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Abstract

Despite the richness of species in the Hirudinidae family, little is known about the genome organization of swallows.
The Progne tapera species presents genetic and morphological difference when compared to other members of the
same genus. Hence, the aims of this study were to analyze the chromosomal evolution of three species Progne
tapera, Progne chalybea and Pygochelidon cyanoleuca - by comparative chromosome painting using two sets of
probes, Gallus gallus and Zenaida auriculata, in order to determine chromosome homologies and the relationship
between these species. All karyotypes exhibited 76 chromosomes with similar morphology, except for the 5th, 6th
and 7th chromosome pairs in P. cyanoleuca. Additionally, comparative chromosome painting demonstrated the
same hybridization pattern in the two Progne, which was similar to the putative avian ancestral karyotype, except for
the centric fission in the first pair, as found in other Passeriformes. Thus, these data display a close relationship be-
tween the Progne species. Although P. cyanoleuca demonstrated the same fission in the first pair of the ancestral
syntenic (GGA1), it also showed an additional chromosomal rearrangement for this species, namely a fusion with a
microchromosome in the seventh pair.
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Introduction

The order Passeriformes is one the most diverse

within the class Aves, including around 6000 species (Del

Hoyo et al., 2011). As the other members from this class, it

presents small genome, high chromosomal number, a few

pairs of macrochromosomes and several microchromoso-

me pairs. Furthermore, birds have a sexual system ZZ/ZW,

where the female is heterogametic (Griffin et al., 2007;

Barcellos et al., 2019).

The Hirundinidae family (Aves: Passeriformes),

commonly known as swallows, comprises approximately

84 species (Dickinson, 2003; Sheldon et al., 2005). These

birds are well known worldwide due to their cosmopolitan

habits, behavior and ecology (Sheldon et al., 2005).

Moreover, they are migratory and insectivorous. Due to the

scarcity of food resources in winter, swallows tend to fly

several miles to find food and a safe place to stay during this

season (Sigrist, 2013).

Progne tapera (Linnaeus, 1766), Progne chalybea

(Gmelin, 1789) and Pygochelidon cyanoleuca (Vieillot,

1817) have similar karyotypical organization with the same

diploid number (2n=76) and distribution of repetitive

DNA. Furthermore, recent studies with these species found

an interesting characteristic, an enlarged W chromosome

(Barcellos et al., 2019). Despite recent research, the cyto-

genetics of swallows is still poorly defined.

Cross-species chromosome painting has been applied

widely for evolutionary biology studies and karyotype evo-

lution (Ferguson-Smith and Trifonov, 2007; Ellegren,

2010) and, in particular, to identify chromosomal homo-
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logies in passerines species (Kretschmer et al., 2018a). The

most common probes used for analyses in birds are from

Gallus gallus (Linnaeus, 1758) (GGA) and Leucopternis

albicollis (Latham, 1790) (LAL) (Griffin et al., 2007; de

Oliveira et al., 2010). Using GGA and LAL probes in

Passeriformes revealed a fission and numerous inversions

in the first chromosome pair of the ancestral syntenic

(GGA1), an apomorphy that has been seen in all species be-

longing to this order analyzed by fluorescent in situ hybrid-

ization (FISH) (Kretschmer et al., 2014, 2015, 2018a; dos

Santos et al., 2015, 2017).

Recently, a new set of whole chromosome-specific

probes was developed using Zenaida auriculata species

(Des Murs, 1847). This probe set has the similar organiza-

tion pattern of macrochromosomes as the putative ancestral

karyotype of birds (PAK) and is also similar to that of G.

gallus. Furthermore, it shows interchromosomal rearrange-

ments, which are extremely important for karyotype evolu-

tion (Kretschmer et al., 2018b).

In order to study the genome organization of Hirun-

dinidae, and the relationship between them, we present here

for the first time chromosome painting using whole-chro-

mosome probes of G. gallus and Z. auriculata in three spe-

cies of swallows, P. chalybea, P. tapera and P. cyanoleuca.

Material and Methods

Species

The present work examines twelve individuals be-

longing to the Hirundinidae family: P. chalybea (3 females

and 2 males); P. tapera (2 females and 2 males) and P.

cyanoleuca (3 females), all collected in São Gabriel – Rio

Grande do Sul State, Brazil (SISBIO Permission Number:

33860-4). The protocols were approved by the Ethics Com-

mittee on the use of animals (CEUA- Universidade Federal

do Pampa, 026/2012).

Chromosome isolation

Chromosomes were obtained by fibroblast culture

(Sasaki et al., 1968) and short-term bone marrow culture

(Garnero and Gunski, 2000). The procedures included:

hypotonic treatment, incubation with colchicine (0,05%)

and cell fixation using methanol and acetic acid (3:1). Dip-

loid number and chromosome morphology were deter-

mined from the analyses of 30 mitotic cells stained with

Giemsa 5% in 0.07 M phosphate buffer, pH 6.8. Subse-

quently, metaphases were analyzed by microscopy.

Fluorescent in situ hybridization (FISH)

Chromosome painting utilized two sets of probes: Z.

auriculata (ZAU 1-8 and Z) and G. gallus (GGA 9-10).

Comparisons were based on homology between ZAU and

GGA (Kretschmer et al., 2018b). Protocols for hybridiza-

tion were performed as described in de Oliveira et al.

(2010). The FISH results were examined by epifluorescent

microscopy.

Results

Karyotype analyses

The diploid number is 76 for the three swallow spe-

cies, which corroborate previous studies (Barcellos et al.,

2019). The 1st, 4th, 10th pairs and also the Z chromosome

are metacentric, pairs 2 and 3 are acrocentric, while 8th,

9th, 11th and all microchromosomes are telocentric. Only

three morphological differences between species were ob-

served: in P. cyanoleuca, the 5th chromosome pair is acro-

centric, the 6th submetacentric, and the 7th metacentric,

whereas in the Progne species the 5th pair is submeta-

centric and the 6th and 7th chromosome pairs are telo-

centric. The W sex chromosome is submetacentric in all the

three species (Figure 1).
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Figure 1 - Partial karyotype of three females with conventional staining

(Giemsa). A= P. tapera, B= P. chalybea and C= P. cyanoleuca.



Chromosome painting using GGA and ZAU probes

GGA and ZAU probes revealed conservation of some

syntenic groups in swallows. ZAU1 hybridized in the sec-

ond and fifth chromosome pairs, while ZAU2 demon-

strated hybridization signals only in the first pair in the

three swallow species (Figure 2 A, D and G). The hybrid-

ization patterns using GGA and ZAU probes were the same

for P. tapera and P. chalybea. Hybridization experiments

demonstrated that GGA1 (ancestral chromosome 1) corre-

sponds to two distinct chromosome pairs and GGA2, 3, 4,

5, 6, 7, 8, 9 and 10 each correspond to one pair in swallows

(Figure 3 A and B). P. cyanoleuca exhibited a similar pat-

tern of hybridization, except for the seventh pair of chromo-
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Figure 2 - FISH experiments using Gallus gallus (GGA) and Zenaida auriculata (ZAU) probes hybridized onto P. tapera - PTA (A-C), P. chalybea -

PCH (D-F) and P. cyanoleuca - PCY (G-I) metaphases. Probes are indicated in the lower left corner of each image; probes were labeled with biotin/Cy3

(red) or fluorescence (green).



somes, which shows fusion with a microchromosome

(Figures 2 I and 3 B).

Discussion

The swallow karyotypes presented a diploid number

and morphology typically found in most Passeriformes

(Tegelström and Ryttman, 1981; Santos and Gunski, 2006),

with 76 chromosomes and many microchromosome pairs,

as observed in Barcellos et al. (2019). However, these spe-

cies have a W chromosome relatively bigger than the W of

most Passeriformes species due to a highly repetitive se-

quences accumulation, such as microsatellites (Berlin and

Ellegren, 2004; Chen et al., 2012; Zhang et al., 2014;

Barcellos et al., 2019).

The Neognathae group, so called modern aves, is di-

vided in two distinct clades: Galloanseres and the Neoaves.

G. gallus belongs to Galloanseres, considered a basal group

and very similar to PAK. On the other hand, Z. auriculata

is a Neoaves member, so it is closer to derived groups

(Jarvis et al., 2014). Despite the phylogenetic distance,

there is a high similarity between GGA and ZAU. Since

studies using both probes showed the same chromosomal

homologies in both, except for GGA4, which has a fusion

between two ancestor chromosomal pairs (PAK4+10),

while ZAU shows fission (ZAU4-11) (Kretschmer et al.,

2018b). However, the use of ZAU probes showed clear hy-

bridization signals in derived species (Kretschmer et al.,

2020), which can also be observed in the swallows, proba-

bly due to their phylogenetic proximity.

The main differences found when compared to the

putative ancestral avian karyotype (Griffin et al., 2007), is

the fission in the first chromosome pair into two distinct

pairs of macrochromosomes (2 and 5 pairs) and the fusion

of a microchromosome in the seventh pair in P. cyano-

leuca. The fission of the GGA 1 chromosome has been ob-

served in all Passeriformes studied by FISH so far

(Guttenbach et al., 2003; Derjusheva et al., 2004;

Kretschmer et al., 2014, 2015, 2018a; dos Santos et al.,

2015). In addition, this rearrangement can also be seen in

most Accipitriformes, as well as in Psittaciformes
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Figure 3 - Homology map between G. gallus and three swallow species: P. tapera (A) and P.chalybea (B), P. cyanoleuca (C).



(Kretschmer et al., 2018a), suggested as Passeriformes sis-

ter group (Hackett et al., 2008; Jarvis et al., 2014).

Among the swallows analyzed by FISH, only one

chromosomal rearrangement was observed, a fusion with a

microchromosome pair in P. cyanoleuca, which is the most

derived species. This fusion had possibly occurred due to

evolutionary pressures leading to interchromosomal and

intrachromosomal rearrangements (Ellegren, 2010). Fu-

sions among macrochromosomes and microchromosomes

were also observed in two species of the genus Falco

(Accipitriformes) (Kretschmer et al., 2018a). Although

highly variable among lineages, intrachromosomal rear-

rangements might be significant contributors to the genetic

and phenotypic diversity presented by the members of the

class Aves (Damas et al., 2019).

The chromosome painting patterns found in swallows

are very distinct when compared to distant bird orders, such

as Galliformes and Anseriformes, which in general present

chromosomal structure similar to PAK1-10 (Guttenbach et

al., 2003; Shibusawa et al., 2003; Kretschmer et al.,

2018a). The same occurs when compared with Gruiformes,

Eurypygiformes and Trogoniformes, which show fusions

in distinct macrochromosomes pairs and also some peculiar

chromosomal fission for each order (Nanda et al., 2011;

Furo et al., 2015; Degrandi et al., 2017).

In the past, the Hirundinidae family had some phylo-

genetic issues in relation to P. tapera due to the phenotypic

and genetic difference from other Progne species (Moyle et

al., 2008). Nevertheless, recent studies using classical and

molecular cytogenetics have shown a greater similarity be-

tween the P. tapera and P. chalybea when compared to P.

cyanoleuca (Barcellos et al., 2019). Taken together, these

examples and our data support the current phylogeny of the

genus Progne, which puts all Progne species into a single

genus (Sheldon et al., 2005; Moyle et al., 2008; Barcellos et

al., 2019).

Overall, the analyses allow us to identify homologies

between PAK and three swallow species using GGA and

ZAU probes, providing data about the mechanisms in-

volved in karyotype evolution in the Hirundinidae family.

Moreover, FISH experiments played an important role in

identifying chromosomal rearrangements, such as the mi-

crochromossome and macrochromosome fusion in P. cya-

noleuca species, which clarifies the relationships among

the swallows.
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