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Classification and characterization of
nonequilibrium Higgs modes in unconventional
superconductors
L. Schwarz1,8, B. Fauseweh1,8, N. Tsuji2, N. Cheng3, N. Bittner1,4, H. Krull5, M. Berciu3,6, G.S. Uhrig 5,

A.P. Schnyder1, S. Kaiser 1,7 & D. Manske1*

Recent findings of new Higgs modes in unconventional superconductors require a classifi-

cation and characterization of the modes allowed by nontrivial gap symmetry. Here we

develop a theory for a tailored nonequilibrium quantum quench to excite all possible oscil-

lation symmetries of a superconducting condensate. We show that both a finite momentum

transfer and quench symmetry allow for an identification of the resulting Higgs oscillations.

These serve as a fingerprint for the ground state gap symmetry. We provide a classification

scheme of these oscillations and the quench symmetry based on group theory for the

underlying lattice point group. For characterization, analytic calculations as well as full scale

numeric simulations of the transient optical response resulting from an excitation by a rea-

listic laser pulse are performed. Our classification of Higgs oscillations allows us to distin-

guish between different symmetries of the superconducting condensate.
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The Higgs mode in superconductors is a collective oscilla-
tion of the order parameter Δ with the characteristic fre-
quency of 2Δ. It can be understood as a massive excitation

along the radial direction in the Mexican hat potential of the free
energy (see Fig. 1a)1–5. The charge neutral Higgs mode does not
couple to linear optical probes and therefore was expected to be
observable only in materials with competing orders6,7, for which
it was measured in Raman experiments8–10. However, an
impulsive excitation of Higgs oscillations in nonequilibrium is
possible via a nonlinear process by quenching the Mexican hat
potential with an ultrafast THz light pulse. Such a quantum
quench was demonstrated for the first time in the s-wave
superconductor Nb1�xTixN11–14.

There are several works indicating that the spectrum of Higgs
modes can be more complex if nontrivial gap symmetries are
involved. Studies on multiband superconductors like MgB2 show
that the Higgs oscillation spectrum contains Higgs modes for
both gaps as well as the Leggett mode, the relative phase
mode15,16. Additional Higgs modes with lower energies, repre-
senting oscillations of the gap in different symmetry channels,
were proposed for d-wave superconductors under the assumption
of a composite pairing interaction17. Besides first quench-probe
experiments on cuprates18–20, a recent experiment on several
types of cuprates shows clear fingerprints of a 2Δ Higgs mode and
a so far unknown additional mode below 2Δ21. These findings
require both a deeper understanding and a classification and
characterization of Higgs modes in nonequilibrium.

So far all descriptions on how to excite Higgs oscillations with a
quench pulse are working within the dipole approximation, i.e.
neglecting the small wave momentum q of the external field.
There are other studies which show that a linear coupling of the
vector potential to the condensate is possible if momentum
transfer is involved, either by impurity scattering in dirty super-
conductors22–26 or in current-carrying states27,28.

Independent of the actual coupling to the external field, the
following instructive picture can be drawn to understand the
excitation process by an ultrashort THz pulse, where Higgs
oscillations are excited by taking the superconductor out of
equilibrium15,29–39. Hereby, Cooper pairs are partially broken
and the landscape of the free energy changes suddenly, i.e. the
Mexican hat shrinks. Thus the THz laser pulse acts like a quan-
tum quench40–45, reflecting the impulsive character of the light

pulse. As long as this process is faster than the time scale of the
condensate, given by τΔ ¼ h=ð2ΔÞ, where 2Δ is the energy gap of
the superconductor, the condensate is unable to follow the
minimum of free energy adiabatically15,36. Consequently, collec-
tive Higgs oscillations of the gap are excited, as sketched
in Fig. 1a.

In order to excite Higgs oscillations, the laser pulse must fulfill
two conditions. On the one hand, the pulse should only excite a
small fraction of the Cooper pairs, enough to generate a sig-
nificant quench of the Mexican hat, but not too many that the
superconducting signatures would be screened by hot electrons.
More specifically, a short optical pulse far above gap frequencies
induces a strong Drude-peak in the optical conductivity, which
would overlap with the weak signal of the Higgs oscillations.
Instead a suitable pulse corresponds to a peak located in or close
to the gap, which only slightly overlaps with the continuum of
quasi-particles, as depicted in Fig. 1c. On the other hand, the
pulse must fulfill the nonadiabaticity condition, which implies a
short laser pulse (Fig. 1d) and hence requires the broad spectrum
in energy domain (rather than a narrow band multicycle pulse
tuned close to the gap). For typical gaps in the meV regime, a
single cycle THz laser pulse is exactly on the brink of these two
regimes46, allowing for an excitation of the Higgs oscillations
without heating or photo-doping the system too much.

In this article, we show how in a nonequilibrium setup
for superconductors with pairing interaction in a single channel,
e.g. pure d-wave, oscillations of the condensate in other symmetry
channels can lead to additional Higgs modes as well. We classify
these oscillations of the condensate based on the irreducible
representations of the point group of the underlying lattice.
The resulting Higgs modes depend on the excitation symmetry
and the ground-state symmetry. Our detailed analysis shows
that a full description of the excitation process requires to go
beyond the dipole approximation in a Raman-like process and to
retain the wave momentum q (see Fig. 1b), which plays a crucial
role in breaking the symmetry of the condensate and exciting
non-A1g oscillations of the superconducting condensate. We
show that nonequilibrium Higgs oscillations offer a unique way to
investigate the symmetry and collective excitation spectrum of
superconductors, which allows to completely characterize the
nature of a superconducting condensate with a single class of
experiments.
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Fig. 1 Illustration of Higgs oscillations in a superconductor. a Free energy landscape F of a superconductor as a function of the real and imaginary part of
the superconducting gap Δ. After a quench at t1>t0, the free energy is suddenly changed, exciting the superconducting condensate and leading to collective
Higgs oscillations, indicated by a black arrow. The red arrow indicates a quench by a THz light pulse. b Feynman diagram describing the excitation of a
Higgs mode H by a light field A using the Raman vertex. An infrared excitation of the Higgs mode (not considered here) is only possible if an external
current is present. c Higgs excitation mechanism using a THz quench pulse. The quench pulse only slightly overlaps with the quasi-particle continuum
indicated in blue. The Mexican hat shrinks due to the breaking of Cooper pairs. d To excite the Higgs oscillation, the pulse must fulfill the nonadiabaticity
condition in time domain.
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Results
Quantum quenches. While the nonequilibrium probe of collec-
tive excitations in conventional s-wave superconductors has been
studied intensively29–31,33,34,47–50, the response for unconven-
tional superconductors is still in its infancy. These systems often
exhibit very complicated correlations51,52 and a variety of dif-
ferent mechanisms which can lead to superconductivity. If we
want to examine the nonequilibrium response of the coherent
condensate of such superconductors in general, we have to go
back to the fundamental properties of these systems: the sym-
metry of the lattice.

According to group theory, every configuration of the
condensate at a given time can always be decomposed with
respect to the different irreducible representations of the point
group symmetry of the lattice. As an example, we take a
superconductor on a lattice with D4h space group symmetry,
which is the lattice symmetry of cuprate high-Tc superconduc-
tors. Based on this argument, there are four different irreducible
representations: A1g, A2g, B1g and B2g. The condensate oscillations
can always be decomposed into the contributions from these
sectors.

We start our theoretical description by considering a quench of
the initial state. Every quantum quench deforms the condensate
from its equilibrium value, which then can be decomposed into
contributions from different irreducible representations. Taking a
momentum-independent quench, for example, would only probe
the A1g channel of the condensate

45, but does not couple to other
allowed symmetries. The solution to address also the other
possible symmetries is to modify the quench and make it
momentum dependent, so that we can probe other symmetry
sectors as well. For example, in case of dx2�y2 -wave super-
conductivity, the possible oscillations of the condensate are
shown in Fig. 2.

In order to illustrate this concept, we perform numerical
simulations for s- and d-wave BCS superconductors to study the
nonequilibrium response to momentum-dependent quantum
quenches. The Hamiltonian we are investigating is given by

HBCS ¼ H0 � V
X
k;k0

f kf k0c
y
k"c

y
�k#c�k0#ck0"; ð1Þ

with f k describing the symmetry of the interaction, V the
interaction strength, and the normal state Hamiltonian
H0 ¼

P
kσϵkc

y
kσckσ , where cykσ creates electrons with momentum

k and spin σ. Within the BCS solution, the gap is determined by

Δk ¼ Δf k ; Δ ¼ V
X
k

f khc�k#ck"i: ð2Þ

Now we perform a quantum quench by changing the symmetry of
the condensate hc�k#ck"i slightly away from its equilibrium value

hc�k#ck"i ¼
Δf k
2Ek

! hc�k#ck"i0 ¼
Δf 0k
2E0

k

ð3Þ

with f 0k ¼ f k þ δf qk , where f qk is the quench symmetry and δ the
quench strength. The equilibrium value of the condensate has the
symmetry of the gap f k which is not changed and always remains
in a single symmetry sector. After the quench, we calculate the
Higgs oscillation of the order parameter as a function of time by
evaluating the time-dependent gap Eq. (2), which sums the
oscillations of the condensate in momentum space. For the
temporal evolution, we use Anderson pseudospin formalism53,
where the time-evolution is governed by Bloch equations. More
details are given in the Methods.

For a given gap symmetry, there are different oscillations
possible for the condensate, which can be excited depending on
the symmetry of the quench. We use a new notation to describe
this oscillation symmetry, which takes the gap symmetry into
account. We add as an additional information the gap symmetry
as subscript to the group theoretic notation of the irreducible
representation name. We observe that depending on gap and
quench symmetries not only the well-known 2Δ Higgs mode
occurs in the spectrum of the Higgs oscillation, which appears
independent on the quench due to coupling between the modes,
but also a second mode at lower energy.

Two examples for this observation are shown in Fig. 3. In
Fig. 3a, we see the Higgs oscillations of the dx2�y2 gap after a

f qk � x2 � y2 and f qk � 1 quench, which excites A1g
x2�y2 or B1g

x2�y2

oscillations of the condensate. The f qk � 1 quench for a s-wave
superconductor is shown in red for comparison. We highlight
that the d-wave oscillations decay much faster than the s-wave
oscillations. This can be traced back to the stronger dephasing of
the mode due to coupling to the gapless quasi-particles in the
d-wave case. The final value of the gap, i.e. Δ1, depends on the
strength of the quench, i.e. how strongly the initial states deviate
from the equilibrium state42,43. Figure 3b shows the Fourier
transform of the Higgs oscillations. The large peak at 2Δ1
corresponds to the symmetric A1g

x2�y2 oscillation of the
condensate.

Most importantly, a second low-energy mode is visible for the
d-wave superconductor after the f qk � 1 quench. This mode does
not exist for pure s-wave superconductors and it is also not
excitable by the f qk � x2 � y2 quench in the d-wave case, as the
quench has the same symmetry as the ground-state gap. Similarly
for other combinations of gap and quench symmetries, additional
modes can be identified. Thus there exists a direct connection
between the symmetry of the gap and the existence of low-energy
Higgs modes.

To understand the nature of the second mode in more detail,
we perform a linear analysis of the gap dynamics after a quantum
quench. Specifically, we analytically compute the dynamics of the
gap according to the expansion

ΔðtÞ ¼ Δð0Þ þ δΔðtÞ; ð4Þ
in the first order of δΔðtÞ for different initial states. Here Δð0Þ is
the gap at time t ¼ 0 directly after the quantum quench.
Transforming into Laplace space with complex frequency s
allows us to identify the leading contributions to the gap

A1g
x2-y2 A2g

x2-y2

B1g
x2-y2 B2g

x2-y2

Fig. 2 Illustration of d-wave condensate oscillation symmetries. Possible
condensate oscillation symmetries for a dx2�y2 -wave superconductor with
point group symmetry D4h of the underlying lattice. The arrows indicate the
motion of the lobes as a function of time. The notation of the gap symmetry
in the subscript stresses the initial state, from which the oscillations of the
condensate are excited.
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dynamics and leads to the expression

δΔðsÞ ¼ F2ðsÞ
1� F1ðsÞ

ð5Þ

with

F2ðsÞ /
Z 2π

0
dφ

f ðφÞðΔf 0ðφÞ � Δð0Þf ðφÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 4ðΔ2f 0ðφÞ2 � Δð0Þ2f ðφÞ2Þ

q ¼ ð6Þ

where the dots imply additional weighting factors. For F1ðsÞ, we
find the same denominator in the integrand. In these expressions,
we assume that the symmetry functions primarily depend on the
angle φ between k and the kx-axis. For further details on the
calculation, please see Supplementary Note 1. We can see that the
spectrum of Higgs oscillations is controlled in a nontrivial way by
f ðφÞ2 � f 0ðφÞ2 integrated over φ weighted by additional factors.
Thus, we can trace back the second mode to the difference in the
symmetry between the quench and the condensate. A second
mode in the Higgs oscillation spectrum is only visible if this
difference leads to a second minimum in the denominator.
Particularly, this happens if there are changes of the nodal
directions in the condensate symmetry compared to the
equilibrium value. Due to the nonexistence of nodes in the
s-wave case, there will be no second mode visible in the Higgs
oscillations for all possible condensate oscillations.

Realistic pulse. So far we concentrated our analysis on quantum
quenches, which we classified according to the deformation
symmetry from the equilibrium value. To show that these results
also carry over to more realistic scenarios, we calculate the
response of a dx2�y2 -wave BCS superconductor coupled to a laser
field. So called pump-probe experiments have been used to study
the excitation and relaxation processes of superconductors51,54.
In a pump-probe experiment, the pump pulse excites the system,
and after a delay time, the probe pulse measures various prop-
erties of the transient dynamics of the system. Varying the delay
time, the temporal evolution of the system after a perturbation
can be studied. As the purpose of the pump pulse in our setup is
to quench the system suddenly, we call this pulse a quench pulse.

The Hamiltonian describing the quench and probe pulses is
given in the methods. We use the density matrix formalism29 to
calculate the dynamics, which is exact for the Hamiltonian in Eq.
(1). We assume a short and intense THz laser pulse, which excites
the condensate in an anisotropic fashion and the superconducting

gap starts to oscillate. For all pulses, we fixed the pulse duration to
τp ¼ 0:4 ps. With this choice, we are in the nonadiabatic regime,
where a generation of collective modes is possible.

Further, we varied the direction of the light wave vector q to
study the dependence of the optical conductivity on the quench
pulse. Thus, we define the angle ϕ between q and the kx-axis of
the superconductor. The light wave vector is small compared to
the Fermi wave vector jqj � jkFj such that there is no excitation
of Fulde–Ferrel–Larkin–Ovchinnikov (FFLO) oscillations. How-
ever, it is large enough to break the condensate symmetry as it
couples offdiagonal elements in the quasi-particle distribution
(see Eq. (19)). This is possible due to the Raman-like excitation,
where the photon momentum can be transferred to the
condensate. By choosing the angle of the quench pulse, different
oscillation symmetries can be addressed selectively (see Table 1).

We compare both methods, quantum quench and quench
pulse, in the Supplementary Fig. 1. Besides the time evolution of
the gap, the quench-probe optical conductivity provides an
experimental fingerprint to observe Higgs oscillations as well.
This was explicitly shown in case of s-wave symmetry, i.e. as the
oscillation of the conductivity depending on the delay time33.
Thus, we use a quench pulse to induce the Higgs oscillations and
a much weaker probe pulse in the same direction to measure the
optical conductivity.

In Fig. 4, the real part of the optical conductivity Re σðΔt;ωÞ is
shown for the angles ϕ ¼ 0, along the anti-nodal direction, and
ϕ ¼ π=4, along the nodal direction, as a function of frequency ω
and time delay Δt. These angles correspond to the pulse direction
with maximum response in Table 1.

For ϕ ¼ π=4, the symmetry breaking happens along the
diagonal axis which excites in addition to the symmetric A1g

x2�y2

also the B2g
x2�y2 oscillation of the condensate and most of the

weight is located at the energy of the 2Δ Higgs mode. There is no
low-lying peak visible in the spectrum as the B2g

x2�y2 oscillation

does not lead to a second mode. For ϕ ¼ 0, the A1g
x2�y2 and B1g

x2�y2

oscillations are excited, resulting in the low-energy Higgs mode
and the 2Δ Higgs mode and the spectrum is dominated by an in-
gap response. Most importantly, the signal oscillates with respect
to the time delay between quench and probe pulse, reflecting the
excitation of Higgs oscillations. This is demonstrated in
Supplementary Fig. 3 in more detail. Thus, the angle-resolved
quench-probe experiments should be able to see Higgs oscilla-
tions in the optical conductivity, which can address different
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Fig. 3 Higgs oscillations of a d-wave superconductor. a Numerical simulation of the Higgs oscillations induced by various quench symmetries for a
dx2�y2 -wave superconductor. The solid (dotted) blue line shows the gap oscillations after a fqk � 1 (fqk � x2 � y2) quench as a function of time. The red solid
line shows an fqk � 1 quench for an s-wave superconductor for comparison. b Fourier spectrum jΔðωÞj ¼ jFTjΔðtÞjj of the Higgs oscillations. The oscillation
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times the maximum of the gap for t ! 1 after the quench. For the fqk � 1 quench, a second peak at low energy appears resulting from B1gx2�y2 oscillations of
the condensate.
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oscillation symmetries of the condensate depending on the
incident angle.

Classification of Higgs oscillations. Using the results from the
quench and quench-probe calculations, an extension to other
symmetries and evaluation of the Higgs oscillations enables us to
write down a classification scheme for nonequilibrium Higgs

modes. As an example, for the D4h lattice point group, the con-
densate oscillations and resulting Higgs modes as well as their
excitation symmetries are shown in Table 1 for all fundamental
gap symmetries allowed by the point group.

For each gap symmetry f k in column one, quench symmetries
f qk in all irreducible representations of the point group are listed in
column two. Quenching via pump pulses at an arbitrary incident
angle ϕ results in an excitation of all modes. Choosing a direction

Table 1 Classification of Higgs oscillations Possible Higgs oscillations for a lattice with D4h point group symmetry shown for s,
dx2�y2 , dxy and gxyðx2�y2Þ gap functions (column one).

Gap symmetry fk Quench symmetry fqk Pulse direction ϕ Condensate oscillation ⟨c−k↓ck↑⟩(t) Higgs modes

s 1 – A1g
s

xyx2 − y2 – A2g
s þ A1g

s

x2 − y2 0 B1gs þ A1g
s

xy π∕4 B2gs þ A1g
s

dx2�y2 x2 − y2 – A1g
x2�y2

xy – A2g
x2�y2 þ A1g

x2�y2

1 0 B1gx2�y2 þ A1g
x2�y2

xyx2 − y2 π∕4 B2gx2�y2 þ A1g
x2�y2

dxy xy – A1g
xy

x2 − y2 – A2g
xy þ A1g

xy

xyx2 − y2 0 B1gxy þ A1g
xy

1 π∕4 B2gxy þ A1g
xy

gxyðx2�y2Þ xyx2 − y2 – A1g
xyðx2�y2Þ

1 – A2g
xyðx2�y2Þ þ A1g

xyðx2�y2Þ
xy 0 B1gxyðx2�y2Þ þ A1g

xyðx2�y2Þ
x2 − y2 π∕4 B2gxyðx2�y2Þ þ A1g

xyðx2�y2Þ

A quench can be applied to the condensate with a certain symmetry fqk (column two), which disturbs the ground state condensate symmetry. These quenches can be controlled by an incident THz pulse
with angle ϕ. Pumping at an arbitrary angle corresponds to a quench in all symmetry channels. Choosing high symmetry direction (column three) allows for a selective excitation. Such a quench excites
oscillations of the condensate (column four), classified by the notation of the irreducible representations of the lattice symmetry. Oscillations of the condensate lead to amplitude oscillations of the gap
and the qualitative Fourier spectrum of these Higgs oscillations is illustrated in the last column, showing the possible Higgs modes. An animation on how each quench deforms a given symmetry can be
found in the Supplementary Movie 1.
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simulation is 2Δ ¼ 2:7 meV. The vertical axis denotes the time delay between the excitation of the system with the quench pulse and the probe pulse. The
horizontal axis denotes frequency ω. The oscillation frequencies in Δt correspond to the frequencies of the Higgs modes as shown in Supplementary Fig. 3.
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along the high-symmetry directions ϕ ¼ 0 or ϕ ¼ π=4, a selective
excitation of B1g or B2g oscillations is possible. These directions,
which correspond to the respective quench symmetry with
maximum intensity, are listed in the third column. As the light
pulse always breaks the symmetry, it is in principle not possible to
excite the symmetric A1g mode alone, even in the s-wave case.
Induced by the quench, the resulting oscillations of the condensate
hc�k#ck"i are shown in column four. Independent of the quench
symmetry, the symmetric A1g oscillation is always excited as any
disturbance leads to a global change in the quasi-particle
distribution. The time-dependent amplitude of the energy gap is
calculated from the gap Eq. (2), where the condensate for each
momentum point is summed. This results in Higgs oscillations of
the gap and a schematic picture of the spectrum is shown in the
last column. For all gap symmetries, the 2Δ Higgs mode is visible,
which corresponds to the symmetric A1g oscillation of the
condensate. Depending on how the non-A1g oscillations change
the condensate symmetry from its equilibrium symmetry, i.e. the
gap symmetry, a second Higgs mode is visible in the spectrum.
This is not always the case, e.g. the B2g

x2�y2 oscillation is not visible
in the spectrum as a second Higgs mode despite its asymmetric
deviation from the ground-state symmetry. As this oscillation only
shifts weight inside the positive and negative lobes of the dx2�y2

symmetry but does not move the nodal directions, it will not lead
to a second mode in the summation process for the calculation of
the gap oscillations. Hence, for a full analysis of the gap symmetry,
information from multiple quench symmetries is required. Yet, if
we can obtain this information, nonequilibrium Higgs oscillations
can be used as an efficient tool to completely classify the ground-
state symmetry of a superconductor.

Discussion
To summarize, we introduce a classification scheme for none-
quilibrium Higgs oscillations, which allows to characterize the
ground state of superconducting condensates. Our analytical
calculations show that depending on the symmetry of the quench
and of the gap function, low-lying modes exist, which can be
directly identified with the different oscillations of the condensate.
We introduce a new notation to combine the information of the
ground state with the quench symmetry in order to distinguish
the different Higgs oscillations. Simulations of quench-probe
experiments using realistic pulses in a microscopic model show
that the usually ignored wave momentum in the dipole approx-
imation plays an important role in the excitation of non-A1g
oscillations of the condensate. Despite its small value compared to
the Fermi wave vector, it is large enough to break the ground-
state symmetry and can lead to additional Higgs modes imple-
menting the proposed analytic quench setup.

It is important to note that the proposed experimental exci-
tation of the Higgs mode is a Raman-like excitation and should
not be confused with an infrared-active excitation28. In the latter
case, a driven ac current would occur and thus the strength and
polarization of the electric field is more important than the small
momentum of the photon. In the former case, the polarization of
the electric field plays a minor role and the photon momentum
becomes much more important.

We find that the Higgs modes are visible in the optical con-
ductivity of the proposed quench-probe experiment, paving the way
for investigations and classifications of the dynamics of known and
unknown superconductors directly within this framework. This
analysis is applicable for all superconductors and requires only the
knowledge of the symmetry of the crystal. It is a natural extension
of the group theoretical notation to the case of nonequilibrium
excitation of the system. To demonstrate the approach, we fully

characterize all possible Higgs oscillations for the important D4h
point group, relevant, for example, for high-temperature cuprate
superconductors. This main result is summarized in Table 1, which
goes beyond a simple product table of gap symmetry and light
pulse direction. The number of excited fundamental condensate
oscillations does not directly correlate with the number of observed
Higgs modes, which depend in a nontrivial way on the phase and
nodal structure of the order parameter.

The experimental realization of the proposed momentum
transfer to break the condensate symmetry will be challenging. If
light couples to the Higgs mode only indirectly via electrons,
momentum scattering on timescales faster than the oscillation
period might wash out or destroy the preferred direction of the
pulse. Depending on the strength of this momentum distribution
effect, the second Higgs mode could be damped, might no longer
follow its predicted angular dependency or may be even com-
pletely suppressed. On the other hand, recent studies have shown
that impurity scattering in dirty superconductors even enhances
the coupling of light to the condensate and the excitation of the
Higgs mode22–26. As no experiments exist so far which allow to
measure the transferred photon momentum in detail, the field is
open for further experimental and theoretical investigations.
However, the current efforts to measure Higgs oscillations on
different cuprates18–21 show already fingerprints of collective
oscillations.

It is important to note that we do not introduce additional
energy scales nor other degrees of freedom, such as subdominant
channels: the observed oscillations and the corresponding fre-
quencies are intrinsic to the pure d-wave superconductor and do
not require composite pairing symmetries. Note that we assume
that no competing order, such as a charge density wave, exists.
Otherwise, the spectroscopic signatures of the Higgs oscillations
could be modified due to the interplay between the two phases55.
Furthermore, effects which can modify the Higgs spectrum as
well are superconductors in the strongly coupled regime37, cou-
pling to Leggett modes in multiband systems15 or collective
excitations of pair states in subleading channels, i.e. an excitation
of the Bardasis–Schrieffer mode56–59. Other details of the normal
state, such as Fermi arcs, play an unimportant role after a
quantum quench of the superconducting condensate, as they only
modify the scattering processes of the broken Cooper pairs. This
could potentially change the damping of the Higgs oscillations,
but has no effect on our proposed classification scheme.

There are different possibilities how a symmetry breaking
momentum transfer to the condensate is realized in an experiment.
Tilting the quench pulse direction toward the superconducting
plane induces a finite in-plane momentum of the photons. More
controlled momentum-dependent excitations and probes are
possible in a THz-four-wave mixing60 or transient grating61,62

setup. Other possibilities include momentum-dependent scattering
processes as well as coupling to other finite-momentum modes.
This is discussed for example for superconductors under external
current27,28 or as a possibility for phonon-coupled amplitudon
dynamics in excitonic insulators63,64.

The classification and characterization of Higgs oscillations
open the possibility to perform spectroscopic studies on super-
conductors to determine the symmetry of the order parameter.
Compared to other types of measurements like ARPES or inter-
ferometry experiments using Josephson junctions, which can
retrieve either amplitude or phase information, spectroscopy of
Higgs oscillations with phase-stable THz lasers allows to deter-
mine amplitude and phase within a single type of quench-probe
experiment. In principle, our theory for Higgs spectroscopy is not
limited to characterizing equilibrium condensates, but may also
be used to investigate possible light-induced superconducting
states in transient states of matter65–68. Beyond that, Higgs
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spectroscopy could also be extended to investigate collective
excitations of non-superconducting, symmetry broken phases,
such as order parameter oscillations in excitonic insulators63,64 or
Higgs modes in antiferromagnets69.

Methods
Extended BCS model. The Hamiltonian we are investigating is given by

HBCS ¼ H0 �
X

k;k02W
Vkk0 c

y
k"c

y
�k#c�k0#ck0" ; ð7Þ

H0 ¼
X
k;σ

ϵkc
y
kσckσ : ð8Þ

The normal state Hamiltonian H0 is taken to be a free electron gas with an effective
mass m. The pairing interaction Vkk0 ¼ Vf k f k0 is assumed to be separable with the
interaction strength V . The energy dispersion ϵk ¼ _2k2=ð2mÞ � ϵF is measured
relative to the Fermi level ϵF. We apply the BCS solution in order to describe the
superconducting phase. The superconducting gap equation reads

Δk ¼ Δf k ; Δ ¼ V
X
k2W

f khc�k#ck"i : ð9Þ

The sums in Eqs. (7) and (9) are taken over the set W of all k vectors with
jϵk j � _ωc, ωc being the frequency cutoff. For a phononic glue, this corresponds to
the Debye frequency. The function f k is the gap symmetry function, where in the
case of an s-wave superconductor f k ¼ 1 is a constant. In general, the symmetry
function can be decomposed into the basis functions of the irreducible repre-
sentations of the point group of the underlying lattice. In case of the D4h group, the
basis functions are shown in Supplementary Table 1, where the d-wave symmetry
belongs to the B1g representation. For all of our calculations, we assume that there
is only a polar angle dependency φ on the momentum k in the vicinity of the Fermi
energy. Therefore, we use the functions shown in the third column.

In the ground state, the expectation values for the electron and quasi-particle
distribution read

cyk"ck"
D E

¼ 1
2
� ϵk
2Ek

; c�k#ck"
D E

¼ Δf k
2Ek

; ð10Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ jΔk j2

q
is the quasi-particle energy.

Anderson pseudospin description. We define the Nambu–Gorkov spinor

Ψk ¼
ck"
cy�k#

 !
ð11Þ

and Anderson pseudospin53

σk ¼ 1
2
Ψy

kτΨk ; ð12Þ

where τ are the Pauli matrices. The BCS Hamiltonian takes the form

HBCS ¼
X
k

bkσk ð13Þ

with

bk ¼ �2Δf k ; 0; 2ϵk
� �

; ð14Þ
where we assume a fixed phase of the gap such that Δ 2 R. In equilibrium, the
y-component of the pseudospin is zero hσyki ¼ 0, whereas the x- and z-component
read

hσxki ¼
Δf k
2Ek

; hσzki ¼ � ϵk
2Ek

: ð15Þ

At t ¼ 0, we apply a state quench where we change the symmetry of the condensate
by changing the pseudospin expectation values

hσxkið0Þ ¼
Δf 0k
2E0

k

; hσzkið0Þ ¼ � ϵk
2E0

k
; ð16Þ

where E0
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k þ ðΔf 0kÞ2

q
and f 0k ¼ f k þ δf qk with the quench symmetry f qk and

strength δ. This changes the initial ground-state symmetry of the condensate,
which is the same as the gap symmetry, to the quenched symmetry f 0k . Note that
the gap Δð0Þ at t ¼ 0 is different from the equilibrium gap Δ due to the sudden
change of the system state. For arbitrary times, the gap equation reads

ΔðtÞ ¼ V
X
k

f khσxkiðtÞ : ð17Þ

This renders the Hamiltonian time-dependent as the pseudomagnetic field depends
on the gap. The time-evolution of the pseudospin in the quenched system is

described by Bloch equations47

∂tσkðtÞ ¼ i HBCSðtÞ; σkðtÞ½ � ¼ bkðtÞ ´ σkðtÞ : ð18Þ
The Bloch Eqs. (18) can then be solved together with the time-dependent gap Eq.
(17) self-consistently.

Coupling to vector potential. The Hamiltonian describing the coupling between
superconductor and quench pulse, which brings the system out of equilibrium, is
modeled by

HLaser ¼
e_
2m

X
k;q;σ

ð2k þ qÞAqðtÞcykþq;σck;σ

þ e2

2m

X
k;q;σ

X
q0
Aq�q0 ðtÞAq0 ðtÞ

� �
cykþq;σck;σ ;

ð19Þ

where AqðtÞ is the transverse vector potential29,33. Working within the Coulomb
gauge, the quench pulse is expressed in terms of the transverse vector potential

AqðtÞ ¼ Ape
� 2

ffiffiffiffi
ln2

p
t

τp

� �2

δq;qp e
�iωp t þ δq;�qp

eþiωp t
� �

: ð20Þ

The quench pulse is of Gaussian shape with photon frequency ωp, photon wave
vector qp, full-width at half-maximum (FWHM) τp and amplitude Ap. For our
simulations, we consider various directions of the photon wave vector qp and with
this concomitantly various directions of the quench induced by the pulse.

Optical conductivity. To calculate the optical conductivity, we calculate the
temporal evolution of the current density as function of the time delay between the
quench and probe pulse

jqpr ðΔt; tÞ ¼
�e_
2mV

X
k;σ

2k þ qpr
� �

cyk;σckþqpr ;σ

D E
ðΔt; tÞ

� e2

mV

X
k;q;σ

Aqpr�q cyk;σckþq;σ

D E
ðΔt; tÞ;

ð21Þ

where V is the normalization volume and qpr is the wave-vector of the probe
pulse29. We neglect the second term, because it only leads to an offset of the
imaginary part of the optical conductivity. Then, the optical conductivity can be
calculated33 by computing

σðΔt;ωÞ ¼
jqpr ðΔt;ωÞ
iωAqpr

ðωÞ : ð22Þ

Density matrix formalism. In order to simulate the evolution of the system,
we use methods based on an expansion of Heisenberg’s equation of motion. For
the temporal evolution of the order parameter, we use the density matrix form-
alism70. The main task of this technique is to derive equations of motion for
quasi-particle densities. Within this formalism, it is advantageous to perform a
Bogoliubov transformation of the electron operators, which diagonalizes the
Hamiltonian HBCS in the initial state. We introduce new fermionic operators αk
and βk , with

αk ¼ ukck" � vkc
y
�k#; βyk ¼ v�kck" þ u�kc

y
�k#; ð23Þ

where uk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ ϵk=EkÞ=2
p

and vk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ϵk=EkÞ=2
p

. We emphasize that the
coefficients uk and vk do not depend explicitly on time, i.e., the temporal evolution
of the quasi-particle densities is computed with respect to a fixed time-independent
Bogoliubov-de Gennes basis in which the initial state is diagonal.

All physical observables, such as the order parameter amplitude jΔkðtÞj can now
be expressed in terms of the new Bogoliubov quasi-particle densities hαykαk0 i,
hβykβk0 i, hαykβyk0 i and hαkβk0 i. Applying the density matrix formalism for these
quasi-particle densities, we get a closed set of differential equations. The ensuing
differential equations are then solved on a finite size grid in momentum space.
More details about the implementation can be found in refs. 29,33.

The pulse solution for a pumping angle of ϕ ¼ 0 is shown in Supplementary
Fig. 1. It shows a stronger broadening than the analytical calculations, but is in
qualitative agreement. Note that we do not expect quantitative agreement, since a
quantum quench is different from a laser pulse.

Numerical implementation. In our simulations, we use the parameters
Δ ¼ 1:35 meV, EF ¼ 9470 meV and m ¼ 1:9 me, which are motivated by the
parameters for lead29. However, all our computations can be rescaled to any energy
scale for the gap. The numerical equations are computed on a finite size grid in
momentum space in two dimensions similar to refs. 29,33. To obtain the required
accuracy to resolve the small wave momentum qp, we restrict our grid in a small
region around the Fermi energy with a cutoff of Ec ¼ 8:3 meV. We have ensured
by varying the cutoff energy that our results do not depend on the discretization
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range. The x-direction is discretized with a step size of the wave momentum qp,
which results in 1000–2000 points. This is advantageous as we can resolve directly
the coupling between the offdiagonal elements like hαkβkþqi. As the coupling in
y-direction is only indirect via the energy gap and therefore much smaller, we
choose between 100 and 500 points for this direction. In total, we have of the order
of 106 grid points. To reduce computational effort, we consider offdiagonal ele-
ments like hαkβkþnqi only up to n ¼ 4 as larger offdiagonal elements only con-

tribute in order O A5
p

� �
.

Data availability
All relevant numerical data are available from the corresponding author upon reasonable
request.

Code availability
The numerical code used to calculate the results for this work is available from the
corresponding author upon reasonable request.
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