://huttenhower.sph.harvard.edu/galaxy/
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references, however, various lengths of 18S rRNA hinders the alignment of all the different
regions across taxa [60–63]. ITS has a high PCR success rate and a better probability
of successful fungi identification with a broader range than all other DNA regions [58].
In terms of application, ITS sequencing focuses more on studying the intraspecific genetic
diversity of fungi because ITS is more variable, and 18S rRNA emphasis is more on
fungi’s phylogenetic classification studies [56]. One way to provide more comprehensive
classification of fungi is the combination of 18S rDNA and ITS sequencing, such as 5.8S-
ITS2 [64].

The ITS and 18S rRNA amplicon sequencing analysis pipeline is similar to the 16S
rRNA sequencing pipeline. Some software packages can be used for both bacterial and fun-
gal amplicon sequencing data, such as QIIME, SSU-ALIGN [65], LotuS 2 [66], MICCA [67],
and PEMA [68]. In addition, some software packages are designed only for ITS data, such
as ITScan [69], ITSx [70], ITSxpress [71] and Mycofier [72]. Commonly used databases for
fungi analysis include UNITE [73], ITSoneDB [74] and EukRef [75].

4. Shotgun Metagenomic and Metatranscriptomic Sequencing

While amplicon-based sequencing methods oftentimes only target a single gene,
shotgun metagenomic sequencing is capable of random sequencing the sample’s entire
metagenome without a specific primer, which alleviates biases from primer choices. Com-
pared with marker gene-based community profiling, shotgun metagenomic sequencing
adds a detailed layer to the taxonomic characterization of the community by providing
information on the gene composition and the functional capacity of the gut microbiome,
although it is costlier and more time-consuming than marker gene amplification. With the
ability to detect organisms from all domain of life, shotgun metagenomic sequencing still
represents the most effective and comprehensive approach for obtaining both structural and
functional data. The gene composition can also be used to formulate putative functional
pathways. Shotgun metagenomic sequencing has been applied to study the functional
changes of the gut microbiome in various diseases, such as inflammatory bowel disease [76],
irritable bowel syndrome [77], alcohol-associated liver disease [78,79], nonalcoholic fatty
liver disease [80,81], hepatic steatosis [82], Crohn’s disease [83,84], melanoma [85], Parkin-
son’s disease [86], high blood pressure [87], and pulmonary tuberculosis [88].

The process of shotgun metagenomic sequencing can be summarized as following:
sample collection and storage, nucleic acid extraction, metagenomic library preparation,
quality control, and data analysis. Quality control is the first step in the shotgun metage-
nomic analysis pipeline (Figure 3), which involves different tools such as Trimmomatic [89],
Ktrim [90], Cutadapt [91], MultiQC [92]. The resulting high-quality reads can be either
mapped to reference genomes or assembled with assembly tools. Thus, shotgun metage-
nomic sequencing analysis generally can be categorized into two approaches: alignment-
based approach and assembly-based approach. It is often recommended to use both
approaches in combination to get the most accurate results [93,94].



Biomolecules 2021, 11, 530 7 of 22

Figure 3. Shotgun metagenomic sequencing data analysis pipeline.

The alignment-based approach identifies sequencing reads’ taxonomy and functional
profile through mapping the reads to known microbial reference genomes or search-
ing against databases of characterized protein families by different mappers, such as
Bowtie2 [95], DIAMOND [96], BBMap [97], etc. Different marker gene database and pro-
tein encoding gene databases are available for taxonomic and functional annotation, such
as Kyoto Encyclopedia of genes and genomes (KEGG) [98], protein family annotations
(PFAM) [99], gene ontologies (GO) [100], clusters of orthologous groups (COG) [101], evo-
lutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) [102] and
UniProt Reference Clusters (UniRef) [103].

The assembly-based approach reconstructs multiple genomes even if some are yet
unknown. This approach depends heavily on genome coverage. Assembly-based approach
assembles short reads into contigs, which allow for multiple sequence alignment of reads
relative to the consensus sequence, and then groups contigs into scaffolds, which list the
order and orientation of the contigs and the size of gaps between contigs. An impor-
tant parameter to assess the quality of genome assemblies is N50, which refers to the
smallest contig size in a set of contigs that represents at least 50% of the assembly [104].
Metagenomic assembler generally use graph-based approaches, such as the overlap-layout-
consensus and de Bruijin graph to assemble longer and shorter reads, respectively. Due to
short sequence reads produced by popular sequencing platforms, de Bruijin graph-based
assemblers are widely used, such as Meta-IDBA [105], IDBA-UD [106], MetaVelvet [107]
and MegaHit [108], etc. The metagenome assemblers are either based on reference genome
for annotation of microorganisms or based on de novo assembly which discover and re-
construct genomes without consulting databases and makes gene prediction more reliable.
Generally, in the de novo assembly, metagenomic sequences are divided into pre-defined
segments of size k (k-mers) which are over-lapped to form a network of overlapping paths
and then form the contigs interactively [109], which is considered as the basis of de Bruijin
graphs for short reads assembly [104].

The quality of assembly can be assessed by tools such as MetaQUAST [110]. The
assembled genomes can be annotated through the gene family identification system in
databases. Metagenomic sequence reads can also be mapped to the assembled genomes
to estimate their abundance. There are some automated pipelines which integrate differ-
ent steps into one convenient package, such as MEtaGenome Analyzer (MEGAN) [111],
Metagenomic Phylogenetic Analysis (MetaPhlAn) [112], the HMP Unified Metabolic Anal-
ysis Network (HUMAnN2) [113], and some online servers such as Metagenomics RAST
server (MG-RAST) [114], Integrated Microbial Genomes and Microbiomes (IMG/M) [115]
and JCVI Metagenomics Reports (METAREP) [116], which provide an end-to-end solution.
Sometimes multiple metagenomic analysis methods may produce variable results even if
the same databases are used. Standardization of data processing and analysis is warranted
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to enable further integration of shotgun metagenomic analysis into the gut microbiome
research to enhance the reproducibility and application of the analysis into clinical practice.

Although metagenomics provides access to microbial gene and genome composi-
tion and pathways, it has limited roles in revealing the gene expression in the microbial
community. Shotgun metagenomic sequencing is performed on genomic DNA isolated
from the biological samples; however, it is hard to distinguish whether this DNA comes
from viable or dead cells or whether the genes are expressed under given conditions.
Instead, metatranscriptomic sequencing allows scientists to identify whether a microbe is
an active member of the microbiome or not, and to identify actively expressed genes in the
microbial community to get a deeper understanding of the activity of the gene of interest.
Metatranscriptomics complement shotgun metagenomics by elucidating what gens are
actively transcribed from a potential repertoire of annotated genes as revealed by shotgun
metagenomic analysis. Metatranscriptomic sequencing analysis has been used to study
microbial RNA-based regulation and expressed biological signatures in several diseases
such as inflammatory bowel disease [117] and rheumatoid arthritis [118]. It provides a
snapshot of the gene expression profile under specific conditions and at a given moment,
instead of its potential as inferred from DNA-based shotgun metagenomic analysis.

The construction of metatranscriptomic library starts with the isolation of total RNA
and removal of host RNA contaminations which can occur to various degrees as well
as removal of mRNA with probes targeting certain rRNA regions, followed by cDNA
synthesis, adapter ligation and end repair. After that similar to the process of constructing
shotgun metagenomic library, cDNA ends are repaired and adapters are ligated, followed
by library cleanup, amplification and quantification, and the library is then sequenced
on the sequencing platform. Due to the unstable nature and short half-life time, RNA
isolation becomes the most difficult task, especially from some biological samples such as
feces. The isolation process must be carefully carried out to avoid RNA degradation by
contaminated ribonucleases, and multiple approaches specific to different cell types have
been developed [119–122].

Similar to shotgun metagenomic analysis, comprehensive data analysis suites such as
HUMAnN2 and MG-RAST also provide an end-to-end solution for metatranscriptomic
analysis, which are combinations of multiple specialized tools, such as Trimmomatic for
quality control, Bowtie for mapping, CuffDuff [123] for differential gene expression, etc.
As always, quality control is the first step for metatranscriptomic analysis. An essential
process in quality control step is to filter out non-mRNA reads, in addition to trimming of
low-quality reads and host reads. The resulting good quality reads are used for the follow-
ing analysis which are categorized into alignment-based approach and assembly-based
approach. Alignment-based approach maps the sequencing reads to reference database.
With assembly-based approach, the sequenced reads are first assembled into contigs, scaf-
folds, and then mapped to reference genomes. The assembly step is computationally
challenging, which requires deeper sequencing depth and higher quality sequencing reads.
The assembled transcripts are annotated through software such as Blast2GO [124] to align
against protein databases, followed by normalization and calculation of relative gene
expression levels and statistical analysis.

5. Viromic Sequencing

Viruses are key constituents of microbial communities which contribute to their evolution
and homeostasis. Viromic sequencing has been used to study the intestinal viruses in different
diseases, including type 1 diabetes [8], inflammatory bowel disease [10,125], alcohol-associated
liver disease [126], non-alcoholic fatty liver disease [127], colorectal cancer [128,129], human
immunodeficiency virus [130], and autoimmune diseases [11]. Because of the highly diverse
nature of viruses and the lack of universal marker genes, it is difficult to use amplicon-based
approach to amplify them with universal markers. Instead, shotgun metagenomic sequencing
approaches can be used to characterize viruses and identify novel viruses.



Biomolecules 2021, 11, 530 9 of 22

Although in most environment, viruses outnumber microbial cells 10:1, viral DNA
only represents 0.1% of the total DNA in a microbial community. Isolation of viral particles
is the initial step in viromic sequencing, which is necessary to obtain a deep sequence
coverage of viruses in the human gut microbiome, followed by viral particle purification.
Large particles in the fecal samples, such as undigested or partially digested food fragments
and microbial cells, are generally removed by serial filtration steps with osmotic neutral
buffer or by ultracentrifugation with cesium chloride density gradient. The next step is
nucleic acid extraction, during which the nucleic acid of the virus must first be isolated
so that all the non-viral origin fractions are removed. DNAase and RNAase are usually
used to remove the non-encapsulated nucleic acids. Depending on the type of viruses
being studied, the library preparation protocol also varies. For example, bacteriophages
are parasitic, special steps are required when isolating the DNA. For RNA virus, due to its
unstable nature, reverse transcriptase to cDNA is required. In addition, virome contains
active and silent fractions. For studying both the active and silent fraction of the virome,
total nucleic acid isolation is needed [131]. For the active fraction of the virome, it is often
required to use a filter, chemical precipitation or centrifugation to isolate the virus DNA.

The initial analysis of the sequences obtained after DNA sequencing is also quality con-
trol, which includes filtering of bad quality reads, decontamination of 16S rRNA, 18S rRNA
and human sequence reads. Viruses have higher homology to prokaryotic or eukaryotic
genes, therefore filtering of bad quality sequences is a key step in the viromic analysis. The
resulting sequences are analyzed by either alignment-based approach or assembly approach.
With alignment-based approach, different mapping algorithms are used to compare the re-
sulting sequence reads against viral genomes and viral databases. Although the databases
have expanded recently, the number of genomes deposited in the databases is far less than
the sequenced virotypes and most of sequences reads lack similarity to the sequences in the
databases, which are poorly annotated. The lack of sequence identity typically results in
60%–99% sequences in the viral metagenomes [132]. Due to the highly diverse nature of viruses
and the lack of similarity in current existing databases, de novo assembly approaches are often
used in the viromic analysis [131,133,134]. Different assemblers are used for viral metagenomic
data, such as VICUNA [135]. Popular shotgun metagenome assemblers such as MetaVelvet has
also been applied to viral metagenome assembly. There are some virome-specific computational
pipelines available, such as Metavir [136,137] and the Viral MetaGenome Annotation Pipeline
(VMGAP) [138], which generally include open reading frame (ORF)-finding algorithms to
predict coding sequences, followed by comparison with different protein databases.

6. Conclusions

In this review, we have discussed different sequencing-based approaches, which
provide useful information toward a better understanding of the role of gut microbiome in
health and diseases. When studying the gut microbiome in human populations, such as
healthy subjects and patients with diseases, confounding factors which could influence the
gut microbiome need to be taken into consideration when analyzing the data, such as diet,
medication, sex, age, life-style, etc. For example, the composition of the gut microbiome is
different in infants, adults or elderly and certain discrete age range should be considered
when analyzing the gut microbiota. Stool samples are often used when assessing the
gut microbiome as a non-invasive approach. It is noteworthy that fecal microbiome and
mucosal-associated microbiome clustered differently [139].

A list of examples of widely used tools are summarized in Table 1. For amplicon-
based sequencing approaches, including the 16S rRNA sequencing, 18S rRNA sequencing,
ITS sequencing, selection of target region and design of PCR primers must be performed
carefully due to the primer biases. Currently, there is no agreement as to the optimal regions
to be amplified, and most of the time, it is a balance between amplifying a determinative
region and characterizing bacteria or fungi more broadly. For shotgun metagenomic
sequencing and metatranscriptomic approaches, the turn-around time and costs need to
be reduced to be introduced into clinical practice. The integration of various sequencing
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approaches each contribute a single piece towards a complex and large puzzle of the gut
microbiome and the value of an integrative approach is greater than the sum of each part. In
addition to sequencing based approaches, other -omics approaches such as metaproteomics
and metabolomics complement the sequencing data, contributing to the understanding of
the function and complex pathways in the gut microbial community. The global integrated
approach is of great value to enable better understanding of the function of gut microbiome
and move from a descriptive study to causal contributions, however, the budget and
sample availability need to be taken into consideration for the integrative approach to be
introduced into clinical practice.

Table 1. Examples of widely used tools to perform next generation sequencing data analysis for the gut microbiome studies.

Software Short Description Ref.

16S rRNA, 18S rRNA and ITS sequencing data analysis

UCLUST/
UPARSE

UCLUST is an OTU-based clustering method. It employs
USEARCH, and UPARSE is a subroutine of USEARCH
which constructs OTUs de novo from next-generation
reads. The general pipeline procedure of UPARSE is reads
filtering, trimming, and then clustering and chimera
filtering simultaneously.
Pros: Able to perform de novo, closed-reference, and
open-reference clustering.
Cons: May filter out too many reads and result in
inaccuracy of estimating the least abundant species.

[19,20]

CD-HIT

CD-HIT is one of the most used OTU-based clustering tool
to decrease redundancy of sequence and improve the
performance of other analysis.
Pros: Uses novel parallelization strategy to achieve fast
runtime; can handle extremely large databases.
Cons: Diminished clustering accuracy.

[21]

Hc-OTU

Hc-OTU is an OTU-based clustering method for 16S
rRNA sequence, employs homopolymer compaction and
k-mer profiling.
Pros: High accuracy. 7,000 times faster than MOTHUR
and about six times faster than ESPRIT-TREE, while
remaining the same accuracy level as MOTHUR. Supports
user-specified k-mer distance threshold parameter value.
Cons: Its worst-case computational complexity run time is
O(n2), while UCLUST and CD-HIT are faster than hc-OTU
with run time of O(n1.2).

[22]

ESPRIT

ESPRIT is an OTU-based hierarchical clustering method
consisting of quality filtering, computing pairwise
distance, hierarchical clustering and estimate with
statistical interference. There are two version of ESPRIT,
one for personal computer (small/medium size data) and
one for computer clusters (large size data).
Pros: Able to perform analysis on various size of data.
Cons: Slow time O(n2) and space complexity.

[23]

ESPRIT-Tree

ESPRIT-Tree is an OTU-based online-learning-based
hierarchical clustering method. ESPRIT-TREE improves
on previous ESPRIT algorithm and uses a
pseudometric-based partition tree.
Pros: Improved runtime from ESPRIT: O(n1.17); relatively
high accuracy.
Cons: In terms of computational efficiency, UCLUST
performs better than ESPRIT-Tree.

[24]
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Table 1. Cont.

Software Short Description Ref.

DADA2

DADA2 is an ASV-based analysis pipeline for modeling
and error-correcting Illumina sequence reads.
Pros: High accuracy: able to resolve single nucleotide
biological differences. Can perform species-level analysis.
Runtime scales linearly as sample number increase, and
reasonable memory requirements.
Cons: Comparably slow denoising algorithm
than UPARSE.

[26]

UNOISE2

UNOISE 2 is an ASV-based tool for denoising
(error-correcting) Illumina sequence reads. It is improved
from UNOISE and clusters unique reads in the sequence.
Pros: Higher accuracy and speed than DADA2.
Cons: Does not use quality scores.

[27]

Deblur

Deblur is an ASV-based denoising tool, which uses error
profiles to obtain putative error-free sequences. It operates
independently on each sample.
Pros: Able to obtain single-nucleotide resolution, faster
than DADA2, better memory efficiency than DADA2 and
UNOISE 2. Better sensitivity and specificity.
Cons: Slower than UNOISE 2, limited by read length and
sample sequences’ diversity.

[28]

QIIME/
QIIME2

QIIME and QIIME2 are bioinformatics platforms for
microbial community analysis and visualizations. QIIME
2 is engineered based on QIIME and replaced QIIME.
QIIME2 use existing bioinformatics tools as subroutines,
such as DADA2, deblur, etc.
Pros: Have multiple interfaces, continues to grow and
adapt to novel strategies.
Cons: A large number of dependent programs need to
be installed.

[29,30]

Mothur

Mothur is a software analyzing raw sequences and
generating visualization tools to describe α and β

diversity. It is a combination of multiple analytic tools for
describing and comparing microbial communities. It
provides examples for data acquired from different
sequencing platforms.
Pros: Able to perform both ASV-based and
OTU-based analysis.
Cons: Relatively slow runtime and space complexity.

[31]

PICRUSt/
PICRUSt2

PICRUSt is a software for predicting functional
composition based solely on marker gene sequence
profiles. PICRUSt2 is the improved version of PICRUSt by
having a larger reference database, enhanced prediction
ability and more accurate de novo amplicon tree-building.
PICRUSt2:
Pros: Able to identify novel discoveries. Can process 18S
and ITS rRNA sequence while the original version only
supports 16s rRNA sequence analysis.
Cons: Can only differentiate taxa the same level as the
amplified marker gene sequence. Can be problematic if
the interested microbial community’s majority phyla are
not yet well-characterized.

[35,36]
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Table 1. Cont.

Software Short Description Ref.

Tax4Fun/
Tax4Fun2

Tax4Fun is an R package for predicting functional profiles
for 16S rRNA data on the basis of SILVA-labeled OUT
abundances. Tax4Fun 2 is an improved version of Tax4Fun
with more accurate and enhanced prediction power.
Tax4Fun 2:
Pros: Easy-to-use, platform-independent and highly
memory-efficient. Tax4Fun2 has higher accuracies than
PICRUSt and Tax4Fun.
Cons: Availability of suitable reference genomes may limit
Tax4Fun 2’s performance. Only supports prediction from
16S rRNA gene.

[37,39]

Piphillin

Piphillin is a web application that produces metagenome
predictions based on the nearest-neighbor mappings of
16S rRNA sequences to genome.
Pros: No local computational power requirements. High
correlation with corresponding metagenomic data. Higher
accuracy than PICRUSt2
Cons: Have high requirements on reference database.
Only supports 16S rRNA gene prediction.

[40]

Vikodak/
iVikodak

Vikodak is a web service that provides functional
prediction on 16S rRNA data. It contains 3 modules:
Global Mapper, Inter Sample Feature Analyzer, and Local
Mapper. With these 3 modules, it is able to perform
functional prediction both globally and in detail and
perform pair-wise comparative statistical analysis.
iVikodak is an improved version of Vikodak.
Pros: No local computational power requirements. No
coding skill required. Allows for single pathway probing
and gene quorum assumption.
Cons: Only supports prediction from 16S rRNA gene.

[41]

SSU-ALIGN

SSU-ALIGN is designed primarily to align 16S and 18S
small subunit ribosomal RNA, but can also be used for
large subunit ribosomal RNA alignment.
Pros: High sensitivity and specificity.
Cons: Not capable of inferring phylogenetic trees.
Computationally expensive.

[65]

LotuS2

LotuS2 is a software pipeline for 16S/18S/ITS rRNA
analysis. It is able to calculate denoised, chimera-checked
OTUs and construct OTU phylogenetic tree.
Pros: Fast and user friendly. Able to handle a wide variety
of data sizes on a personal computer.
Cons: Mapping speed limited by BLAST+.

[66]

MICCA

MICCS is a command-line software for the processing of
16S rRNA gene and ITS amplicon sequencing data, from
raw sequences to OTU tables, taxonomic classification and
phylogenetic tree inference.
Pros: Can be used effectively on sample with a large
portion of uncharacterized species. Low requirements for
reference database. Memory efficient.
Cons: Less estimated OTUs obtained as a comprise for
high consistency.

[67]

PEMA

PEMA is a software pipeline for metabarcoding analysis
based on third-party tools. Its function includes read
pre-processing, OTU clustering, ASV inference, taxonomy
assignment, and COI marker gene analysis.
Pros: Allows partial re-execution. Fast execution time.
Cons: Heavyweight computation.

[68]
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Table 1. Cont.

Software Short Description Ref.

ITScan

ITScan is an online pipeline for fungal diversity analysis
and identification based on ITS sequences.
Pros: Does not require coding skills. User friendly.
Cons: Requires FASTA-formatted input file.

[69]

ITSx

ITSx is a software for detection and extraction of the ITS1
and ITS2 subregions from ITS sequences for fungi and
other eukaryotes. It relies on HMMER for profile hidden
Markov model analysis.
Pros: Has a very high proportion of true-positive
extractions and a low proportion of
false-positive extractions.
Cons: Requires FASTA-formatted input file.

[70]

ITSxpress

ITSxpress is a software for ITS1, ITS2 or the entire ITS
region trimming. It implements HMMER and BBMerge. It
is designed to support the calling of exact sequence
variants rather than OTUs.
Pros: Fast runtime. Processes FASTQ-formatted input file.

[71]

Mycofier

Mycofier is a machine-learning-based fungal ITS1
sequence classifier at the genus level. The final model was
based on ITS1 sequences from 510 fungal genera using a
Naïve Bayes algorithm.
Pros: Doesn’t require pairwise sequence alignment.
Cons: Only analyze fungal ITS1 sequences. BLAST
approach provides higher classification accuracy.

[72]

Shotgun metagenomic and metatranscriptomic sequencing data analysis

Trimmomatic

Trimmomatic is a sequence trimmer for Illumina sequence
data. It has multiple processing steps including detection
and removal of adapter and other illumine-specific
sequences, and quality filtering.
Pros: Processes both paired end and single end data.
Cons: Slower than Ktrim.

[89]

Ktrim

Ktrim provides both adapter- and quality-trimming of the
sequencing data.
Pros: Faster than Trimmomatic.
Cons: Higher over-trimming rates than Trimmomatic.

[90]

Cutadapt

Cutadapt is a sequence trimmer which removes adapter
sequences, primers and other types of unwanted sequence
from high-throughput sequencing reads.
Pros: Supports 454, Illumina and SOLiD (color space) data.
Cons: Slow runtime.

[91]

MultiQC

MultiQC creates a summary report visualizing output
from different tools across multiple samples, facilitating
the identification of global trends and biases.
Pros: Provides a global view instead of
per-sample analysis.

[92]

Bowtie2

Bowtie2 is a software for sequence alignment to reference
genome. It supports gapped, local, and paired-end
alignments. The software implements full-text minute
index and SIMD dynamic programming.
Pros: Memory efficient. High speed, sensitivity
and accuracy.
Cons: Alignment with short reads remains an active
challenge (<50 bp).

[95]
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Table 1. Cont.

Software Short Description Ref.

DIAMOND

DIAMOND is a sequence aligner for protein and
translated DNA searches. It aims to determine all
significant alignments for a given input. DIAMOND uses
double indexing and spaced seeds.
Pros: Significantly higher speed with similar sensitivity
to BLASTX.
Cons: Heavy memory consuming.

[96]

BBMap

BBMap is a sequence aligner that can align DNA and
RNA sequencing reads from multiple platforms, including
Illumina, 454, Sanger, Ion Torrent, Pac Bio, and Nanopore.
BBMap needs to index a reference before mapping to it.
Pros: Fast and accurate, particularly for reads with long
indels or highly mutated genomes. Has no upper limit to
number of contigs or genome size.
Cons: The indexing phase requires FASTA format only.

[97]

Meta-IDBA

Meta-IDBA is a de novo metagenomic assembler. It first
constructs de Bruijn graph and then divides graph into
connected components.
Pros: Provides a multiple alignment of similar contigs
from different subspecies in the same species.
Cons: Unable to reconstruct the contigs of each
single subspecies.

[105]

IDBA-UD

IDBA-UD is a de novo single-cell and metagenomic
assembler, which can assemble sequences with highly
uneven depth. It is based on de Bruijn graph approach.
Pros: Implements local assembly.
Cons: Sequence of species with high abundance is more
likely to be misidentified as repeats.

[106]

MetaVelvet

MetaVelvet is a de novo short sequence metagenome
assembler. It is extended upon the Velvet assembler
(single-genome and de Bruijn-graph based) to overcome
the limitations of single-genome assembler.
Pros: Able to reconstruct scaffold sequences including
low-abundance species.
Cons: Has slightly higher percentages of
chimeric scaffolds.

[107]

MegaHit

MegaHit is a de novo assembler for assembling
metagenomics data. It implements succinct de
Bruijn graphs.
Pros: Fast and memory efficient. Available in both
CPU-only and GPU-accelerated versions.
Cons: Relatively biased towards the assembly of low
abundant genome fragments.

[108]

MetaQUAST

MetaQUAST evaluates and compares the quality of
metagenome assemblies. It is improved based on QUAST.
Its metagenome specific features includes: unlimited
number of reference genome, species content detection,
chimeric detection, and visualizations.
Pros: Can be fed with multiple assemblies.
Cons: Reduced precision in order to get higher
time/memory efficiency.

[110]

MEGAN

MEGAN is a BLAST-based automated pipeline for
taxonomic and functional analysis of metagenomic and
metatranscriptomic datasets.
Pros: Allows laptop analysis of large metagenomic
data sets.

[111]
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Table 1. Cont.

Software Short Description Ref.

MetaPhlAn/
MetaPhlAn2

MetaPhlAn is an automated pipeline that profiles the
microbial composition from shotgun metagenomic data at
the species-level. The microbial community it can profile
includes bacteria, archaea, eukaryotes and viruses. It
accomplishes profiling with unique clade-specific marker
genes. MetaPhlAn 2 is extended beyond the first version
with enhanced metagenomic taxonomic profiling ability.
Pros: Able to work with large-scale metagenome data.

[112]

HUMAnN2

HUMAnN2 is an automated pipeline designed for
functional analysis of metagenomic and
metatranscriptomic data at the species-level. The general
process of HUMAnN2 pipeline is identification of known
species, alignment of reads to pangenomes, translated
search on unclassified reads, and quantification of gene
families and pathways. HUMAnN2 utilizes other
pipelines such as MetaPhlAn2 to perform identification of
known species.
Pros: High accuracy, sensitivity, speed.
Cons: A large proportion of sequencing reads remain
unmapped and unintegrated.

[113]

MG-RAST

MG-RAST is a web-based fully automated system for
metagenomic analysis. It provides phylogenic and
functional analysis.
Pros: Require only 75 bp or longer for gene prediction or
similarity analysis that provides taxonomic binning and
functional classification. Able to handle both assembled
and unassembled data.
Cons: MG-RAST has been optimized for use with the
Firefox browser. There are some browser-to-browser
issues with visualization of certain diagrams.

[114]

IMG/M

IGM/M is a web-based pipeline that provides
comparative analysis for metagenome. It provides
structural and functional annotation. Prefer
assembled contigs.
Pros: Integrates all datasets into a single protein level
abstraction. In contrast to MG-RAST, IMG/M includes
more computationally expensive tools such as hidden
Markov model and BLASTX.
Cons: Statistical analysis tool is only available as an
on-demand computation to the registered IMG users of
the Expert Review IMG site.

[115]

METAREP

METAREP is a suite of web-based tools to view and
compare metagenomic annotated data including both
functional and taxonomical assignments.
Pros: Able to handle extremely large datasets. Able to
perform comparison on up to 20+ datasets simultaneously.
Cons: No inbuilt annotation workflow. Users need to
upload existing annotations.

[116]

CuffDiff

Cufflinks is a suite of programs that assembles
transcriptomes, estimates abundance, and performs gene
expression differentiations. It implements a
parsimony-based algorithm.
Pros: High efficiency, sensitivity and precision. Cons: Not
optimized for metatranscriptomics analysis.

[123]



Biomolecules 2021, 11, 530 16 of 22

Table 1. Cont.

Software Short Description Ref.

Blast2GO

Blast2Go is a Blast-based software that provides automatic
functional annotation on DNA/protein sequences. It has
multiple annotation styles that can be used for
various conditions.
Pros: Combines multiple annotation strategies. Strong
visualization tools.
Con: Not optimized for large datasets with large number
of genes.

[124]

Viromic sequencing data analysis

VICUNA

VICUNA is a de novo assembler targeting viral
populations, which have high mutation rates. Its
algorithm uses an overlap-layout-consensus based
approach. The general process of VICUNA is trimming
reads, constructing/clustering contigs, validating contigs,
and then extending and merging contigs.
Pros: Able to efficiently process ultra-deep sequence data.
High accuracy and continuity.
Cons: Limited accessibility due to its requirement of local
computing power.

[135]

Metavir/
Metavir2

Metavir is a web-based pipeline specifically for viral
metagenome analysis. Metavir 2 is developed based on
Metavir with additional features such as new tools for
assembled virome sequence analysis and new dataset
comparison strategies.Pros: User-friendly interface. Able
to perform analysis on both raw reads and assembled
virome sequencesCons: Focuses on the compositional
analysis. Functional annotation is lacking.

[136,137]

VMGAP

VMGAP is an automated pipeline for functional
annotation of viral shotgun metagenomic data. It first
performs a database searches and then
functional assignments.
Pros: Uses specialized databases.
Cons: Requires local installation of several open-source
packages, programs and public databases.

[138]
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