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Neutrophils and neutrophil extracellular traps (NETs) contribute to the pathogenesis of
many autoimmune diseases, including vasculitis. Though neutrophils, and NETs, can
break self-tolerance by being a source of autoantigens for autoantibodies in anti-
neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, playing a key role in
driving the autoimmune response, the role of neutrophils and NETs in large vessel
vasculitis, including giant cell arteritis (GCA), is not well understood. In this review, we
summarize the current insight into molecular mechanisms contributing to neutrophil-
mediated pathology in small and medium vessel vasculitis, as well as provide potential
translational perspectives on how neutrophils, and NETs, may partake in large vessel
vasculitis, a rare disease entity of unclear pathogenesis.

Keywords: neutrophil extracellular traps, anti-neutrophil cytoplasmic antibody associated vasculitis, polyarteritis
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INTRODUCTION

Neutrophils are important mediators of host defense against pathogens including bacteria, fungi,
and protozoa, and one of the major arms of the innate immune system (1). Recruitment and
activation of neutrophils at sites of tissue infection leads to killing of the pathogen through several
cytotoxic mechanisms including phagocytosis, production of reactive oxygen species (ROS) and
release of neutrophil extracellular traps (NETs) (2). NETs are extruded webs of decondensed
nuclear DNA, citrullinated histones and granule proteins (3) including neutrophil elastase (NE),
calprotectin (also known as S100A8/A9) and myeloperoxidase (MPO) (4) able to trap and
eliminate pathogens.

Other than pathogenic triggers, several host-derived components, including inflammatory cytokines
and chemokines, IgG immune complexes (ICs), monosodium urate crystals, and cholesterol crystals, as
well as activated platelets, have been shown to induce NET formation in vitro and in vivo (5–7). The IgG
ICs induce NET release after binding to FcgRIIA on neutrophils (8, 9). The capacity of ICs and
inflammatory cytokines to induce NET formation is consistent with excessive NET formation being
observed in several autoimmune and inflammatory conditions, including gout, rheumatoid arthritis
(RA), psoriasis, systemic lupus erythematosus (SLE), juvenile dermatomyositis (JDM), and anti-
neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) with levels of NETs often
linked to disease activity and severity (10–13).

However, little is known about the significance of neutrophils in the pathogenesis of other types
of vasculitis such as Takayasu’s arteritis (TAK) and giant cell arteritis (GCA). The objective of this
review is to shed light into the role of neutrophils in the pathogenesis of systemic vasculitides, with a
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specific focus on the potential diverse vasculopathic and
immunogenic effects of neutrophils in the development of
small, medium, and large sized vessel vasculitides.
ROLE OF NEUTROPHILS IN SMALL
VESSEL VASCULITIS

Neutrophils and Anti-Neutrophil
Cytoplasmic Antibody-Associated
Vasculitis
AAV is a group of small vessel vasculitis characterized by small
blood vessel inflammation and presence of circulating ANCAs.
There are three subtypes of AAV that have been described so far,
namely granulomatosis with polyangiitis (GPA), microscopic
polyangiitis (MPA), and eosinophilic granulomatosis with
polyangiitis (EGPA) (14). Constitutional symptoms such as
malaise, fever, and weight loss are common to all three
subtypes of AAV. GPA is characterized by the presence of
necrotizing granulomatous inflammation most commonly in
the upper or lower respiratory tract, but can also occur in
other organs such as skin, orbit or the meninges (15). Kidney
involvement predicts higher mortality and morbidity (16).

MPA is often characterized by rapidly progressive
glomerulonephritis (RPGN). The most characteristic pulmonary
involvement in MPA is hemorrhagic alveolar capillaritis, which
histologically is characterized by focal areas of neutrophils in
alveolar capillaries and lysis of capillaries with leukocytoclastic
debris (17). EGPA is characterized by asthma, eosinophilia, nasal
polyps, and eosinophilic pulmonary infiltrates. Other organs that
are affected include peripheral and central nervous system, skin,
gut, and heart. Renal involvement is usually associated
with positive ANCA (18). What differentiates MPA from GPA
and EGPA is the absence of necrotizing granulomatous
inflammation of the respiratory tract (19). Acute lesions of GPA
are characterized by neutrophilic infiltrates forming micro-
abscesses and presence of multinucleated giant cells with focal
accumulations of fibrinoid material. Acute lesions of MPA are
characterized by leukocytoclasia, and vessel wall necrosis with
accumulation offibrin following activation of coagulation factors.
As the lesions progress there is accumulation of monocytes,
macrophages, and T lymphocytes and transformation to
more fibrotic lesions. The acute vasculitic phase of EGPA
is characterized by a much more intense eosinophilic
infiltration of the necrotizing granulomatous inflammation
that resembles that of GPA (17). AAV are designated pauci-
immune vasculitides as immunohistology shows few or no
immunoglobulin and C3 deposits at the inflammatory
lesions (20).

The targets of the ANCAs in AAV are primarily
myeloperoxidase (MPO) and proteinase 3 (PR3), granular
enzymes within the neutrophils. The association of the three
subtypes of AAV with the type of ANCA varies. Patients with
GPA are more likely to have antibodies to PR3 (21). A defect of
the gene for a1-antitrypsin (SERPINA) and/or inherited
Frontiers in Immunology | www.frontiersin.org 2
predisposition for an increased expression of the PRTN3
gene may trigger the synthesis of anti-PR3 ANCA that
bind to the surface of neutrophils in GPA (22). PRTN3 and
MPO genes in neutrophils of AAV patients have a distinct
pattern of histone modifications, implicating epigenetic
mechanisms in the expression of those autoantigen genes (23).
The majority of patients with MPA are positive for MPO-ANCA.
Approximately 45% of patients with EGPA test positive for
MPO-ANCA correlating with renal involvement (21).
Lactoferrin is another antigen of ANCAs and patients with
EGPA who had positive anti-lactoferrin antibodies had
significantly higher frequency of renal involvement, serum
CRP levels, and Birmingham Vasculitis Activity Score (BVAS)
(24). Patients with EGPA showed enhanced ability to produce
NETs compared to healthy subjects with no regard to the ANCA
status (25).

A prerequisite for binding of the autoantibodies to their target
molecules is the exposure of the antigens. This could occur either
upon up-regulation of the antigens on the cell surface and/or
upon cell death and release of the antigens in the extracellular
environment, such as during NET formation (26). ANCA
activates neutrophils to degranulate (27), produce ROS (28)
and extrude chromosomal DNA in the form of NETs (29, 30).
Neutrophil activation by ANCA depends on their ‘priming’ by
cytokines like tumor necrosis factor-alpha (TNF)-a ,
lipopolysaccharide (LPS) (31, 32), or complement factor 5a
(C5a) (33, 34). These stimuli not only induce expression of
endothelial selectins that enable interaction with neutrophils
resulting in their rolling, intravascular crawling, and
transcellular migration (35), but also result in increased cell
surface expression of MPO, PR3, and other neutrophil granule
proteins to the neutrophil cell surface where ANCA can bind to
them (36). Upon binding of ANCAs to the antigens, the Fc part
of the autoantibody will engage FcgRs, resulting in neutrophil
activation, promoting firm neutrophil adhesion to the
endothelium, NET formation, and inflammatory damage to the
endothelium (Figure 1A). Endothelial damage perpetuates
neutrophil recruitment and activation via alternative
complement activation in a vicious circle (17, 35, 37). High
serum levels of complement split products C3a and C5a have
been found in patients with active AAV (34, 38). Avacopan, a
C5a receptor (C5aR) antagonist, prevented MPO-ANCA-
induced glomerulonephritis (GN) in a murine model of AAV
(39). Further, C5aR inhibition with avacopan effectively replaced
high-dose glucocorticoids in AAV (40).

Another mechanism of autoantigen exposure is release of
MPO and PR3 from activated neutrophils at inflammatory
sites. The released antigens bind to endothelial cells, resulting
in subsequent in situ formation of immune complexes (2, 17).
Neutrophils, interacting with the activated/damaged
endothelium, will induce leukocytoclasia, as well as undergo
cell death characterized by formation of NETs (41). NETs are
also likely to be involved in the loss of T and B cell tolerance to
both MPO and PR3 by activating dendritic cells (DCs). When
myeloid DCs were loaded with NET components and injected
into naïve mice they were able to induce ANCA and
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autoimmunity (42). Similar findings are seen also in other
diseases, including rheumatoid arthritis, where NET-derived
citrullinated epitopes can be presented by fibroblast-like
synoviocytes and promote activation of antigen-specific CD4+
T cells (43). NETs are not only present in organ lesions from
patients with AAV, but are also found in their circulation (44).
The elevated levels of NETs in the circulation of AAV patients
could be attributed to reduced clearance of NETs (45).

However, excessive serum-mediated ex vivo NET formation has
also been reported in PR3-ANCA and MPO-ANCA positive AAV
patients (46). Thus, both reduced clearance and excessive NET
formation may contribute to the elevated levels of circulating NETs
observed in these patients. The exact identity of the NET-inducing
agent(s) in AAV is not known. Though prior work have implicated
MPO ANCA IgG in NET induction (45), other studies found that
NETs were induced in an ANCA-independent process (46). These
findings suggest that the presence of serum factors other thanANCA
IgG might preclude NET degradation and/or enhance NET
formation in both PR3- and MPO-ANCA-associated AAV. In
another study that compared mechanisms of NET formation
between AAV and SLE, it was also shown that AAV-induced NET
Frontiers in Immunology | www.frontiersin.org 3
formation occurred independently of IgG ANCAs whereas SLE ICs
induced NET formation via Fcg receptor signaling pathways (47).
Further, the presence of inhibitory antibodies, including anti-DNA
antibodies can likely contribute to a low ability for NET degradation
in MPO-ANCA-associated MPA serum, similar to what has been
described inSLE(48). ImpairedNETdegradation inactiveSLEdue to
presence of DNase-I inhibitor and anti-NET antibodies leads to
increasedNET levels that are related with disease activity and kidney
damage (49). Indeed, patients with active SLE who had an impaired
ability to degrade NETs had more anti-NET antibodies that further
increased C1q deposition (48).

NETs are prominent inducers of inflammation, including
through release of mitochondrial components, signaling
through DNA sensing TLR9 as well as the cGAS-STING
pathway (50). Neutrophil activation in SLE results in release of
oxidized mitochondrial DNA, driving type I interferon
production (51). Other mitochondrial components, such as
cardiolipin, that are released by NETs could be another
important source of circulating autoantigens in both AAV and
SLE (52). Those NET-derived autoantigens may act to further
amplify the inflammatory process through formation of local
A B

FIGURE 1 | Potential pathogenic mechanisms of NET formation in ANCA-associated vasculitis (AAV) and large vessel vasculitis (LVV). (A) AAV: Pro-inflammatory
stimuli such as TNF-a, LPS and C5a cause neutrophil priming, with increased expression of the antigens MPO, PR3, and other neutrophil granule proteins to the cell
surface where ANCA can bind to them. Soluble and cell-bound immune complexes of ANCA and ANCA antigens then bind and crosslink FcgRIIA on the neutrophil
surface, activating the oxidative burst machinery and driving degranulation of MPO, NE, and PR3, decondensation and extrusion of nucleosomal chromatin from the
cells leading to NET formation and eventually neutrophil death. This in turn drives a necrotizing inflammation that results in endothelial cell death, vascular leakage,
fibrin deposition, and a subsequent monocyte and macrophage recruitment. This phase eventually evolves into a fibrin and collagen-rich lesion, which may resolve if
the initial inflammation was limited, or become permanent scar tissue with lingering chronic mononuclear cell infiltrates with B and T cells in ectopic germinal center-
like structures. In these instances, the inflamed artery may be permanently occluded. (B) LVV: We hypothesize that IL-23 that is excreted by the macrophages in the
vessel wall induces Th17 cells. Th17 cells then produce IL-17 that up-regulates G-CSF leading to neutrophil recruitment in circulation, and activation of neutrophils.
We hypothesize that the presence of ANCA antibodies of unknown entity, may induce neutrophil activation. Alternatively, ANCA antibodies may bind to NETs and
form anti-NET antibodies preventing NET degradation as well as creating neutrophil-activating immune complexes. Activated neutrophils then adhere to the
endothelium of the affected arteries. Subsequently, neutrophils interact with the damaged endothelium and undergo cell death characterized by NET formation.
Endothelial damage perpetuates neutrophil activation via alternative complement activation in a vicious circle. Additionally, we hypothesize that release of
mitochondrial components during NET formation leads to formation of anti-mitochondrial antibodies, contributing to vessel wall damage and inflammation.
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immune complexes. Presence of anti-cardiolipin antibodies was
reported in 40% and 57% of patients with GPA and MPA,
respectively, but did not correlate with the presence of ANCA
in any of those disease groups (53).

Another prominent neutrophil activation marker,
calprotectin (also known as MRP8/14 and S100A8/A9), is
elevated on the neutrophil cell surface in acute AAV as
compared to healthy controls (54, 55). Further, even in
remission, AAV patients have elevated levels of serum
calprotectin, implying subclinical disease activity triggered by
neutrophil activation. Similarly to levels of NETs, serum levels of
calprotectin did not correlate with ANCA level (54). However, it
should be noted that coagulation leads to release of calprotectin
from neutrophils, as well as from platelets (11, 56). As such,
serum levels of calprotectin are in large artificial and do not
represent the true levels of circulating calprotectin in the
patients. Further studies, assessing plasma levels of calprotectin
(and NETs) are warranted to determine the association between
ANCA levels and neutrophil activation.

Expression of calprotectin has also been observed in the
kidneys of patients with AAV-associated GN, indicating local
neutrophil activation (57). Other neutrophil-associated markers,
including NE, a neutrophil gene signature, and presence of low-
density granulocytes (LDGs) are all associated with disease
activity in AAV (58, 59). LDGs in AAV are heterogeneous,
displaying both mature and immature granulocytes and were
refractory to MPO-ANCA-induced oxidative burst despite
expressing MPO, indicating alternative roles for LDGs in AAV
pathogenesis (60, 61). Inflammatory components, including
calprotectin, are known to promote neutrophil survival (62),
with neutrophils having prolonged lifespan within the
inflammatory lesions as demonstrated in a human transgenic
PR3 mouse model (20). The signaling pathways via which
calprotectin is acting, are primarily TLR4 and RAGE, resulting
in induction of pro-inflammatory cytokines such as TNF-a,
interleukin (IL)-1b, IL-6, IL-8, and IL-23, chemokines, and
adhesion molecules amplifying the inflammatory response and
leading to leukocyte adhesion to the endothelium (63).

Defective clearance of apoptotic neutrophils within necrotizing
granulomatous inflammation of GPA, results in their necrosis with
the release of pro-inflammatory cytokines, and damage-associated
molecular patterns (DAMPs) (64). DAMPs such as high-mobility-
group-protein B1 (HMGB1) and the auto-antigen PR3 are
expressed on the surface of apoptotic neutrophils contributing to
immunogenic responses (65). HMGB1 participates in ANCA-
induced NET formation through interaction with Toll like
receptor (TLR)2, TLR4 and the receptor for advanced glycation
end products (RAGE) and the process is NADPH oxidase
dependent (66). Other neutrophil- and NET-associated molecules
and mediators in AAV are listed in Table 1 (76, 77, 79, 80).

Neutrophils and Drug-Induced Anti-
Neutrophil Cytoplasmic Antibody-
Associated Vasculitis
There are several studies that provide a tantalizing link between
NET formation and drug-induced vasculitis. Cocaine and
levamisole have independently been associated with the
Frontiers in Immunology | www.frontiersin.org 4
development of ANCAs (87), exerting toxic effects on active
illicit cocaine users such as vasculitic purpura and neutropenia
(88). Patients with cocaine/levamisole-associated autoimmunity
syndrome (CLAAS) show different patterns of ANCA, including
enriched presence of anti-MPO/anti-PR3 dual reactivity.
Notably the presence of c-ANCA pattern in that patient
population was associated with increased mortality (88). In
CLAAS, a dominant target of ANCAs is NE (Table 1).
Cocaine and levamisole can induce formation of NETs
enriched in NE [Figures 2A, B, alternate images prepared as
in (72)] and, potentially, inflammatory mitochondrial DNA (72).
It was demonstrated recently, that in levamisole-induced
autoimmunity NET formation is triggered by levamisole
through engagement of M3 muscarinic receptors on
neutrophils (89).

Prophylthiouracil (PTU) is a drug that commonly induces
anti-MPO seropositivity and AAV in humans (68). It was
recently demonstrated that PTU induced MPO-ANCA IgG
antibodies, as well as primed neutrophils to undergo NET
formation (90). Neutrophils that were treated with PTU
developed an abnormal, globular conformation during NET
formation in that they were relatively resistant to DNase I
digestion. Furthermore, injection of these PTU NETs into rats
led not only to ANCA production (Table 1), but also pulmonary
capillaritis and GN reminiscent of human vasculitis (91).

Drug-induced AAV has been reported in association with
hydralazine (87). Hydralazine was able to trigger NET formation
by modulating calcium release from intracellular stores, implying
the role of NETs in the pathogenesis of drug-induced
autoimmunity. NET formation induced by hydralazine did not
interfere with NET degradation and required peptidylarginine
deiminase 4 (PAD4) activation (92).

Neutrophils and IgA Vasculitis
IgA vasculitis (IgAV) is also referred to as Henoch-Schönlein
purpura, and is characterized by immunoglobulin A1 (IgA1)-
immune deposits in the small vessels of the skin, gastrointestinal
tract, and kidneys. Manifestations of the disease include palpable
purpura or petechiae, polyarthralgias, abdominal pain, and
glomerulonephritis (93). The binding of IgA immune
complexes to FcaRI (CD89) on neutrophils results in
phagocytosis, production of ROS, release of granules that
contain lactoferrin, and release of NETs (78). NETs were
found around inflamed vessels in IgA vasculitis (Table 1).
Their presence was highest after the onset of vasculitis but
decreased progressively with disease course. There was a strong
correlation of NETs with the production of ROS (94).
ROLE OF NEUTROPHILS IN MEDIUM
VESSEL VASCULITIS

Neutrophils and Deficiency of Adenosine
Deaminase Type 2
Human neutrophils express A1, A2, and A3 adenosine receptors
(ARs) and can release adenosine at inflammatory sites.
December 2020 | Volume 11 | Article 619705
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Adenosine-mediated stimulation of A1 and A3 ARs on
neutrophils can regulate neutrophil function by promoting
neutrophil chemotaxis towards inflammatory stimuli (Table 1)
and promote phagocytosis (81, 82). On the other hand, A2
receptors inhibit respiratory burst that is considered a critical,
Frontiers in Immunology | www.frontiersin.org 5
early step in NET formation (95) and inhibit neutrophil
function (96).

The adenosine deaminase type 2 (ADA2) gene encodes a
dimeric protein that after its secretion into the extracellular space
functions as a deaminase to convert adenosine to inosine and 2′-
TABLE 1 | Neutrophils mediators and/or activators in AAV and other vasculitides.

NET-
mediators

Neutrophil localization Type of
vasculitis

Role in vasculitis Ref.

MPO Azurophilic granules AAV Autoantigen in (17, 26, 29,
30, 74)

CLAAS AAV and CLAAS.
PTU- MPO AAV Injection of PTU-

NETs causes AAV in rats. (77)
KD Elevated levels in KD. (94)

DADA2 Up-regulated MPO expression in DADA2. (91)
BD Participation in formation of DNA complexes in BD. (122)

PR3 Azurophilic granules AAV Autoantigen in AAV and CLAAS. (17, 26, 29,
30, 74)CLAAS

NE Azurophilic granules AAV Anti-elastase antibodies are present in AAV. (59, 60)
CLAAS Target of ANCAs in CLAAS. (74, 75)
KD Elevated levels in KD. (94)

Calprotectin Cytosolic protein content
of neutrophils

AAV Promotion of neutrophil survival in AAV. (63)
Associaed with proliferative GN. (59)

TNF-a – AAV ‘Priming’ of neutrophils and enhanced
transcription of the TNF-a gene in peripheral blood mononuclear cells from patients with
AAV.

(32, 33)

LVV Possible recruitment, activation and survival of neutrophils in LVV. (112)
LPS – AAV ‘Priming’ of neutrophils in AAV. (32)
C5a – AAV ‘Priming’ of neutrophils for ANCA induced NETs. (34, 36)

LVV Possible interaction with its cellular receptor on surface of neutrophils after priming by
G-SCF leading to NETs in LVV.

(113)

DNase I
inhibitor

– AAV Possible low NET degradation in MPO AAV. (48–50)
PTU- MPO AAV Treatment of neutrophils with PTU led to NET formation resistant to DNase I. (75)

Anti-NET
antibodies

– AAV Possible impaired NET degradation in AAV (47–49)

Cardiolipin Mitochondria AAV
LVV

Possible circulating autoantigen in AAV and LVV. (53, 54,
102)

HMGB1 Nucleus AAV Interaction with the receptors TLR2, TLR4 and RAGE when expressed on the surface of
apoptotic neutrophils in AAV.

(66, 67)

Azurocidin Azurophilic granules AAV Autoantibodies present in AAV. (68)
Cathepsin G Azurophilic granules AAV Autoantibodies present in AAV. (69)
Lactoferrin Secondary granules AAV Atypical ANCA in AAV. (25)

IgAV Binding of IgA ICs to neutrophils leads to release of lactoferrin and NETs in IgAV. (82)
TF Acidified autophagosomes AAV Induction of thrombosis and inflammation in AAV. (70)
Cathelcidin
LL37

Nuclear AAV Increased levels in AAV patients particularly those with crescentic formation (71)

Anti-LAMP-2 Lysosomal membrane of
granules

AAV Atypical ANCA in AAV (69)

Lysozym C Secondary granules AAV Atypical ANCA in AAV (69)
A1, A3 ARs G-protein coupled

receptors
DADA2 Regulation of neutrophil function by promoting neutrophil chemotaxis towards

inflammatory stimuli.
(84, 85, 92)

Increased NET formation by binding of adenosine to A1 and A3 ARs.
IL-1b, IL-8 – LVV Treatment of neutrophils from healthy subjects with IL-1b, or IL-8 enhanced free

radicals generation and NETs formation in LVV
(111)

IL-6, IL-17 – LVV Neutrophil activation in LVV (102)
GCSF – LVV ‘Possible priming’ of neutrophils in LVV. (116, 117)

Drug induced LVV
December 2020 | Volume 11 | A
MPO, myeloperoxidase; PR3, proteinase 3; AAV, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis; CLAAS, cocaine/levamisole-associated autoimmunity syndrome;
PTU-MPO AAV, prophylthiouracil-MPO AAV; PTU-NETs, propylthiouracil-neutrophil extracellular traps; KD, Kawasaki disease; DADA2, deficiency of adenosine deaminase type 2; BD,
Behcet’s disease; NE, neutrophil elastase; GN, glomerulonephritis; TNF-a, tumor necrosis factor-alpha; LVV, large vessel vasculitis; LPS, lipopolysaccharide; C5a, complement factor 5a;
anti-NET antibodies, anti-neutrophil extracellular traps antibodies; HMGB1, high-mobility-group-protein B1; TLR2, Toll like receptor 2; TLR4, Toll like receptor 4; RAGE, receptor for
advanced glycation end products; IgAV, IgA vasculitis; TF, Tissue factor; Anti-LAMP-2, anti lysosomal membrane protein 2; ARs, adenosine receptors; IL-1b, interleukin -1-beta; IL-8,
interleukin-8; IL-6, interleukin-6; IL-17, interleukin-17; GCSF, granulocyte colony stimulating factor.
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deoxyadenosine to 2′-deoxyinosine (97). DADA2 is a monogenic
vasculitis syndrome that is caused by autosomal-recessive loss-
of-function mutations in the ADA2 gene, previously known
as cat eye syndrome chromosome region, candidate 1(CECR1).
DADA2 manifests with fevers, polyarteritis nodosa (PAN),
livedo racemosa, elevation of acute phase reactants, early-onset
of ischemic or hemorrhagic strokes, and mild immunodeficiency
(98, 99). Patients with DADA2 have not only similar clinical but
also histo-pathologic features (non-granulomatous, necrotizing
arteritis of small-or medium sized muscular arteries) of systemic
PAN (99).

Up-regulated neutrophil signature on genome-wide
microarray analysis has been observed in the peripheral blood
of patients with DADA2. Interestingly, circulating neutrophils
showed increased expression of MPO (Table 1), leading to the
speculation that ADA2 may prevent MPO expression (70). It was
recently reported that NET formation is enhanced in DADA2,
and macrophage secretion of ADA2 is a significant regulator of
adenosine mediated NET formation. Lack of ADA2 activity in
patients with DADA2 leads to accumulation of extracellular
adenosine and subsequent triggering of NET formation,
particularly in neutrophils from female patients, by binding to
A1 and A3 ARs and through NADPH oxidase- and PAD-
dependent pathways (83).

Neutrophils and Kawasaki Disease
KD is a multi-systemic vasculitis that mainly affects the medium and
small vessel arteries, but aorta and large arteries may also be affected.
It is characterized by fever accompanied by lymphadenopathy, rash,
conjunctivitis, and oropharyngealmucosal changes (100). In the acute
phase of KD, plasma levels of NE and MPO are increased (Table 1),
suggesting that neutrophil activation may contribute to the
immunopathogenesis of KD vasculitis (69). Of note, neutrophils
Frontiers in Immunology | www.frontiersin.org 6
from KD patients undergo spontaneous ex vivo NET formation
upon isolation, similar to what has been observed in SLE. These
findings suggest that circulating neutrophils may be primed by pro-
inflammatory mediators to undergo NET formation in KD vasculitis
(101). So far, there are no reports on levels of circulating NETs in KD.
ROLE OF NEUTROPHILS IN LARGE
VESSEL VASCULITIS

Neutrophils in TAK and Giant Cell Arteritis
TAK and GCA are the two major forms of LVV characterized by
vascular inflammation and resultant damage of the aorta and
branch arteries (102). Clinical manifestations of LVV include
headache, lightheadedness, carotidynia, vision loss, stroke,
transient ischemic attack (TIA), syncope, and upper limb
claudication (103, 104). As demonstrated in a recent study, the
most common symptom in TAK patients was arm claudication
(52%) whereas in patients with GCA it was blurred vision
(37%) (105).

Neutrophils play an essential role in the pathogenesis of LVV.
Local recruitment and infiltration of neutrophils have been seen
in histological specimens of aorta from patients with TAK, as
well as adventitia and media of affected arteries in GCA,
contributing to local inflammation and disease progression (75,
106–108). Increased levels of neutrophils was observed in the
circulation of TAK patients that was positively correlated with
disease activity (109).

Though negative to defined antigens, i.e. proteinase-3, human
leucocyte elastase, myeloperoxidase, and lactoferrin as detected
by ELISA, GCA patients have strong reactivity to neutrophil
cytoplasmic antigen(s) of unknown identity (110). Anti-
mitochondrial antibodies, and specifically anti-cardiolipin
A B

FIGURE 2 | NET formation in CLAAs. (A) Immunofluorescence microscopy (IF) illustrating levamisole-induced NET formation. Staining was for DNA (blue) and
neutrophil elastase (NE, red). (B) IF demonstrating CLAAS IgG binding to cytosolic components, as well as NET-derived antigens. Staining was for DNA (green) and
CLAAS IgG (red). Those are alternative images prepared according to the methods outlined in ref (72).
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antibodies of the IgG subtype (Table 1), have also been reported
in 51.5% of GCA patients at disease onset (111). It is so far
unclear whether those unknown neutrophil cytoplasmic and
mitochondrial antigens may form immune complexes and
induce NET formation via Fcg receptor-mediated mechanisms.

Potential involvement of neutrophils in GCA pathogenesis and
relapse was suggested when at week 24 after glucocorticoid therapy,
GCA neutrophils were unable to suppress T-cell responses,
implying re-emergence of vascular inflammation. Reduction in
T-cell suppressor neutrophils was reproduced in vitro, after using
concentrations of IL-6 and IL-17 equivalent to those measured in
GCA plasma samples. This reduction correlated with attenuated
inhibition of lymphocyte proliferation (75).

IL-17-producing Th17 T cells are markedly increased in GCA
but sensitive to glucocorticoid-mediated suppression (112). IL-
17 inhibition with secukinumab may be an option as
maintenance therapy for glucocorticoid-free remission in GCA
(113). It was recently demonstrated that immature neutrophils
from GCA patients amplified vascular damage via production of
high levels of extracellular reactive oxygen species leading to
enhanced permeability of endothelial barrier in an in vitro
neutrophil- endothelial co-culture system (114).

IL-1b is highly expressed in the inflamed arterial walls of
patients with GCA (115). NET production can be induced by IL-
1b in vitro (84). Pro-inflammatory cytokines IL-17, IL-8,
interferon g, and TNF-a also play major roles in the
recruitment, activation and survival of neutrophils in
inflammation (73), and those cytokines were significantly
increased in TAK (107) (Table 1). Treatment of neutrophils of
healthy objects with TNF-a, IL-1b, or IL-8, results in production
of free radicals and NET formation by activation of NADPH
oxidase (84). This finding emphasizes the significance of those
cytokines in the potential release of NETs in systemic
inflammatory response syndromes like LVV (Figure 1B).

Neutrophils in Drug-Induced Large Vessel
Vasculitis
Granulocyte colony stimulating factor (G-CSF) may rarely cause
LVV (74, 116, 117). G-CSF is a myeloid growth factor that can be
produced by monocytes, macrophages, fibroblasts, and
endothelial cells. One of the possible mechanisms by which
exogenous administration of G-CSF may induce LVV includes
stimulation of the proliferation and differentiation of neutrophil
precursors and enhancement of neutrophil chemotaxis (85). G-
CSF may have a priming effect in human neutrophils (Table 1).
Interestingly, viable human neutrophils after priming with
granulocyte/macrophage colony-stimulating factor (GM-CSF)
and subsequent stimulation of TLR4 or C5a receptor were able
to generate NETs (86). C5a via interaction with its cellular
receptor on neutrophil surface leads to changes in the
neutrophil cell shape and membrane formability that allows
the neutrophil not only to transform into a migratory cell and
invade inflammatory sites but also clear pathogens and debris
(118). A randomized double blind placebo-controlled phase 2
trial is currently investigating mavrilimumab that is a fully
humanized monoclonal antibody targeting GM-CSF receptor
alpha (GM-CSFRa) (119) in giant cell arteritis.
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Neutrophils and Behcet’s Disease
BD is a chronic systemic vasculitis manifested by a triad of relapsing
iritis, aphthous stomatitis and genital ulcers (120). It can affect other
organs such as skin, mucous membranes, gastrointestinal tract,
joints, the central nervous system and blood vessels, with a
neutrophil-dominating infiltration around vasa vasorum being
very characteristic of vasculo-BD (121). In a recent study, patients
who had active BD and vascular involvement had higher levels of
cell free DNA (cfDNA) and MPO-DNA complexes in their serum
compared to patients with inactive BD and no vascular involvement
(Table 1). Notably, purified neutrophils from patients with BD
underwent spontaneous NET formation compared to healthy
donors (HD). This is likely clinically significant as markers of
NET formation was associated with thrombin generation in BD.
Further, NETs were present in areas of vasculitic inflammation and
thrombosis (71).
CONCLUSIONS

This review unravels the role of neutrophils in the pathogenesis
of systemic vasculitides. Without doubt, neutrophils are
considered dominant players in the pathophysiology of
systemic autoimmune diseases. Although the role of
neutrophils in small vessel vasculitis has been fairly well
established, there is an unmet need of defining the molecular
signaling pathways and mechanisms promoting neutrophil-
mediated inflammation and damage in both small vessel
vasculitis as well as LVV. Elucidating the effect of neutrophils
on those distinct disorders and the pathogenic mechanisms by
which NETs are generated will not only enhance our knowledge
about the immunopathogenesis of those complex diseases but
may also lead to discovery of novel diagnostic and prognostic
biomarkers, as well as targets for pharmaceutical interventions in
the future.
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