
STATISTICS IN MEDICINE
Statist. Med. 2005; 24:3431–3445
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/sim.2206

SARS incubation and quarantine times: when is an exposed
individual known to be disease free?

V. T. Farewell1;∗;†, A. M. Herzberg2, K. W. James2, L. M. Ho3 and G. M. Leung3

1MRC Biostatistics Unit; Cambridge; U.K.
2Queen’s University; Kingston; Canada

3Department of Community Medicine; University of Hong Kong; Hong Kong Special
Administrative Region; China

SUMMARY

The setting of a quarantine time for an emerging infectious disease will depend on current knowledge
concerning incubation times. Methods for the analysis of information on incubation times are investigated
with a particular focus on inference regarding a possible maximum incubation time, after which an
exposed individual would be known to be disease free. Data from the Hong Kong SARS epidemic
are used for illustration. The incorporation of interval-censored data is considered and comparison is
made with percentile estimation. Results suggest that a wide class of models for incubation times
should be considered because the apparent informativeness of a likelihood depends on the choice and
generalizability of a model. There will usually remain a probability of releasing from quarantine some
infected individuals and the impact of early release will depend on the size of the epidemic. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Control of infectious diseases is a major public health concern. After an individual’s exposure
to infection, opposing biological processes take place both in the infecting organism and in
the host and these result in either that individual’s development of clinical evidence of the
disease or in an imperceptible host-victory. During this variable period of time, the individual
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may in turn become infectious to others and thus play a part in generating or perpetuating an
epidemic. Historically, attempts have been made to prevent and control epidemics by isolating,
for an arbitrary period of time after which the biological struggle could be assumed complete,
any individuals who might be incubating the disease.
The word ‘quarantine’, derived from the Latin word quaresma, means 40 and re�ects

the origin of the practice in the 40-day period of compulsory isolation of ships arriving in
Venice in the 14th century. As more has been learned about the di�erent infections, quarantine
periods have varied, but when a hitherto unknown disease appears it is extremely di�cult
to decide what arbitrary period should be applied. And yet this is especially important if
there should be no e�ective treatment for the disease or its infectious state. Controlling or
preventing an epidemic then depends solely on releasing no infectious individuals into the
general community. But, as was noted earlier, the period of unperceived changes in the
individual is variable.
Quarantine was one of the key aspects of infection control introduced during the recent

severe acute respiratory syndrome (SARS) epidemic. Individuals who may have been exposed
to the SARS virus were quarantined for a �xed period of time, most commonly 10 days. The
premise was that those who may have been exposed, but who showed no signs of illness after
10 days, were unlikely to come down with the disease. Since SARS was previously unknown,
a quarantine policy o�ered the only control.
An important paper on epidemiological aspects of SARS was that of Donnelly et al. [1]

which made use of data from the Hong Kong experience with SARS. The estimation of the
incubation period in this paper was based on only ‘57 patients with only one exposure to
SARS over a limited time scale with recorded start and end dates’. Donnelly et al. [1] assumed
a gamma distribution for the incubation times, implicitly therefore assuming the possibility of
very long incubation periods.
The work reported here arose from a question related to the con�dence a community

should have that an individual who has passed through the SARS quarantine period is
disease-free and how long the quarantine period should be to make the probability of this
very high. The concept of a maximum incubation time could be relevant to these
considerations.
There are many issues to be considered in setting a quarantine time, for example the

extent of disruption to individuals’ lives. Also, and quite sensibly, it can be argued that
there is unlikely to be a ‘true’ maximum incubation time. However, one motivation for a
quarantine policy is the assumption that there is a reasonably well-behaved distribution of
incubation times and some maximum time beyond which it is biologically quite implausible
that symptoms may arise. This time could be the basis for setting a quarantine time.
Whether it is helpful to think about quarantine in this way is debatable. To inform this

debate, we investigated what might reasonably be inferred about such a maximum incu-
bation time based on the moderately sized samples that would typically be available in
the early course of an epidemic. For comparison, brief consideration is also given to the
estimation of tail behaviour in untruncated distributions. Our general premise is that care-
ful speci�cation of the available knowledge concerning the incubation distribution must be
central to public health decisions to control epidemics. The work reported here should be
viewed primarily as an exploration of statistical methodology that might be useful for this
purpose, not as a critique of other approaches or speci�c estimates, such as those for
SARS.
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2. STATISTICAL MODELS

2.1. Gamma model

To illustrate the general principles involved, we follow Donnelly et al. [1] and consider a
gamma distribution for incubation times. Thus if T is the random variable representing an
incubation time, with an observed value of T = t, then a gamma distribution for T is speci�ed
by the probability density function

g(t)=
1

sa�(a)
t(a−1)e−(t=s)

where t¿0; a¿0 and s¿0.
The expectation of this distribution is as and the variance is as2. However, we now introduce

the assumption that this distribution is truncated at some time M , so that 0¡T¡M , and that
the density function for T now becomes

f(t)= g(t)=G(M) where G(M)=
∫ M

0
g(t) dt

Assume that data are available on n incubation times t1; t2; : : : ; tn. Maximum likelihood
estimation of the parameters a; s and M can then be based on the likelihood function

L(a; s;M)=
1

G(M)n
n∏
1
g(ti)

The pro�le likelihood for the parameter M is de�ned by

LP(M)=L(ã(M); s̃(M); M)

where ã(M) and s̃(M) are the maximum likelihood estimates of a and s for a �xed value
of M . It is clear that, for any �xed values of a and s, the likelihood is maximized when
G(M) is minimized and that therefore the maximum likelihood estimate (MLE) of M is at
the largest ti, usually denoted t(n).
Standard asymptotic distributional results for MLEs will not be applicable for the param-

eter M . In the consideration of inferential statements concerning M , there are parallels with
Je�reys’ ‘Bus problem’ or more accurately, ‘tramcar problem’, raised in a letter to Fisher on
10 April 1934 [2, p. 163]. A brief summary is that in a town it is known that tramcars are
numbered consecutively and that a new arrival in the town observes a tramcar numbered 100.
Can the new arrival infer anything about the number of tramcars, say N , in the town? The
problem can be extended by allowing the observation of more than one tramcar.
Je�reys’ considered the use of a prior proportional to 1=N , after showing that a constant

prior leads to no useful inferential statements. A very similar problem is the estimation of
N in binomial (N;p) models. In both situations, the choice of the prior can be shown to be
highly in�uential inferentially.
In the tramcar problem, the maximum observed number is the MLE for N and is su�cient

for its estimation if a uniform distribution is assumed for the observed numbers. It is, however,
a biased estimate. A unique unbiased estimate can be derived but the question of optimal
interval estimation remains. For the binomial problem, it has been shown that no unbiased
estimator of N exists [3].
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For the purpose of this paper, we simply de�ne the MLE of M and make no claims for
its optimality in any sense. For public health purposes, the upper end-point of some interval
of plausible values is more likely to be useful for decision making than a point estimate of
the parameter. We consider the likelihood function simply as representing the information
available from the data for inference concerning the unknown parameters. Comparison of the
shape of the likelihoods is su�cient for the issues considered here and the likelihood function,
particularly through providing ratios of likelihoods, is simply regarded as giving the relative
plausibilities of parameter values [4, p. 50].
Since, by de�nition, it is true that for M¿t(n), LP(M) can be de�ned for t(n)6M¡∞, it

will thus provide some indication of the values of M which are plausible given the observed
data. It is frequently convenient to standardize this function so that the maximum value is
one by dividing by the value of the likelihood function at the MLEs. This function can then
be de�ned as

L∗
P(M)=

LP(M)
LP(M̂)

where M̂ is the MLE of M .

2.2. Log-normal model

While the MLE of M will be the same irrespective of the distributional assumption made
concerning T , the shape of the pro�le likelihood for M , and therefore the range of plausible
values for M , will depend on the assumption and, in particular, on assumptions about the
tails of the truncated distribution. While the gamma model is well known in epidemic theory,
motivated by regarding the incubation period as a �xed number of independent and succes-
sive stages of infection, each exponentially distributed, alternatives to the gamma distribution
should be considered from a model �tting perspective at least. For illustration, we consider
the log-normal distribution. A log-normal regression model can be written as a location scale
model y= log(t)= �+ �e, where e follows a standard normal distribution

f(e)=
1

(2�)0:5
exp(−0:5e2)

and where �∈R and �¿0.
The development of a truncated log-normal model follows the development for the truncated

gamma given in Section 2.1 as does the likelihood development with (�, �, M) replacing
(a, s, M) as the set of model parameters. The use of this model is also considered in Section 3.

2.3. Log-gamma model

More general distributions than the truncated gamma and the truncated log-normal can also
be considered. A convenient choice is the so-called log-gamma distribution of Farewell and
Prentice [5] which represents a reparameterization and extension of a generalized gamma
distribution.
With �; q∈R and �¿0, the log-gamma model can be written as the location scale model

y= log(t)= �+ �w, where the density f(w; q) for w is

| q | (q−2)q
−2
exp[q−2{qw − exp(qw)}]=�(q−2)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:3431–3445



SARS INCUBATION TIMES 3435

if q �= 0 and, when q=0, is the standard normal distribution. The cumulative distribution
function can be written as 1− I(v; q) if q¿0 and I(v; q) if q¡0, where v= qw − 2 log(| q |)
and

I(v; q)= {�(q−2)}−1
∫ exp(v)

0
xq

−2−1e−x dx

The log-gamma distribution includes the Weibull (q=1) and exponential (q=�=1)
distributions as special cases as well as the gamma (q=1=�) and log-normal (q=0). The
distribution of W is negatively skewed for q¿0 and positively skewed for q¡0.
Another alternative truncated distribution for incubation times is, therefore, the truncated

log-gamma. The development of a pro�le likelihood for M will follow as in Sections 2.1
and 2.2 with maximization over �; � and q. The use of this more general distribution is also
illustrated in Section 3.

3. EXAMPLE

We consider data from 128 SARS cases, a subset of 1755 cases in a Hong Kong Hospital
Authority database, for which some information was available on time of infection. The
data consist of the date of the appearance of the symptoms of SARS and an earliest and
latest possible date of exposure. Initially, we restrict attention to 67 cases whose interval of
possible exposure times is less than 5 days and also exclude 10 cases recorded as having �rst
symptoms on the date of exposure. These may represent questionable records or cases related
to an unusually high level of exposure, possibly hospital acquired, not of general relevance
for setting quarantine times for controlling community outbreaks.
Relatively short intervals of exposure times are used to provide some reasonably precise

information concerning incubation, as is done in AIDS seroconverter cohorts [6]. Table I
provides some comparison of the 67 cases with infection intervals less than 5 days with the
cases with longer intervals. The variables examined were age, sex, health care worker status,
vital status on hospital discharge and lactate dehydrogenase (LDH) level, where higher values
of LDH re�ect more severe disease. It can be seen that while the cases are similar in age,
sex and worker status, there is a higher death rate and some evidence of more severe disease
in the cases with the longer possible infection intervals. This may re�ect the fact that more
severe cases arriving at a hospital might well have had a longer period with the disease and
be less able to characterize precisely their possible time of infection. The impact of extending
the allowed interval size is examined later. There remains, of course, the implicit assumption
that the cases with some information on infection time are a random sample of the entire
distribution of cases. However, the possibility of biases in reporting, heterogeneity in routes
of transmission or varying infectious doses of the SARS coronavirus remains.
Table II presents the longest and shortest possible incubation times for these patients as

well as the average of these two times, rounded to the nearest day since that is how the data
would normally be recorded. We consider �rst the averaged times.
For the data set of averaged times, Figure 1 presents the pro�le likelihoods, L∗

P(M), based
on the gamma, log-normal and log-gamma models discussed in Section 2. Figure 1 allows
the comparison of the apparent information in the data set under the di�erent modelling
assumptions.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:3431–3445
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Table I. Comparison of SARS cases.

Censoring Censoring Signi�cance
interval ¡5 days interval ¿5 level∗

Health care
worker
No 49 39 0.84
Yes 18 13

Sex
Female 39 29 0.85
Male 28 23

Survival
Yes 59 35 0.007
No 8 17

Mean age 45.0 42.9 0.44
(years)
Mean LDH 2.85 3.19 0.19
(�kat=L)
∗Two sample comparison based on Fisher’s exact test or t-test.

Table II. Incubation times.

Lower limits
2.5 4.5 0.0 0.5 5.5 2.5 1.5 3.5 7.5 1.5 2.5 7.5 4.5 4.5 3.5
0.5 0.5 2.5 2.5 0.0 2.5 0.0 11.5 0.5 0.5 1.5 5.5 3.5 2.5 12.5
1.5 8.5 7.5 1.5 5.5 4.5 3.5 1.5 0.5 0.5 3.5 7.5 5.5 2.5 1.5
1.5 0.5 1.5 1.5 1.5 0.5 8.5 0.5 0.0 2.5 5.5 9.5 2.5 7.5 4.5
3.5 1.5 3.5 3.5 3.5 4.5 0.5

Upper limits
6.5 7.5 2.5 3.5 6.5 5.5 4.5 5.5 11.5 4.5 5.5 12.5 5.5 5.5 6.5
1.5 4.5 4.5 4.5 1.5 4.5 4.5 13.5 2.5 1.5 2.5 10.5 5.5 4.5 14.5
6.5 11.5 9.5 2.5 7.5 9.5 7.5 2.5 4.5 1.5 4.5 8.5 6.5 7.5 2.5
2.5 1.5 2.5 2.5 3.5 1.5 12.5 1.5 4.5 4.5 6.5 10.5 3.5 8.5 7.5
5.5 5.5 8.5 7.5 7.5 9.5 3.5

Rounded average times
5 6 1 2 6 4 3 5 10 3 4 10 5 5 5
1 3 4 4 1 4 2 13 2 1 2 8 5 4 14
4 10 9 2 7 7 6 2 3 1 4 8 6 5 2
2 1 2 2 3 1 11 1 2 4 6 10 3 8 6
5 4 6 6 6 7 2

For the truncated gamma model, the pro�le likelihood never drops below 60 per cent
suggesting that any value of M greater than the maximum time observed, 14, is plausible.
Thus it appears that the data is uninformative with respect to the maximum incubation time
if a gamma distribution is assumed. However, the situation is di�erent for the truncated log-
normal model. While the MLE for M is again 14 days for this model, any value for M
greater than 19.5 days makes the data more than 10 times less plausible than does the MLE
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Figure 1. Pro�le likelihoods based on 67 SARS cases.

of 14 days. For public health purposes, it could therefore be argued that, based only on such
data and an assumed log-normal model, that a quarantine time of 20 days might be necessary
to ensure that SARS cases were not released ‘too early’. Recall that the focus here is on
the upper limit of an interval of plausible values rather than any speci�c estimator for the
maximum incubation time.
A possible reason for the widely di�erent behaviour of the pro�le likelihood for the two

models is a di�erence in model �t. If we consider the more general log-gamma model that
includes both of the other models as special cases, the pro�le likelihood for M is more
informative than that based on a gamma model, but it never falls below a value of 20
per cent. Thus the apparent ability to rule out larger values of M under the log-normal model
is not present if a less restrictive model assumption is made. This is true even though the
maximum likelihood estimate of q is −0:13, a value close to the value q=0 corresponding
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3438 V. T. FAREWELL ET AL.

Incubation Time

D
en

si
ty

0 10 15 20

0.00

0.05

0.10

0.15

0.20

Log-gamma
Log-normal
Gamma

5

Figure 2. Maximum likelihood �ts for truncated distributions.

to the log-normal model. The hypothesis of a truncated gamma distribution would not be
supported within this class of models.
The maximum likelihood estimates of the various models are given in Figure 2 along with a

histogram of the data. The estimated log-normal and log-gamma distributions are quite similar
while the truncated gamma does not appear to �t the data very well. All the models fail to
some extent in re�ecting the preponderance of short incubation times.
Since the use of the log-gamma model suggests there is little information for the esti-

mation of a maximum incubation time, this may raise doubts about the assumption of a
truncated distribution. The reason for this is illustrated by the values of q̃(M) over the range
of the plotted pro�le likelihood for M . The MLE for q is −0:13 corresponding to q̃(M̂),
where M̂ =14 days. However, q̃(15)=0:15 and q̃(20)=0:55 indicating that incubation dis-
tributions with less weight in the tails and with less e�ect therefore of truncation times are
as consistent with the data as distributions with more weight in the tails and a truncation
time.
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Figure 3. Maximum likelihood �ts for M =18.

To illustrate the di�erent behaviour of the pro�le likelihoods for the log-normal and log-
gamma models, Figure 3 plots the estimated log-gamma and log-normal models �t when
the truncation time is taken to be M =18 days. This shows that the lack of �t is much
more pronounced for the log-normal distribution than for the log-gamma thus reducing the
plausibility of M =18 under the log-normal model.

4. INTERVAL-CENSORED INCUBATION TIMES

In general, as for the SARS cases in Hong Kong, it will be di�cult to specify precisely when
the exposure leading to a case occurred. As with many other diseases therefore, the usual
data on incubation times will derive from cases in which the exposure is known to be within

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:3431–3445
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a small window of time. This will generate interval-censored incubation time information for
each case.
Assume that such information leads to a set of data {(tLi ; tUi); (i=1; n)} where, for individual

i, the incubation time is known to lie between a lower limit, tLi, and an upper limit, tUi. If
we assume that f(t)= g(t)=G(M) is the probability density function for the actual incubation
time, as in Section 2 but where g(t) is not restricted to be a gamma distribution, then, with
only minor modi�cations, the development given there can be followed for interval-censored
data.
The assumption of a maximum possible incubation time M creates some complication

because it will limit the intervals of possible incubation times. It is also convenient to assume
that all incubation times are interval-censored and that M is only allowed to take values
greater than max(tLi). This avoids any possibility of a case contributing to the likelihood
via its probability density function for the smallest value of M and via a probability value
otherwise. In principle, other cases could be taken to have a known incubation time if such
times were below any plausible values for M , but in practice such accuracy does not exist
in any event. This type of consideration arises in other non-standard likelihood inference
problems [7].
The likelihood function for the estimation of the parameters of g(t) and M can then be

written

1
G(M)n

n∏
1

{G(min[M; tUi])−G(tLi)}

A pro�le likelihood for M can be de�ned in the usual manner. However, it is not possible to
determine immediately the MLE, M̂ , which will lie somewhere between the lowest allowed
value, max(tLi) + �, and max(tUi).
To illustrate the e�ect of interval-censoring, we consider the data in Table II which show

the lower and upper limits of the incubation times for the 67 SARS cases, for which average
rounded times were used in Section 3. We have subtracted 0.5 from the lowest time in days
and added 0.5 to the highest to give appropriate intervals in continuous time and to make all
observations interval-censored. As outlined earlier, it is convenient mathematically to make
all observations interval-censored. Observations with a single day of presumed exposure are
given an interval of width 1 day in our analysis but, in principle, a much narrower interval
could be used if the precision could be justi�ed. A brief exploration suggests that this would
have little impact on the likelihood.
Figure 4 presents pro�le likelihoods for M based on the gamma, log-normal and log-gamma

models of Section 2. These plots are based on calculations of the likelihoods for values of M
at intervals of 0.25 and beginning at min(tLi)+0:5=13. For convenience, the MLE of M has
been taken to be the value among these which gives the largest likelihood. Further precision
could be achieved but is not likely to be important. It can be seen that while the general
pattern of the likelihoods is similar to that in Figure 1, with interval-censoring not even the
log-normal likelihood drops to less than the 10 per cent level. This is, of course, reasonable
in the sense that much less precise information is being assumed about the incubation times
and this must impact the precision of inferences.
In spite of this slight, but perhaps important, change in the likelihoods, the �tted distributions

are not much altered by the interval-censoring. For example, with the log-gamma model and
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Figure 4. Pro�le likelihoods for interval censored data.

with M =14, the estimated value for (�; �; q) is (1:42; 0:84;−0:13) for the rounded average
data in Table II and (1:33; 0:81;−0:10) the interval censored data in Table II.
Finally, to show the e�ect of more extreme interval-censoring, we consider extending the

set of data in Table II by including additional SARS cases from Hong Kong whose period of
possible exposure, which de�nes the width of the interval within which their incubation time
lies, is thought to be less than 10 days rather than 5 days. This produces a set of data of 86
cases and Figure 5 presents the relative likelihoods for the three models based on these data.
The pro�le likelihoods are seen to be substantially less informative with the gamma likelihood
being virtually �at for M values greater than 16. Note that one of the additional cases has
an interval of (13:5; 19:5) for their incubation time in days. The use of censoring intervals
of width 10 days is quite large in the context of SARS and could not be recommended in
practice.
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Figure 5. Pro�le likelihoods for extended interval censored data.

5. PERCENTILE ESTIMATION

Consideration of models for incubation times which incorporate truncation may provide valu-
able information for public health purposes. Nevertheless, as is illustrated in the earlier sec-
tions, there might often be insu�cient evidence to be very con�dent about a maximum incu-
bation time, even within the context of a particular model.
In this situation, an alternative approach is to set a quarantine time on the basis of percentile

estimation, i.e. a quarantine time might be set as the time below which 95 per cent of cases are
expected to develop. For comparison with the analyses presented earlier, the use of parametric
models for this purpose is considered here.
Model choice will be important since the behaviour of a distribution in the tail is very

model dependent. Thus, the log-gamma model which incorporates a signi�cant component of
model choice through the parameter q might be recommended. A more ad hoc approach to
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Figure 6. Maximum likelihood �ts of untruncated distributions.

model choice could be adopted although the uncertainty involved in the choice might be more
di�cult to incorporate into inferences.
Figure 6 illustrates the best �tting log-gamma and log-normal distributions, not involving

truncation, to the average incubation time data in Table II. The slightly better �t of the
log-gamma at shorter times can be seen and there is some di�erence in the tails. For the
log-gamma, the probability of an incubation time greater than 14 days is 0.013 while, for
the log-normal, it is 0.032. The MLE for the log-gamma, in contrast to the case with truncated
distributions, is further from the log-normal model with q̂=0:61. Essentially this re�ects the
need for the distribution to drop more quickly at larger values of T .
The estimated 95th percentiles for the log-gamma and log-normal distributions are 10.66 and

12.09. Con�dence intervals for these values can be derived by simulating from the estimated
asymptotic distribution of the MLEs to produce an interval within which 95 per cent, say,

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:3431–3445
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of the corresponding simulated percentiles lie. This methodology has been compared with
a delta method and a non-parametric bootstrap and performed well for the estimation of a
complicated function of MLEs [8]. Based on a simulation of 1000 values, the corresponding
95 per cent intervals are (9:24; 13:68) and (9:95; 15:34). Interestingly, these values suggest the
commonly adopted quarantine time for SARS of 10 days is associated with the possibility
of ‘releasing’ approximately 5 per cent of patients ‘too early’. In fact, to ensure that this
is the maximum fraction released, consideration should be given to longer quarantine times
re�ecting the upper endpoint of the estimation intervals.
Note that if the interval-censored data in Table II is used to �t the log-gamma model, then

the estimated 95th percentile is 10.2 with a con�dence interval of (8:64; 13:68), an interval
14 per cent longer than that for the average data.

6. DISCUSSION

The present paper explores methodology to characterize the available knowledge on incubation
times early in an infectious epidemic. Issues such as di�erent routes of infection or di�erent
subsets of infectious individuals have not been discussed. In principle, the models used could
be extended to incorporate explanatory variables de�ned by such factors. Preliminary inves-
tigations of possible explanatory variables in the Hong Kong data did not reveal any strong
relationships.
We have made pragmatic decisions as to which data to include for model �tting. These

might warrant revisiting in a more comprehensive analysis. Also, since infection events cannot
be observed, some data on incubation times will inevitably be ‘guesses’. Many aspects of the
comparison of methodologies will not be altered by this but such data will naturally give rise to
interval-censoring which the methodologies discussed here do allow. A further extension is to
consider individuals with more than one period of possible exposure prior to the development
of symptoms. Meltzer [9] considers a simple simulation approach to this.
De�nitive conclusions about the choice of statistical methodology are not warranted based

on the investigations reported here. In the early days of an epidemic this will usually be the
case. Thus, the range of inferences based on di�erent methodologies will often be the basis
of decisions. Nevertheless, some comments can be made.
Inference concerning a truncation parameter is apparently more informative the stronger the

assumptions made about the form of the incubation distribution. In the absence of independent
reasons to make such an assumption however, the use of a general model, such as the log-
gamma, for inference should be considered, at least as part of a sensitivity analysis. The key
aspect to such inferences will be the shape of the tails encompassed in the model for the
incubation times.
In the absence of precise information on a truncation time, estimation of percentiles provides

a natural way to �x quarantine times. It can also be argued that this approach is less risky, and
more realistic, than making the assumption of a truncated distribution. Because of its �exibility
in the tails, the log-gamma can also be recommended for percentile estimation. Investigation of
other methods is warranted. Possibilities would include the use of sample quantiles to de�ne
non-parametric con�dence intervals for population quantiles [10, Chapter XI, Section 3.1]
or the asymptotic distribution of sample quantiles [4, Appendix A.2.3]. Whatever method is
adopted, the uncertainty involved in any estimation of percentiles should be incorporated into
public health decisions.
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In the setting of quarantine times, other factors must also be considered. Meltzer [9] presents
evidence for some SARS incubation times greater than 10 days. It appears based on the data
presented here that a quarantine time of 10 days for SARS might release one infectious
patient in twenty. Therefore, for a quarantined population of 200, this would correspond to
10 individuals but the larger the quarantined population, the larger the number of released
infectious individuals. Thus the length of a quarantine period might well be set in light of
the expected number of quarantined individuals. Also consideration of the psychological and
economic impact of quarantine on individuals and the population as a whole must be balanced
against the risks associated with early release of infected individuals.
Finally, note that the implicit assumption in setting a quarantine time is that quarantine

is isolation of x days from the supposed day of contact whereas it is often implemented as
isolation of x days from the �rst day on which an individual is identi�ed as having been
exposed to the disease. This may build in an additional margin of safety from the public
health perspective.
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