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Abstract
NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated

by cellular Ca2+. Lead (Pb) is a potent blocker of L-type calcium channel and our recent

work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in

rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain

regions) remains unknown. This study aimed to systematically investigate the effect of Pb

exposure on spine maturity in rat brain with three factors (gender×age×brain regions), as

well as the NDR1/2 kinase expression. Sprague–Dawley rats were exposed to Pb from par-

turition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine

spine maturity. Western blot assay was applied to measure protein expression and real-

time fluorescence quantitative PCR assay was used to examine mRNA levels. The results

showed chronic Pb exposure significantly decreased dendritic length and impaired spine

maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic

length induced by Pb exposure tended to adolescence > adulthood, hippocampus >medial

prefrontal cortex and female >male. Pb exposure induced significant damage in spine

maturity during adolescence and early adult while little damage during adult in male rat

brain and female medial prefrontal cortex. Besides, there was sustained impairment from

adolescence to adulthood in female hippocampus. Interestingly, impairment of spine matu-

rity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2

kinase protein expression after Pb exposure was similar to the result of spine maturity. In

addition, NDR2 and their substrate Rabin3mRNA levels were significantly decreased by Pb

exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth

and maturity which was subject to gender×age×brain regions effects and related to NDR1/2

signal expression.
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Introduction
Lead (Pb) is an important metal pollutant in not only natural environment but also
transportation and food processing industry. Pb is very easy to be uptaked into organisms
and developed to be bioaccumulated, further engendering biological toxic effects, like neuro-
developmental and other physical developmental toxic effects [1–5]. The toxicity induced by
Pb exposure is affected by many factors, like different developmental phase, sex and so on. A
large number of studies have shown that developmental Pb exposure can induce impairment
of cognitive function, learning and memory [6–9].) In addition, some studies give scientific
evidence that gender also plays another important role in Pb accumulation [10, 11] and cog-
nitive function [12–16].

Brain is full of networks to maintain its complex function and usually several brain regions
interaction supports one function. Recent study [17] reported the functional connectivity in
cortical-hippocampal network and then the cooperative function in improving associative
memory. It offered a sight of the brain function between brain regions. Previous studies have
shown Pb exposure induced impairment in hippocampus [16, 18], as well as cerebral cortex
[19], respectively. So what is the alternation between these two brain regions in response to
Pb-exposed neurotoxicity? Is cooperative or unrelated?

Dendrite is one or more protrusions originate from cell body, with a function of receiving
stimulation and transmitting impulse to somas. There are spines distribute along dendrites,
which is called as dendritic spine. Dendritic spine is closely related to synaptic strength, which
is regulated by Ca2+ level [20, 21]. Previous studies showed that Pb affected dendritic spine for-
mation in rat brain [18]. In addition, Pb blocks voltage dependent calcium channel and induces
long term potentiation (LTP) dysfunction [22–24]. So present study regarded dendritic length
and mushroom spine as cognition marker to investigate the neurotoxicity followed by Pb
exposure.

In regard to regulation of spine formation, multiple molecules involved in this process,
including Brain-derived Neurotrophic Factor (BDNF) [25], Wnt related proteins [26], NDR
(nuclear Dbf2-related) 1/2 kinase [27], Shank and Homer [28]. Among these proteins, NDR1/
2 kinase drew our attention because of its regulation of the dynamic change in dendritic spine
morphology and its key role in regulating dendrite growth [27]. It has been demonstrated that
NDR plays an essential role in dendrite maintenance[29]. Other studies have shown NDR and
its substrates were significant for regulating the processes of dendrite growth, dendrite branch,
spine distribution, spine morphologies and so on [27]. Rabin 8, which is one of the substrates
of NDR1/2, participates in regulating dendrite growth, especially spine growth [27]. NDR1/2
kinase family, a kind of NDR protein-kinases, is highly homologous from yeast to humans, and
is responsible for many important cellular processes [30]. This kinase was expressed in mice
brain and human beings tissues broadly [31, 32].Previous studies have shown NDR1/2 kinase
could be activated by calmodulin s100. It was discovered that Ca2+, an endocellular second
messager, could regulate the activity of NDR [33]. That indicated NDR probably involve in cel-
lular signal transduction pathways.

In this study, we attempted to investigate the effects of chronic Pb exposure on dendritic
length and mushroom spine formation with mixed factors of different genders (male, female),
different ages (PND30, PND60, PND90) and different regions of the brain (hippocampus,
medial prefrontal cortex). In addition, we explored NDR kinase protein expression, as well as
the NDR1, NDR2 and its substrate Rabin8 transcription mRNA levels
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Materials and Methods

Chronic Pb exposure animal model
Sprague–Dawley (SD) rats were obtained from the Laboratory Animal Center, Anhui Medi-
cal University, P.R. China. Animals were individually housed in a temperature and humid-
ity controlled environment on a 12h–12h light–dark cycle with free access to food and
water. All experimental operations were performed following the guidelines of the National
Institute of Health Guide for the Care and Use of Laboratory Animals and were approved
by the Institutional Animal Care and Use Committee of Hefei University of Technology,
China.

The method for chronic Pb exposure was referred to the previous study [34]. Female SD
rats were raised individually after mating and treated with distilled water before childbirth, and
then the rats were exposed to Pb or not. SD rat dams were randomly divided into 12 groups:
drinking distilled water as control (male, female) at PND30, PND60, PND90, and Pb water
(250 ppm lead acetate in distilled water, 30 ml/day) as Pb-exposed group (male, female) at
PND30, PND60, PND90, respectively (n = 8 per group). The Pb-exposed rat pups acquired Pb
during lactation indirectly through the milk from their mothers and then directly after weaning
at the postnatal day 21 (PND21) until they were decapitated (PND30, PND60 and PND90,
respectively). The rats were monitored every day after treatment and were normal in activity
and diet. There was no unintended death of animals during this study. Fig 1 illustrates the over-
all research design timeline.

Fig 1. Illustration of the overall research design timeline.

doi:10.1371/journal.pone.0138112.g001
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Tissue collection
SD rat pups and rats were anesthetized deeply with Carbon dioxide and then decapitated, then
the brain was removed from the skull quickly [35]. In this study, SD rats were sacrificed at
PND30, PND60 and PND90 after chronic Pb exposure, respectively. Brains were cut into two
hemispheres longitudinally; the right part was prepared for morphological staining, and the
left one for examining special proteins expression and real time fluorescence quantitative PCR
assay.

Blood and brain Pb levels examination
Tissue Pb level assay was performed as follows: brain tissue was added with nitric acid (excel-
lent pure GR, 4 mL) and 30% hydrogen peroxide (AR, 2 mL) in the nitrolysistube overnight at
room temperature. And then, those tissues were nitrolyzed for 30 min in the microwave nitra-
tepyrolysis furnace (EMR marsxpresscertificate, VB 20). Lastly, the Pb level within sample was
detected by the graphite furnace atomic spectrophotometry (the PerkinElmer AAnalystTM800,
USA).

Blood Pb level assay was performed as follows: 0.5 mL of blood was added into 4.5 mL dilu-
tion liquid (0.2% nitricacid and 0.1% TritonX-100). Each sample was vortexed for 2 min and
the Pb level within sample was detected by the graphitefurnace atomic spectrophotometry (the
PerkinElmer AAnalystTM800, USA).

Golgi-Cox staining, dendritic length and the number of dendritic spines
assay
The brain was processed by Golgi-cox staining method as described by Liu et al [36]. Briefly
speaking, the brains were stored in GC solution (37°C) in dark for 36–48 hours. Making brain
slices at the thickness of 200μmwith a vibratome (VT1000S, Leica, Germany), fixing them on
2% gelatin-coated slides. Five brain slices were collected from each rat. Then all slices were
stained with following steps: with ammonia for 60 min, water for 3 times, Kodak Film Fix for
30min, after that, with water, dehydrated, cleared, and finally, mounted using a resinous
medium. The neurons in hippocampus and medial prefrontal cortex (mPFC) were imaged
with a Nikon widefield microscope (Eclipse 80i) by using a 10x&100x objectives. For all col-
lected sections, 3~5 neurons were used of each slice with 10x&100x respectively.

Then dendritic length and the number of mushroom spines within those neurons were ana-
lyzed by Matlab software. In brief, dendrite morphology was analyzed across the concentric
10μm circles. The dendritic length counted in present study was of the first dendrite, and the
mushroom spines were on 2~3 stretches of the secondary dendrite about 10 μm in length.

Western Blotting assay
The tissue hippocampus was collected from rats at PND30, PND60 and PND90, respectively.
The hippocampal protein was obtained by being homogenized in ice-cold lysis buffer (pH7.4;
containing 21μg/ml aprotinin, 0.5μg/ml leupetin, 4.9mMMgCl2, 1mM sodium-Meta-vanan-
dante, 1% Triton X-100 and 1mM PMSF), then centrifugated (14000×g, 7 min), then the
supernatant was collected.

The total protein concentration was assayed by the Bicinchoninic Acid (BCA) method. And
the equal quality protein of every sample was separated by 8% SDS-PAGE gel before transfer-
ring to PVDF membrane. Membranes were blocked with 5% non-fat dry milk, incubated with
primary antibodies (GAPDH was purchased from Abcam, ab9484, monoclonal, 1:5000,
NDR1/2 was from Santa cruz, sc271703, monoclonal, 1:2000), then washed for 3 times,
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incubated with the horseradish peroxidase-conjugated secondary antibody and processed for
visualization by the enhanced chemiluminescence immuno-blotting detection system. All
results were normalized against GAPDH.

Real-time fluorescence quantitative PCR
The total RNAs in developmental hippocampus and mPFC were extracted using the RNA kit
(Axygen, Silicon Valley, USA) from the hippocampus and mPFC of rats (n = 8 per group) with
or without Pb exposure. Subsequently, the primer OligodT were used to complete the reverse
transcription reaction according to the manufacturer's instructions (TransGene, Shanghai,
China), resulting in the first strand of total cDNA.

The 20 μL reaction pool of RTFQ PCR was composed of: 10 μL of SYBR premix Extaq; 0.8 μL
of forward and reverse primer each; 2 μL of cDNA template (10 times dilution) and 6.4 μL of
deionized water. The primers used in this protocol were listed as follows: GGGTTAAGGGTG
ATTGATGTTCG-AGGCACCTCTATCTCCTTCGCA for NDR1, AGACGGAGCCTGGG
TAGTGA- AAAGGTTGTCTGGCTTGATGTC forNDR2, GTTCCAGAGCCAGCATCATCG-
TCATCGTTGCCAGCAGAAGC for Rabin3 (Rabin3, a rat protein homologous to human pro-
tein Rabin8.) and CTGTGCTATGTTGCCCTAGACTTC-CATTGCCGATAGTGATGACCTG
for r-Actin, respectively. The real-time fluorescence PCR system was purchased from Roche
(Roche Lightcycler 96). The reaction procedure was set as one cycle of 95°C for 10 s, 40 cycles of
95°C 10 s, 60°C 30 s, followed by the melting stage of 95°C 10 s, 65°C 60 s and 97°C 1 s, then the
cooling stage of 37°C 30s. The transcription levels were calculated as the amounts relative to that
of r-Actin under the same conditions.

Statistical analysis
All data is presented as means ± SEM. The statistical differences between groups were analyzed
by Two-way (with factors of age & brain regions) or Three-way (gender×age×brain regions)
ANOVA followed by a Fisher’s LSD-hoc test. A value of p<0.05 was considered as the statisti-
cal difference.

Results

Blood Pb level and brain Pb level
Pb accumulation within blood and brain was determined by the graphite furnace atomic spec-
trophotometry. Fig 2A showed blood Pb levels at PND30 (control, 13.958±2.188 μg/L; Pb
exposure, 205.575±43.234 μg/L, F(1,6) = 19.593, P<0.01, n = 8), PND60 (control, 15.034
±0.773 μg/L; Pb exposure, 321.963±13.691 μg/L, F(1,4) = 500.975, P<0.001, n = 8) and PND90
(control, 11.845±1.068 μg/L; Pb exposure, 379.167±39.435 μg/L, F(1,4) = 86.697, P<0.001,
n = 8), respectively. Fig 2B showed brain Pb levels at PND30 (control, 0.046±0.015 μg/g; Pb
exposure, 0.812±0.147 μg/g, F(1,6) = 26.832, P<0.01, n = 8), PND60 (control, 0.085±0.024 μg/
g; Pb exposure, 1.611±0.137 μg/g, F(1,4) = 121.036, P<0.001, n = 8) and PND90(control, 0.122
±0.0122 μg/g; Pb exposure, 2.921±0.365 μg/g, F(1,4) = 58.576, P<0.01, n = 8), respectively.
Therefore, in either brain or blood, Pb levels in Pb-exposed rats significantly higher than those
of the controls.

The change of dendritic length in hippocampus and medial prefrontal
cortex (mPFC) at different ages in Pb-exposed rats
Fig 3 showed that chronic Pb exposure decreased dendritic length in both hippocampus and
mPFC at all three age (PND30, PND60 and PND90). Age-dependent differences were
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important in impairment caused by metal in rat brain regardless of sex [15]. The dendritic
length in hippocampus was 211.578±3.063 μm, 205.373±8.865 μm, 197.537±5.841 μm in con-
trol group and 161.133±6.385 μm, 193.348±3.940 μm, 190.634±9.948 μm in Pb-exposed group
at PND30, PND60 and PND90, respectively (Fig 3A). Significant decrease was observed in

Fig 2. Pb accumulation in blood and brain in both control and Pb-exposed rats. Blood Pb levels in control and Pb-exposed rats at PND30, PND60 and
PND90 (A). Brain Pb levels in control and Pb-exposed rats at PND30, PND60 and PND90 (B). Data are expressed as mean ± SEM. **P<0.01, ***P<0.001,
n = 8 per group.

doi:10.1371/journal.pone.0138112.g002

Fig 3. Effect of chronic Pb exposure on dendritic length in rat brain was subject to brain regions differences and age differences.Dendritic length in
hippocampal neurons at PND30, PND60, PND90, respectively (A). Dendritic length in mPFC at PND30, PND60, PND90, respectively (B). Data are
expressed as mean ± SEM. ***P<0.001. n = 16 per group.

doi:10.1371/journal.pone.0138112.g003
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dendritic length in Pb-exposed group compared to control group at PND30 (F(1,72) = 65.308,
P<0.001, n = 16), while the decrease was not significant in either PND60 (F(1,89) = 1.990,
P>0.05, n = 16) or PND90 (F(1,47) = 0.365, P>0.05, n = 16) groups (Fig 3A). No significant
difference was observed in dendritic length in Pb-exposed group compared to control group at
PND30 (control, 231.354±10.810 μm; Pb exposure, 220.457±10.859 μm, F(1,63) = 0.410,
P>0.05, n = 16), PND60 (control, 226.910±3.515 μm; Pb exposure, 214.945±6.112 μm, F(1,68)
= 3.268, P>0.05, n = 16) and PND90 (control, 209.324±4.487 μm; Pb exposure, 205.783
±6.222 μm, F(1,78) = 0.223, P>0.05, n = 16) in mPFC (Fig 3B).

These results suggested that the impairment of dendritic length after Pb exposure was
mainly in developmental hippocampus in rat brain.

Effects of gender differences on the alternation of dendritic length in
chronic Pb-exposed rat brain
Gender differences were also important in neurotoxicity caused by multiple metals [11, 37]. On
the basis of the decrease in dendritic length after Pb exposure (Fig 3), we asked whether this
impairment was subject to gender differences. As data shown in Fig 4, there was a decrease in den-
dritic length following Pb exposure in both two brain regions from PND30 to PND90. This
decrease was significant in male hippocampus at PND30 (control, 217.508±4.574 μm;
Pb exposure, 177.573±12.968 μm, F(1,31) = 13.396, P<0.05, n = 8) (Fig 4A), while the difference
in male hippocampus at PND60 (control, 197.603±5.811 μm, Pb exposure, 192.367±7.752 μm,
F(1,46) = 0.225, P>0.05, n = 8) and PND90 (control, 203.293±6.713 μm; Pb exposure, 173.369±
8.406 μm, F(1,22) = 7.891, P>0.05, n = 8) was not (Fig 4A). Similar results were observed in
female hippocampus, the decrease in dendritic length appeared to be more pronounced in Pb-
exposed group at PND30 (control, 206.526±3.941 μm; Pb exposure, 149.390±3.878 μm, F(1,39) =
86.047, P<0.001, n = 8) while the data at PND60 (control, 212.468±12.918 μm; Pb exposure,
186.053±3.524 μm, F(1,41) = 3.734, P>0.05, n = 8) and PND90 (control, 202.966±15.399 μm; Pb
exposure, 190.212±10.096 μm, F(1,23) = 0.424, P>0.05, n = 8) was not (Fig 4C).

Although no significant difference was observed in mPFC regardless of sex (Fig 3B), data in
Fig 4B and 4D exhibited gender differences during adolescence. In male mPFC, there was no
significant effect on dendritic length at PND30 (control, 184.493±4.156 μm; Pb exposure,
172.198±2.777 μm, F(1,35) = 6.417, P>0.05, n = 8), PND60 (control, 213.145±4.237 μm;
Pb exposure, 201.149±6.592 μm, F(1,29) = 2.566, P>0.05, n = 8) and PND90 (control,
200.783±4.910 μm; Pb exposure, 195.698±8.300 μm, F(1,41) = 0.296, P>0.05, n = 8) after Pb
exposure (Fig 4B). As shown in Fig 4D, a striking reduction was observed in dendritic length in
Pb exposure group compared to control group at PND30 (control, 306.076±6.992 μm; Pb
exposure, 272.405±12.178 μm, F(1,26) = 6.571, P<0.05, n = 8), a reduction trend but not
statistically significant in PND60 group (control, 237.683±4.144 μm; Pb exposure, 226.155±
8.9147 μm, F(1,37) = 1.671, P>0.05, n = 8) and almost no effect at the age of 90 days (control,
218.389±8.665 μm; Pb exposure, 218.679±7.300 μm, F(1,35) = 0.001, P>0.05, n = 8) in female
mPFC (Fig 4D).

These results suggested that chronic Pb exposure decreased the dendritic length in both gen-
ders and this decrease was mainly during adolescence. In addition, difference was observed
about the effect on dendritic length in developmental mPFC between genders.

The alternation of mushroom spines in hippocampus and mPFC at
different ages in Pb-exposed rats
In view of the importance of mushroom spine in synapse [38, 39], we then explored whether
the number of mushroom spines (/10μm) were subject to brain regions (hippocampus and
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mPFC) ×age (PND30, PND60 and PND90) effects. As shown in Fig 5A, Pb exposure signifi-
cantly decreased the number of mushroom spines in hippocampus at PND30 (control,
2.295±0.052; Pb exposure, 1.226±0.051, F(1,141) = 189.075, P<0.001, n = 16), PND60 (control,
2.497±0.094; Pb exposure, 1.635±0.062, F(1,151) = 63.149, P<0.001, n = 16) and PND90 (con-
trol, 2.890±0.137; Pb exposure, 2.108±0.152, F(1,67) = 14.065, P<0.001, n = 16).

Chronic Pb exposure also significantly impaired mushroom spine formation in mPFC in
adolescence (PND30) (control, 2.474±0.056; Pb exposure, 1.269±0.047, F(1,157) = 247.451,
P<0.001, n = 16), early adulthood (PND60) (control, 2.569±0.122; Pb exposure, 2.124±0.115,
F(1,132) = 6.834, P<0.01, n = 16) and did not induce considerable decrease at adulthood

Fig 4. Effect of chronic Pb exposure on dendritic length in rat brain was subject to brain regions×age×gender age interaction. Dendritic length in
male hippocampal neurons at PND30, PND60, PND90, respectively (A). Dendritic length in male mPFC at PND30, PND60, PND90, respectively (B).
Dendritic length in female hippocampal neurons at PND30, PND60, PND90, respectively (C). Dendritic length in female mPFC at PND30, PND60, PND90,
respectively (D). Data are expressed as mean ± SEM. *P<0.05, ***P<0.001. n = 8 per group.

doi:10.1371/journal.pone.0138112.g004
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(PND90) (control, 2.547±0.078; Pb exposure, 2.420±0.102, F(1,100) = 0.998, P>0.05, n = 16)
(Fig 5B). Additionally, an increase was observed about the number of mushroom spines in Pb-
exposed groups from PND30 group to PND90 group when the corresponding control groups’
value was almost equal, and the increase was notable between PND60 and PND30 (P<0.001),
between PND90 and PND30 (P<0.001) (Fig 5B). It indicated that the degree of impairment of
spine maturity wore off from adolescence to adult in mPFC after chronic Pb exposure.

In summary, Pb exposure induced impairment in mushroom spine formation in both
mPFC and hippocampus from developmental phase to adulthood, and this impairment was
age-dependent in mPFC.

Effects of gender on the number of mushroom spines in response to
chronic Pb exposure in rat brain
Then we asked whether gender caused differences in mushroom spine formation in hippocam-
pus and mPFC at different ages in Pb-exposed rats. Fig 6A showed chronic Pb exposure
impaired mushroom spine formation in male hippocampus at PND30 (control, 2.091±0.055;
Pb exposure, 1.244±0.070, F(1,72) = 90.591, P<0.001, n = 8), PND60 (control, 2.513±0.193; Pb
exposure, 1.602±0.068, F(1,88) = 31.661, P<0.001, n = 8) and PND90 (control, 2.700±0.148;

Fig 5. Effect of chronic Pb exposure on dendritic mushroom spines in rat brain with brain regions differences and age differences. The number of
mushroom spines in hippocampal neurons at PND30, PND60, PND90, respectively (A). The number of mushroom spines in mPFC at PND30, PND60,
PND90, respectively (B). Blow the histogram: dendritic spines stained with the Golgi-cox (Scale bar = 10μm). Data are expressed as mean ± SEM.
**P<0.01, ***P<0.001. Scale bar = 10μm. n = 16 per group.

doi:10.1371/journal.pone.0138112.g005
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Pb exposure, 2.333±0.136, F(1,33) = 3.167, P>0.05, n = 8). In female hippocampus, significant
impairment was observed about spine maturity in female hippocampus at PND30 (control,
2.509±0.077; Pb exposure, 1.207±0.075, F(1,67) = 124.630, P<0.001, n = 8), PND60 (control,
2.488±0.101; Pb exposure, 1.517±0.143, F(1,54) = 24.967, P<0.001, n = 8) and PND90 (control,
3.475±0.161; Pb exposure, 1.742±0.145, F(1,39) = 64.321, P<0.001, n = 8) (Fig 6C). As shown

Fig 6. Effect of chronic Pb exposure onmushroom spines in rat brain was subject to brain regions×age×gender age interaction. The number of
mushroom spines in male hippocampal neurons at PND30, PND60, PND90, respectively (A). The number of mushroom spines in male mPFC at PND30,
PND60, PND90, respectively (B). The number of mushroom spines in female hippocampal neurons at PND30, PND60, PND90, respectively (C). The
number of mushroom spines in female mPFC at PND30, PND60, PND90, respectively (D). Data are expressed as mean ± SEM. ***P<0.001. n = 8 per
group.

doi:10.1371/journal.pone.0138112.g006
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in Fig 6A and 6C, there was difference in hippocampal spine maturity at PND90 between
genders.

In male mPFC, the number of mushroom spines was significantly lower in Pb exposure
group compared to control at PND30 (control, 2.541±0.091; Pb exposure, 1.264±0.062, F
(1,72) = 134.233, P<0.001, n = 8), PND60 (control, 3.201±0.091; Pb exposure, 1.395±0.122,
F(1,72) = 142.345, P<0.001, n = 8) except for PND90 (control, 2.796±0.124; Pb exposure,
2.571±0.149, F(1,48) = 1.335, P>0.05, n = 8) (Fig 6B). Similar results were observed in female
mPFC that the number of mushroom spines was significantly lower in Pb exposure group com-
pared to control at PND30 (control, 2.429±0.071; Pb exposure, 1.276±0.072, F(1,83) = 111.975,
P<0.001, n = 8) and PND60 (control, 2.702±0.104; Pb exposure, 1.426±0.113, F(1,58) =
68.306, P<0.001, n = 8) (Fig 6D), whereas there was little difference at PND90 (control, 2.306±
0.076; Pb exposure, 2.277±0.136, F(1,50) = 0.041, P>0.05, n = 8) (Fig 6D).

Our results showed that Pb exposure impaired mushroom spine formation in both genders.
Furthermore, this impairment was subject to gender differences in hippocampus between male
and female rats during adulthood. It indicated Pb exposure induced enduring impairment on
spine maturity in female hippocampus from adolescence to adulthood while male was just
from adolescence to early adult.

The alternation of NDR1/2 signaling molecules with the interaction of
gender×age×brain regions in rat brain following chronic Pb exposure
It has been demonstrated that Pb affected cellular Ca2+ flux [23]. NDR 1/2 kinase protein,
which might be regulated by endocellular second messager Ca2+, played an essential role in
dendrite morphology and spine formation [33]. We then asked whether this dendrite-related
kinase was affected by Pb exposure and whether the alternation of the expression induced by
Pb was subject to the above-mentioned three factors.

First we examined NDR1/2 protein expression in male rats. Pb exposure induced consider-
able decrease in NDR1/2 protein compared to controls at PND30 (control, 1.441±0.019; Pb
exposure, 1.188±0.068, F(1,4) = 12.670, P<0.05, n = 8) and PND60 (control, 1.635±0.022; Pb
exposure, 1.452±0.068, F(1,6) = 6.641, P<0.05, n = 8), except for at PND90 (control, 1.754±
0.301; Pb exposure, 1.636±0.060, F(1,4) = 0.147, P>0.05, n = 8) in male hippocampus (Fig 7A).
In female hippocampus, Pb exposure significantly decreased NDR1/2 expression at PND30
(control, 1.480±0.020; Pb exposure, 1.077±0.096, F(1,6) = 16.899, P<0.01, n = 8), PND90 (con-
trol, 1.541±0.035; Pb exposure, 1.215±0.080, F(1,6) = 14.000, P<0.01, n = 8), and induced
marginally significant decrease at PND60 (control, 1.355±0.080; Pb exposure, 1.105±0.111,
F(1,6) = 3.358, P = 0.06, n = 8) (Fig 7C). It indicated gender differences in NDR1/2 expression
after Pb exposure during early adult and adulthood.

There was also a reduction in NDR1/2 protein expression in male mPFC between Pb-exposed
group and control group, whereas it was considerable at PND30 (control, 1.533±0.006; Pb expo-
sure, 1.137±0.050, F(1,4) = 61.614, P<0.01, n = 8) rather than PND60 (control, 1.869±0.136; Pb
exposure, 1.522±0.011, F(1,4) = 6.449, P = 0.006, n = 8) and PND90 (control, 1.788±0.166; Pb
exposure, 1.667±0.004, F(1,4) = 0.525, P>0.05, n = 8) (Fig 7B). Specifically, it indicated difference
between male hippocampus and male mPFC at PND 60 (Fig 7A and 7B). Data in Fig 7D showed
lower protein expression in female mPFC in Pb-exposed group than control group at all three
age stages, and the reduction was notable at PND30 (control, 1.574±0.040; Pb exposure, 1.187±
0.169,F(1,4) = 4.943, P<0.05, n = 8) and PND60 (control, 1.518±0.0366; Pb exposure, 1.166±
0.115, F(1,4) = 8.499, P<0.05, n = 8) rather than PND90 (control, 1.677±0.148; Pb exposure,
1.468±0.040, F(1,4) = 1.871, P>0.05, n = 8) (Fig 7D). Additionally, difference was observed in
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Fig 7. Effect of chronic Pb exposure on NDR1/2 expression in rat brain was subject to mixed factors of brain regions×age×gender. Representative
Immunoblot and histograms plot showed the protein expression of NDR1/2 in male hippocampus at PND30, PND60, PND90, respectively (A), in male mPFC
at PND30, PND60, PND90, respectively (B), in female hippocampus at PND30, PND60, PND90, respectively (C), in female mPFC at PND30, PND60,
PND90, respectively (D). Data are expressed as mean ± SEM. *P<0.05, **P<0.01. n = 8 per group.

doi:10.1371/journal.pone.0138112.g007
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mPFC at PND60 between genders (Fig 7B and 7D). Data from Fig 7C and 7D showed difference
between female hippocampus and female mPFC during adulthood (early adult and adult).

In summary, chronic Pb exposure reduced NDR1/2 protein expression in rat brain. Age-
dependent differences were seen in response to Pb exposure in male hippocampus, male mPFC
and female mPFC. In addition, the alternation of NDR1/2 expression was also subject to gen-
der differences.

The alternation of NDR1, NDR2 and Rabin3mRNA levels in rat
hippocampus and mPFC following chronic Pb exposure
The above results suggested more developmental impairment followed by Pb exposure. To fur-
ther explore the role of NDR1/2 kinase pathway in regulating dendrite growth by Pb exposure,
we then investigated the alternation of NDR1 and NDR2mRNA levels in development phase
by real-time fluorescence PCR. As shown in Fig 8A, no difference was seen in NDR1mRNA
level in hippocampus after Pb exposure (control, 1.000±0.000; Pb exposure, 0.969±0.047, F
(1,13) = 0.432, P>0.05, n = 8) while the reduction in NDR2 after Pb exposure was significant
(control, 1.000±0.000; Pb exposure, 0.761±0.031, F(1,10) = 60.565, P<0.001, n = 8). A similar
result was shown in Fig 8B, the decrease in NDR1mRNA level was not obvious (control, 1.000
±0.000; Pb exposure, 0.943±0.118, F(1,20) = 0.211, P>0.05, n = 8) but in NDR2 was consider-
able (control, 1.000±0.000; Pb exposure, 0.710±0.051, F(1,8) = 52.524, P<0.001, n = 8) in rat
mPFC.

In view of the role of Rabin3 in regulating dendrite growth by NDR1/2 kinase, we then
explored the Rabin3mRNA level. As data shown in Fig 8C, Pb exposure significantly decreased
of Rabin3mRNA level in both mPFC (control, 1.000±0.000; Pb exposure, 0.731±0.09, F(1,6) =
9.954, P<0.05, n = 8) and hippocampus (control, 1.000±0.000; Pb exposure, 0.575±0.050,
F(1,4) = 66.325, P<0.01, n = 8).

In summary, chronic Pb exposure decreased NDR2mRNA, as well as its substrate Rabin3
mRNA in rat brain. Those results suggested the role of NDR1/2 kinase pathway in the process
of regulating dendritic length and mushroom spine formation by Pb exposure.

Discussion
As is known to all, Lead (Pb) is an important metal pollutant which results in impaired cogni-
tion and working memory function [15, 40–42]. Our recent work showed chronic Pb exposure
impaired spine density [34], which we hypothesized it may be related to NDR1/2 kinase [24,
27, 29, 33]. Present study reported the impairment of dendrite growth and NDR1/2 kinase
expression in response to Pb exposure with brain regions×age×gender interaction, and further
the mRNA levels of key proteins of NDR1/2 kinase pathway based on those results. Our results
raised four points which might be useful for further exploring Pb exposure neurotoxicity. First,
Gender might play an important role in response to Pb exposure. Second, adolescence was
more sensitive to chronic Pb exposure. Third, the impairment induced by Pb exposure was not
parallel in hippocampus and mPFC, hippocampus was more sensitive to the neurotoxicity
than mPFC. Fourth, NDR1/2 kinase expression was also affected by Pb exposure and this effect
was influenced by brain regions, age or gender.

Present study first examined the alternation of dendritic length after Pb exposure. As we all
know, hippocampus is necessary for memory, because of its role of conducting information
processing into memory [43, 44]. Recent study showed cortical-hippocampal networks cooper-
atively contributed to memory [17]. Then what is the alternation of hippocampus and mPFC
cognitive function in response to Pb exposure? Interestingly, although the impairment in both
brain regions, hippocampal dendritic length was more sensitive to Pb exposure compared to
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mPFC during development (Fig 3). Dentritic length is important in synaptic transmission due
to dendritic ability of receiving and transmitting information. Present study showed the hippo-
campal synaptic neurotoxicity caused by Pb, especially in adolescence (Fig 3).

It has been reported developmental chronic exogenous toxic exposure tended to decrease
the number of mushroom spines in adult hippocampus compared to mPFC [45]. Present study
found Pb exposure inhibited spine maturity in both hippocampus [18] and mPFC regardless of
sex (Fig 5). In line with the experiments on animals [46, 47], this study suggested a mushroom
spine explanation of impairment in long term potentiation (LTP) after Pb exposure. LTP is an
important form of synaptic plasticity and a molecular basis of learning and memory [48].

Fig 8. Effect of chronic Pb exposure on related key protein mRNA levels of NDR1/2 kinase pathway.NDR1 andNDR2mRNA relative levels in
hippocampus (A), NDR1 andNDR2mRNA relative levels in mPFC (B), Rabin3mRNA relative levels in hippocampus and mPFC (C). The transcript amount
was standardized by the amount of r-Actin in each sample. The levels of these three genes in the control group (without Pb exposure) were set as 1.0,
respectively. All the results were calculated as averages of triplicate experiments. Data are expressed as mean ± SEM. *P<0.05, **P<0.01, ***P<0.001.
n = 8 per group.

doi:10.1371/journal.pone.0138112.g008
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Recent study demonstrated mushroom spine plays an essential role in LTP [47]. In addition,
the significant inhibition induced by Pb exposure continued into adult (PND90) in hippocam-
pus rather than mPFC (Fig 5). It indicted a more enduring impairment in hippocampal LTP
compared to mPFC in response to Pb exposure. Furthermore, dendrite morphology results
showed developmental phase was more sensitive to Pb exposure [15, 49] (Figs 3 and 5).

Specifically, there showed significant increase of the number of mushroom spines in mPFC
at PND60 compared to PND30, as well as at PND90 compared to PND30 in Pb-exposed
group (Fig 5B). It indicted that the impairment in mushroom spine formation after Pb expo-
sure wore off from adolescence to adult in mPFC. This phenomenon also suggested develop-
mental mPFC was much more sensitive to Pb neurotoxicity and then this toxicity became less
and less. There might be several potential compensation mechanisms so that some impairment
during adult tended to be reduced. As shown in Fig 3A, the impairment of hippocampal den-
dritic length during early adult (PND60) was parallel to that during adult (PND90), this was
consistent with the findings of David et al about behavior level [15].

In considering a widespread phenomenon in brain regions: gender-dependent differences
[50], present study explored whether the cognition neurotoxicity after Pb exposure is different
between genders. Although no significant difference was observed in mPFC dendritic length
after Pb exposure regardless sex (Fig 3B), data from Fig 4B and 4D showed difference in devel-
opmental dendritic length between genders. It suggested female was more sensitive to Pb expo-
sure, which was consistent with Sabrina Llop et al [14, 15]. Interestingly, we failed to see
significant difference in hippocampus between genders (Fig 4A and 4C). But the P value in
development hippocampus in male and female was P<0.05 and P<0.001, respectively (Fig 4A
and 4C). Above-mentioned more sensitivity to Pb exposure in hippocampus than mPFC might
be a reasonable explanation. Results about mushroom spine also showed gender differences
that Pb exposure significantly affected spine maturity from adolescence to adult in female hip-
pocampus while the impairment was not significant in male hippocampus at PND90 (Fig 6A
and 6C). It suggested a more enduring sensitivity to Pb exposure in female (from adolescence
to adulthood) while the sensitivity was not significant when adult in male. It was failed to see
difference in mPFC between genders (Fig 6B and 6D). These dendrite morphology results indi-
cated that both genders suffered from Pb exposure, and a more enduring neurotoxicity was
observed in female. Similar phenomenon was observed in previous studies. Girls were easier to
suffer from impairment than boys following developmental Pb exposure while both genders
were observed a decline in IQ [51]. Tong et al also found Pb exposure revealed a pronounced
impairment in cognition in girls compared to boys [52]. As for animal study, David et al
described Pb exposure affected learning and cognition, what’s more, female rats were more
sensitive to this damage than male rats by behavioral experiment [15].

As we all know, protein kinase plays an important role in corresponding signaling pathway.
Specifically, NDR1/2 protein kinase family was essential for dendrite growth and related signal
transduction in neuronal development in mice and rats [27, 53]. Present study explored the
alternation of NDR1/2 protein expression to investigate the neurotoxicity of chronic Pb expo-
sure from translation level. Our data showed Pb exposure decreased NDR1/2 protein expres-
sion, and this alternation was significant and not influenced by gender or brain regions during
adolescence (Fig 7). In addition, data showed the effect on NDR1/2 kinase expression after Pb
exposure wore off from adolescence to adulthood except for female hippocampus (Fig 7). Spe-
cifically, during adulthood, there was a bit more effect in adult female hippocampus compared
with adult male hippocampus (Fig 7A and 7C) and female mPFC versus to male mPFC (Fig 7B
and 7D). It was reasonable to hypothesize that developmental brain was more sensitive to Pb
exposure and early adult (PND60) might be a transition period (which some underlying
repair mechanism occurred in this time) in response to Pb exposure. Besides, the reduction of
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NDR1/2 kinase expression was correlated with the impairment of spine maturity after Pb expo-
sure (Figs 5 and 7).

To specifically explore the participation of NDR1/2 in the process of regulating dendrite
growth followed by Pb exposure, present study then investigated the NDR1 and NDR2mRNA
levels. It was corresponding to the NDR1/2 protein expression that Pb exposure significantly
decreased NDR2mRNA levels in both hippocampus and mPFC (Fig 8A and 8B). Thus the
alternation of NDR1/2 protein expression is resulted from the regulation of NDR1/2mRNA
levels after Pb exposure, especially NDR2. Furthermore, the substrate of NDR1/2, the Rabin3 (a
rat protein, which homologous to human protein Rabin8) mRNA level was significantly
decreased in both hippocampus and mPFC followed by Pb exposure (Fig 8C), which was corre-
sponding to the reduction of dendritic length and mushroom spines.

In conclusion, to our knowledge, this is the first study to explore the brain regions×age×gen-
der effects on dendrite growth and spine maturity in response to Pb exposure. Furthermore we
also provided translation and transcription evidences that the role of NDR1/2 kinase pathway
in the process of regulating dendrite growth followed by Pb exposure, which may explain Pb
induced dendrite morphology deficits.
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