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Abstract: Pericardial effusions (PEFs) are often missed on Computed Tomography (CT), which
particularly affects the outcome of patients presenting with hemodynamic compromise. An automatic
PEF detection, segmentation, and classification tool would expedite and improve CT based PEF
diagnosis; 258 CTs with (206 with simple PEF, 52 with hemopericardium) and without PEF (each
134 with contrast, 124 non-enhanced) were identified using the radiology report (01/2016–01/2021).
PEF were manually 3D-segmented. A deep convolutional neural network (nnU-Net) was trained on
316 cases and separately tested on the remaining 200 and 22 external post-mortem CTs. Inter-reader
variability was tested on 40 CTs. PEF classification utilized the median Hounsfield unit from each
prediction. The sensitivity and specificity for PEF detection was 97% (95% CI 91.48–99.38%) and
100.00% (95% CI 96.38–100.00%) and 89.74% and 83.61% for diagnosing hemopericardium (AUC
0.944, 95% CI 0.904–0.984). Model performance (Dice coefficient: 0.75 ± 0.01) was non-inferior
to inter-reader (0.69 ± 0.02) and was unaffected by contrast administration nor alternative chest
pathology (p > 0.05). External dataset testing yielded similar results. Our model reliably detects,
segments, and classifies PEF on CT in a complex dataset, potentially serving as an alert tool whilst
enhancing report quality. The model and corresponding datasets are publicly available.

Keywords: pericardial effusion; computed tomography; X-ray; AI (Artificial Intelligence);
hemopericardium; DCNN (deep convolutional neural network)

1. Introduction

With the increasing use of Computer Tomography (CT) in medicine [1], pericardial
effusions (PEFs) are often first diagnosed on CT [2]. A PEF is most commonly defined
as a volume larger than 50 mL [2–4]. However, PEF diagnosis is often missed on CT
as shown by Verdini et al. with a sensitivity of only 59.0% for pericardial disease [5].
Whilst volumetry is the most accurate method to diagnose PEF, taking into account the
complex three-dimensional geometrical structure of the pericardial sac [4,6,7], counting
voxels is time consuming and impractical in clinical practice [8]. Therefore, an automatically
generated segmentation and volumetry tool would substantially improve the quality of
CT-based PEF diagnosis.
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Whilst echocardiography is the primary tool for PEF diagnosis [6], CT plays an ever-
increasing role. This is because CT is a “catch all” investigation for patients presenting in
extremis, which requires prompt, thorough and rapid diagnostic workup to identify life
threatening pathologies and guide management. Evidently, missing a PEF diagnosis in this
context must be avoided. Additionally, the echocardiographic diagnostic accuracy of PEFs
is affected by the presence of clots, complex loculations, posterior PEFs and post-surgical
changes, making CT the primary and most straightforward tool for the investigation of
these complications [9,10].

The effectiveness of deep convolutional neural networks for the automated analysis
of chest CTs has been proven [11–14]. However, to date, only two studies are available
utilizing Artificial Intelligence to automatically identify or quantify PEF on CT [15,16].
Currently, the most commonly implemented deep learning architecture in medical imaging
is the U-Net [17], which was adapted by Isensee et al. producing a robust tool called nnU-
Net. nnU-Nets can automatically configure themselves, including preprocessing, network
architecture, training and post-processing for any new task [18]. Its advantages have been
demonstrated by winning multiple Medical Image Computing and Computer Assisted
Interventions challenges.

Our model presents the first openly available dataset and tool to automatically seg-
ment, quantify and classify PEFs on CT. It fulfills the clinical need for a more reliable, more
accurate, and faster diagnosis of PEF and hemopericardium, which performs reliably even
in the presence of additional chest pathology. The incorporation of this tool into clinical
practice may help reduce or even avoid missed diagnoses completely, as well as improve
the time-to-diagnosis, ultimately improving patient outcomes.

2. Materials and Methods

The local ethics committee approved this retrospective study (Project ID: 2021-00946).
For the external dataset consisting of anonymized post-mortem CT data, an ethical waiver
was issued by the Ethical Committee of the Canton of Zurich (Project ID: 2022-00173). We
structured our manuscript according to SPIRIT-AI and CLAIM [19,20].

2.1. Study Population

Two study cohorts were defined as follows. The positive cohort, consisting of simple
PEF and hemopericardium cases, was identified through the search of structured radiology
reports using the search terms “pericardial effusion” and “hemopericardium” from January
2016 to January 2021. No patient was present in both groups. The corresponding CTs
including chest imaging were identified using the Radiology Information System/Picture
Archiving and Communication system in a tertiary hospital. The search and the exclusion
of patients without consent, duplicates and follow-up studies were carried out by Reader
2 (postgraduate year (PGY) 4). Additionally, a negative cohort was identified on a local
database of CT studies without significant radiological findings by Reader 1 (PGY 2).

All CTs identified above were quality controlled by Reader 1 under the supervision of
Reader 3 (Board certified, 15 years of cardiothoracic imaging experience). All hemoperi-
cardium cases were reviewed by Readers 1 and 2 to ensure an accurate diagnosis. Most cases
had a concomitant aortic dissection, recent cardiac intervention, or chest trauma (n = 51/53,
96.23%). Studies with strong artifacts affecting the delineation of the heart, insufficient
image quality, and extreme difficulty in delineating between PEF and pleural effusion were
excluded with the recommendation from Reader 3. Studies in the PEF/hemopericardium
and negative cohort were manually reviewed to ensure a PEF thickness of >4 mm and
<4 mm, respectively [2], whilst blinded to the radiology report. In areas of diagnostic
uncertainty, the consensus was achieved through discussion with Readers 2 and 3. A
detailed overview of the patient selection is graphically presented in Figure 1. All data
were anonymized.
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Figure 1. Patient selection flow chart, demonstrating the inclusion and exclusion criteria as well as 
numbers of studies with or without contrast. (PEF: pericardial effusion). The external dataset is not 
included in the flowchart. 

2.2. Image Acquisition Parameters 
CT scans were performed using four different models manufactured by Siemens 

Healthineers, Germany: Definition AS+ (n = 220), Definition Flash (n = 158), Definition 
Edge (n = 118), and Somatom Force (n = 20). Acquisition parameters were as follows: mean 
peak tube voltage 102.82 kVp (SD: 12.18), mean tube current time product 113.03 mAs 
(SD: 41.47), mean computed tomography dose index (CTDI) 4.07 mGy (SD: 3.62) and mean 
dose length product (DLP) 152.60 mGy*cm (SD: 162.07). A soft tissue kernel reconstruc-
tion (30f) of 1.0 mm served as the only input for the model. 

Iopromide (Ultravist 370, Bayer Pharmaceuticals) was administered in 274 cases (ar-
terial phase = 143, biphasic = 25, venous = 7, pulmonary arterial phase = 99). 

Figure 1. Patient selection flow chart, demonstrating the inclusion and exclusion criteria as well as
numbers of studies with or without contrast. (PEF: pericardial effusion). The external dataset is not
included in the flowchart.

2.2. Image Acquisition Parameters

CT scans were performed using four different models manufactured by Siemens
Healthineers, Germany: Definition AS+ (n = 220), Definition Flash (n = 158), Definition
Edge (n = 118), and Somatom Force (n = 20). Acquisition parameters were as follows: mean
peak tube voltage 102.82 kVp (SD: 12.18), mean tube current time product 113.03 mAs (SD:
41.47), mean computed tomography dose index (CTDI) 4.07 mGy (SD: 3.62) and mean dose
length product (DLP) 152.60 mGy*cm (SD: 162.07). A soft tissue kernel reconstruction (30f)
of 1.0 mm served as the only input for the model.
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Iopromide (Ultravist 370, Bayer Pharmaceuticals) was administered in 274 cases
(arterial phase = 143, biphasic = 25, venous = 7, pulmonary arterial phase = 99).

2.3. Segmentation

All images with PEF were manually segmented by two readers Reader 1 (n = 187) and
Reader 2 (n = 71) under supervision of Reader 3. Segmentation was standardized by using
the same software and windowing. The three-dimensional segmented masks were used as
a reference for training and testing.

To measure inter-rater variability, 40 studies initially segmented by Reader 2 were
randomly selected and segmented by Reader 1; 20 with and 20 without contrast.

2.4. Model Training, Validation, and Testing

The model architecture is presented in Table 1. Hemopericardium studies were often
not chest only CTs (n = 26). Therefore, pre-processing was carried out to crop the CT to the
chest region, which is predicted by Hofmanninger et al.’s lung segmentation model [21].

Table 1. Model architecture.

Design Parameters

Image preprocessing Image downsampling to 1 × 1 × 1 mm3

Hard-/Software
Matlab R2018b and Python 3.7 on a

workstation with a consumer-grade graphic
processor unit (Nvidia RTX 2080Ti).

Optimizer SGD with Nesterov momentum (µ = 0.99)

Learning rate Poly-learning rate schedule (initial 0.01)

Data augmentation
Gaussian noise and blur, brightness, contrast,

simulation of low resolution, gamma correction
and mirroring

Loss function Dice and cross-entropy

Training procedure 1000 epochs × 250 minibatches, foreground
oversampling

Inference procedure Sliding window with half-patch size overlap.
Gaussian patch center weighting

Architecture template
Encoder-decoder with skip connection,

instance normalization, leaky ReLU, deep
supervision

Intensity normalization Global dataset percentile clipping, z-score with
global foreground mean and s.d.

Image resampling strategy In-plane with third-order spline, out- of-plan
with nearest neighbor

Annotation resampling strategy Nearest neighbor interpolation to original
spatial resolution

Image target spacing Lowest resolution axis tenth percentile

Patch size (128, 128, 128)

Batch size 2

Ensemble selection 3D U-Net according to cross-validation
performance

The positive and negative cohorts (n = 516) were divided randomly into a train-
ing/validation (n = 316) and a test cohort (n = 200) whilst preserving the distribution of
cases with and without contrast administration. Hemopericardium cases were divided
with increased weighting towards the test cohort in order to ensure good statistical power
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of the accuracy of hemopericardium segmentation and classification. Therefore, hemoperi-
cardium compromised only 10% of the positive cohort within the training cohort (n = 14),
matching our local hemopericardium prevalence amongst PEFs. The remaining were used
in the test cohort (n = 38). A deep convolutional neural network using nnU-Net [18] was
trained and validated with a 5-fold cross validation. Each fold took 1.5 days.

2.5. Hardware and Software

The images were organized, viewed, labeled, predicted, pre- and post-processed on
the web-based image platform NORA [https://www.nora-imaging.com/ (accessed on 15
February 2022)] which is installed on an inhouse server with GPU Tesla T4. The training
was performed on an Ubuntu workstation with 12 Cores CPU, 64 GB RAM and two Nvidia
RTX 2080Ti.

2.6. Classification of Hemopericardium

The model’s prediction mask was used to extract a Hounsfield unit (HU) for each
voxel segmented. All values outside the range of 0 to 80 HU were removed as these are
outside the HU range for fluid and blood. The remaining values were used to compute
a median HU per case, as demonstrated in Figure 2. A total of 38 hemopericardium
cases from the hemopericardium sub-cohort together with one incidentally identified
hemopericardium case in our positive cohort were compared to the remaining 61 simple
PEF cases (without hemopericardium).
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Figure 2. Simplified overview of the median Hounsfield unit (HU) extraction from an example CT
with hemopericardium. A CT study with contrast depicting hemopericardium is segmented by the
model (pink). Every voxel within the prediction mask generates a HU, visually depicted as the white
squares with numbers within. All HUs outside of 0 to 80 are removed. The median HU of this PEF is
selected using the remaining HUs and is the output (in this example 34 HU).

2.7. The Model’s Output

The resulting output from the segmentation prediction will be: the presence of
PEF > 50 mL, volume in mL, large PEF (>100 mL) and the HU. The presence of hemoperi-
cardium and a PEF volume > 100 mL could set off an alert for the emergency physicians
and radiologists.

2.8. External Data Set

Our model was tested on an external dataset consisting of 22 post-mortem CTs (PM-
CTs) with autopsy-confirmed hemopericardium, performed on a Siemens Definition Flash
CT scanner. The image acquisition parameters are based on the chest and abdomen scan-

https://www.nora-imaging.com/
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ning protocol described by Flach et al. [22]. Patient selection criteria are described by
Ebert et al. [23]. The CTs were cropped using the aforementioned technique at our institu-
tion. Our model’s performance was compared to the external institution’s post-mortem
volume measurements and manual segmentation masks, the methodology of which is
described by Ebert et al. [15].

2.9. Statistical Analyses

To evaluate PEF detection and segmentation performance, we used sensitivity, speci-
ficity, and Dice coefficient. Volumetry was compared using Bland–Altman analysis and by
plotting the reference volumes against the predicted volumes and calculating Pearson’s
correlation coefficient (r2). To compare model performance within the sub-groups and to
the inter-rater agreement, we used the Dice coefficient, t-test, Mann–Whitney U test, and
intraclass correlation coefficient (ICC). The receiver operating characteristic (ROC) curve
was used to identify a HU threshold for the diagnosis of hemopericardium. Dice coefficient
was computed on local software. The remaining statistical tests were computed using the
packages “pROC” and “irr” using RStudio (Rstudio, PBC, Boston, MA, USA) [24,25], and
visualized graphically using “ggplot2” and “tidyverse” [26,27].

2.10. Publicly Available Data

To encourage the use of this model and ensure the validity of our results, the CT
datasets, reference segmentations and model code are openly available online [28].

3. Results
3.1. Study Population

The training and test cohorts did not significantly differ regarding both age (p = 0.695)
and reference volume (p = 0.492). The training dataset had a mean volume of 212.82 ± 220.23 mL
(±standard deviation) compared to 198.20 ± 159.78 mL for the test dataset. There was a
total of 258 reference segmentations. Using the definition of >50 mL for the diagnosis of
PEF, there were a total of 217 PEFs; 128 in the training cohort and 89 in the test cohort. The
patient characteristics within the test cohort are summarized in Table 2.

Table 2. Overview of patient characteristics in the test cohort.

Positive Cohort Negative Cohort Significance

Mean age 63.1 55.9 p < 0.001
Sex (male) n = 66 n = 57 p = 0.193

3.2. Inter-Reader Versus Reference-Prediction

The inter-reader dataset comprised 40 cases, and the following analyses are based on
these cases only and presented in Table 3. The ICC of these segmentation volumes was
0.970 (95% CI 0.951 < ICC < 0.983). A violin plot of all segmented volumes and example
segmentations is shown in Figure 3.

Table 3. Overview of inter-reader and reference-prediction results.

Inter-Reader Reference-Prediction

PEF volume Reader 1: 152.92 ± 134.85 mL Reader 1: 152.92 ± 134.85 mL
Reader 2: 181.04 ± 131.55 mL Prediction: 184.20 ± 132.19 mL
(p = 0.105) (p = 0.062)

Correlation coefficient r2 = 0.930 r2 = 0.925
Dice coefficient 0.69 ± 0.10, median = 0.69 0.73 ± 0.10, median = 0.74
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Figure 3. Segmentation volumes and a corresponding example CT with segmentation masks.
(a) Violin plots of the segmentation volumes of the 40 cases in the inter-reader dataset. Each vi-
olin is color coded to match the corresponding segmentation in (b). Pink = model, yellow = Reader
1, blue = Reader 2. (b) Non-contrast CT chest of a 65-year-old shown with soft tissue windowing.
Reader 1 segmented 183 mL, Reader 2 segmented 201 mL, and the model segmented 192 mL.

3.3. Model Performance and Effect of Confounding Factors

Hereon, the analyses are based on the positive test cohort only (n = 100), which are
presented in Table 4. Appendix A presents an in-depth analysis. Figure 4a shows an
example case with good quality model segmentation—unaffected by contrast adminis-
tration. Figure 4b shows an example case with a concomitant pleural effusion. Here, the
segmentation quality is reduced due to the artifact. Importantly, the pleural effusion was
not segmented despite being immediately adjacent to the PEF.
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Table 4. Model performance and the effect of confounding factors.

Reference-Prediction Significance

PEF volume
Reference: 198.20 ± 159.78 mL p = 0.875Prediction: 201.50 ± 160.93

Correlation coefficient r2 = 0.929 N/A
Dice coefficient 0.75 ± 0.01, median = 0.76 N/A
Effect of confounding factors assessed with Dice coefficient:

Contrast administration
Contrast: 0.74 ± 0.19, median = 0.77 p = 0.908
No contrast: 0.75 ± 0.09, median = 0.76

PEF size (>50 mL vs. >50 mL) <50 mL: 0.67 ± 0.17, median = 0.74 p = 0.086>50 mL: 0.75 ± 0.10, median = 0.77

Hemopericardium presence Hemopericardium: 0.72 ± 0.13, median = 0.73 p = 0.097
No hemopericardium: 0.76 ± 0.09, median = 0.78

Pleural effusion presence Pleural effusion: 0.73 ± 0.12, median = 0.74 p = 0.116
No pleural effusion: 0.77 ± 0.08, median = 0.79

Other radiologically identified chest
pathology

Visible pathology: 0.73 ± 0.12, median = 0.74 p = 0.061No visible pathology: 0.77 ± 0.09, median = 0.78

Radiologically identified pathology was defined as radiological evidence of chest trauma, infection, tumor, and
post-operative changes.
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(iii) shows a non-contrast CT with PEF without masks and (iv) with reference (yellow) and predicted 
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Figure 4. CT chests on the left with corresponding segmentations on the right of three different
patients. (a) CT studies with or without contrast. (i) shows a contrast enhanced CT with hemoperi-
cardium without segmentation masks and (ii) with reference (yellow) and predicted (pink) masks.
(iii) shows a non-contrast CT with PEF without masks and (iv) with reference (yellow) and predicted
(pink) masks. (b) Non-contrast CT study with PEF and adjacent pleural effusion (*) (i) without masks
and (ii) with reference (yellow) and predicted (pink) masks.

3.4. Detection of Pericardial Effusion

A reference segmentation volume >50 mL was used as the true positive. True negative
cases were manually identified, and additionally, included reference volumes <50 mL.
The sensitivity and specificity were 97.00% (95% CI 91.48–99.38%) and 100.00% (95% CI
96.38–100.00%).
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3.5. Hemopericardium Classification

The median HU was extracted from each CT study using the predicted segmenta-
tion mask in the positive test cohort (n = 100), of which 39 had hemopericardium. The
results are presented in Table 5. A threshold HU value of 24.5 was identified to diag-
nose hemopericardium with an AUC of 0.944 (95% CI 0.904–0.984) and is demonstrated
in Figure 5 alongside two further ROC curves consisting only of cases with or without
contrast. Both Youden’s formula and “closest top left” formula yielded the same threshold
result with a sensitivity and specificity of 89.74% and 83.61% (circled in red).

Table 5. Using Hounsfield units for the classification of hemopericardium or simple PEF, and the
effect of contrast on the classification.

Hemopericardium Simple PEF Significance

Hounsfield unit (HU) 36.10 ± 9.72, median = 36 19.20 ± 5.52, median = 18 p < 0.001
Affect of contrast on
Hounsfield unit:
Presence of contrast 36.86 ± 9.65, median = 36 20.97 ± 6.35, median = 19 p < 0.001
No contrast 33.99 ± 10.08, median = 35 17.59 ± 4.12, median = 17 p < 0.001
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for the diagnosis of hemopericardium. The area under curve (AUC) is 0.944 (95% CI 0.904–0.984) for 
the whole positive cohort (n = 100) (red line). A threshold of 24.5 was identified, which is encircled 
in red and shows the value for the calculation of both Youden’s formula and the “closest top left” 
formula. The x and y values of this datapoint are 0.897 (specificity) and 0.836 (sensitivity), respec-
tively. Labeled in black are all positive cases with contrast (n = 58). Here, a threshold of 26.5 was 
calculated using Youden’s formula, with a sensitivity and specificity of 0.862 and 0.828 respectively. 
Labeled in gray are all positive cases without contrast (n = 42). A threshold of 21 was calculated 
using Youden’s formula, with a sensitivity and specificity of 1.00 and 0.844, respectively. The dashed 

Figure 5. Receiver operating curve showing the sensitivity and specificity of Hounsfield units (HU)
for the diagnosis of hemopericardium. The area under curve (AUC) is 0.944 (95% CI 0.904–0.984) for
the whole positive cohort (n = 100) (red line). A threshold of 24.5 was identified, which is encircled
in red and shows the value for the calculation of both Youden’s formula and the “closest top left”
formula. The x and y values of this datapoint are 0.897 (specificity) and 0.836 (sensitivity), respectively.
Labeled in black are all positive cases with contrast (n = 58). Here, a threshold of 26.5 was calculated
using Youden’s formula, with a sensitivity and specificity of 0.862 and 0.828 respectively. Labeled
in gray are all positive cases without contrast (n = 42). A threshold of 21 was calculated using
Youden’s formula, with a sensitivity and specificity of 1.00 and 0.844, respectively. The dashed red
line demonstrates the location of an AUC of 0.5, which is a random classifier and would, therefore, be
of no diagnostic use.

3.6. External Validation

PMCTs of deceased patients suffering from hemopericardium were used for external
validation. The calculated volumes using autopsy, reference and model are shown in
Table 6. The Dice coefficient comparing reference and model segmentations was 0.66 ± 0.14
(median = 0.67). A violin plot of all segmented volumes and example segmentations is
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shown in Figure 6. The mean HU extracted from these PMCTs with hemopericardium
was 37.36 ± 5.01, which is similar to hemopericardium cases in our test cohort (p = 0.387)
and significantly larger compared to non-hemopericardium PEF cases in our test cohort
(p < 0.001). Using 24.5 HU as a cut-off value, all external cases were diagnosed with
hemopericardium with a corresponding sensitivity of 100.00% (95% CI 84.56–100.00%).

Table 6. Volume of pericardial effusion identified on CT using autopsy, reference, and model.

Autopsy-Reference Reference-Prediction Autopsy-Prediction

PEF volume Autopsy: 488.33 ± 232.41 mL Reference: 515.26 ± 216.67 mL Autopsy: 488.33 ± 232.41 mL
Reference: 515.26 ± 216.67 mL Prediction: 301.69 ± 118.92 mL Prediction: 301.69 ± 118.92 mL
(p = 0.283) (p < 0.001) (p = 0.019)
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= Reference. (b) PMCT in soft tissue windowing of a hemopericardium with aortic dissection. The 

Figure 6. Segmentation volumes and a corresponding example CT with segmentation masks.
(a) Violin plots of the volumes of the 22 cases in the external dataset. Each violin plot is color
coded to match the corresponding volume calculation in (b). Pink = Model, gray/no mask = Autopsy,
yellow = Reference. (b) PMCT in soft tissue windowing of a hemopericardium with aortic dissection.
The model segmented 257 mL, the volume extracted at autopsy was 350 mL and the Reference
segmented 290 mL.

4. Discussion

We developed and comprehensively tested a tool for the automatic detection, vol-
umetry and classification of PEFs using a complex set of clinical cases, containing cases
of simple PEF, hemopericardium and a negative control without PEF. A highly accurate
detection (97% sensitivity and 100% specificity) and good segmentation accuracy (Dice 0.75)
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were achieved. Of note, the volume difference and Dice coefficient between the reference
and model were better than those of the inter-reader. The model’s performance was not
significantly affected by acquisition parameters, such as contrast administration nor by
clinical pathologies, such as PEF volume, hemopericardium, pleural effusions, and other
radiologically identified pathology. A robust method using HUs for the classification of
hemopericardium was developed, which had a sensitivity and specificity of 89.7% and
83.6%, which was unaffected by contrast administration. HUs are highly effective for the
classification of PEFs [29]. Using the median HU of an entire PEF segmentation is a simple
and reproducible method, superior to the current approach of viewing HU values in ran-
domly selected areas of the PEF (with corresponding inter and intra observer variability).
To our knowledge, this is the only study to date where this methodology is carried out.
However, a few false positive cases were found, in particular, two CTs with a contrast of
patients with pericarditis, resulting in pericardial enhancement affecting the HU values.
We encourage that HU should not be used in isolation, but in addition to radiological and
clinical findings.

Similar to other recent state-of-the-art Convoluted Neural Network (CNN) models,
we show great utility and performance despite a highly complex dataset [30–32]. In fact,
the high diagnostic accuracy in this study is comparable to Ay and Kahraman’s study
comparing the manual diagnostic accuracy of CT and echocardiography in PEF detection
after open heart surgery [33]. CT had a much lower false negative risk compared to
echocardiography (8% vs. 61%) in a complex patient database that may be comparable
to ours. Liu et al. [16] and Ebert et al. [15] investigated the feasibility of CT-based PEF
segmentation on limited case numbers (n = 25 and n = 28, respectively). They both used
two-step approaches and did not publish their model publicly. Both studies trained their
models slice by slice, in comparison to more appropriate three-dimensional training in our
study. Additionally, neither of the studies offers a PEF classification tool. Liu et al. analyzed
the segmentation performance of two different neural network architectures. The best
performing model was U-Net, which forms the basis of the nnU-Net architecture utilized
in our study. Their model’s performance was similar to ours (Dice 0.77) but may not be
comparable as no negative control cohort was included in the training or testing cohort.
Ebert et al. studied whether automatic segmentation of hemopericardium on PMCTs was
feasible and had 25 negative control cases. Direct analysis of their model is not possible
because a commercial software was used. Ebert et al.’s dataset was used to perform an
external validation. Here, we found a good segmentation quality (Dice 0.65) but a large
difference in volume segmentation. This is explained by the difference between PMCTs
and CTs of living patients. First, the images are higher resolution and without contrast.
Second, radiological findings are starkly different, for example, the heart chambers collapse,
occasionally contain air and hematomas, and therefore, the hemopericardium is denser and
more inhomogeneous. This and the fact that PMCTs were not part of the training dataset
might explain the lower quality of the segmentation.

Clinical Implications

This automatic identification, volumetry and classification tool can facilitate and
improve radiology triage and workflows as well as report quality. A well embedded tool
could directly alert emergency physicians to the presence of hemopericardium and/or
large PEF, with its association with cardiac tamponade [4]. Early CT has previously been
shown to facilitate rapid patient management in the emergency department [34], and
our tool may further enhance it. Additionally, this tool can make PEF volume and HU
measurements objective, replacing current semi-quantitative classifications plagued by
variable cut-off thresholds and inter and intra-reader variability [10,35]. As long as input
parameters are standardized, this automatic tool can standardize these measurements,
and therefore, be used to identify a less arbitrary cutoff for distinguishing between PEF
and physiological pericardial fluid, taking into account age, sex, height, and concomitant
disease. This will allow more accurate detection of PEF and hemopericardium which
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may reduce unnecessary echocardiograms or identify patients where an echocardiogram
is urgent. It may also allow better prognostication. The incorporation of this tool into
clinical practice requires seamless communication between the Radiology Information
System/Picture Archiving and Communication System and the model. In addition to
this infrastructure, a simple output is required which should be easy and intuitive for the
radiologist or clinician to access.

There are several limitations to our study. First, the model was trained on the latest
generation CTs from a single scanner manufacturer at a single institution. While the
use of older CT scanners could theoretically reduce the diagnostic accuracy, we at least
showed a good performance on CTs from a different institution on a completely different
patient group: post-mortem hemopericardium cases. This suggests that the model’s
performance is highly robust in different protocols, institutions and patient groups. Second,
the ground truth was identified using the radiology report, which was mitigated by the
use of structured reports in our institution. The two-dimensional CT diagnosis of PEF was
used in our inclusion criteria, which resulted in a total of 29/258 (11.24%) PEF cases >4 mm
which turned out to be physiological pericardial fluid volumes (<50 mL). No alternative
mechanism exists to circumvent this drawback whilst maintaining a large case number.
Third, inter-reader variability was worse compared to reference-prediction variability.
This may be because segmentation style and errors have a proportionately large effect on
outcome in complex, narrow and often small structures, such as PEFs.

5. Conclusions

This study trained and tested an automated tool using nnU-Net for the detection and
segmentation of PEFs and additionally used HUs to classify PEF as hemopericardium
or simple PEF. This tool is highly accurate for the automatic detection, volumetry, and
classification of PEFs, even surpassing human inter-reader variability. Since this tool was
trained using a complex dataset, it can be easily incorporated into clinical practice.
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Appendix A

Table A1. The effects of confounding factors on model performance.

Variable
Statistical Analysis of Volume
Difference (Reference Minus

Model)

Statistical Analysis of Detection
Rate Comparison

Statistical Analysis of Dice
Coefficient Comparison

Contrast administration (n = 57/60) compared
to non-contrast (n = 43) p = 0.109 p = 0.506 p = 0.908

Reference volume of <50mL (n = 11) compared
to >50mL (n = 89) p = 0.474 p = 0.140 p = 0.086

Presence of hemopericardium (n = 39)
compared to PEF (n = 61) p = 0.032 p = 0.015 p = 0.097

Presence of pleural effusion (n = 62) compared
to no pleural effusion (n = 37) p = 0.123 p = 0.218 p = 0.116

Disease (combined post op, visible tumor,
trauma, visible infection) (n = 62) compared to

no visible disease (n = 38)
p = 0.445 p = 0.297 p = 0.061

Post operative (n = 26) versus non post
operative images (n = 74) p = 0.618 p = 0.460 p = 0.115

Visible tumor (n = 12) compared to no tumor in
image (n = 88) p = 0.291 p = 0.361 p = 0.979

Visible tumor located in mediastinum (n = 7)
compared to no tumor (n = 88) p = 0.116 p = 0.646 p = 0.706

Visible tumor located in chest (n = 5) compared
to no tumor (n = 88) p = 0.858 p = 0.364 p = 0.615

Trauma (n = 6) compared to no trauma (n = 94) p = 0.313 p = 0.530 p = 0.971

Visible presence of infection (n = 27) compared
to no visible infection (n = 73) p = 0.727 p = 0.399 p = 0.951

The effects of confounding factors on model performance, analyzed using volume difference (reference minus
model), detection and Dice coefficient. Only hemopericardium was shown to affect the volume difference and
detection, but not the Dice coefficient. The volume difference of hemopericardium cases was larger (mean
6.61 ± 9.06 mL) than simple PEF cases (mean −9.64 ± 3.93 mL). This is likely due to the fact that fewer hemoperi-
cardium cases were present in the model training compared to the test, especially since there was a larger mean
reference volume of hemopericardium (mean 250.62 ± 26.56 mL) compared to simple PEF (mean 164.68 ± 18.90)
(p = 0.002).
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