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Abstract: Cell-free hemoglobin (CFH), a pro-oxidant and cytotoxic compound that is released in
hemolysis, has been associated with nephrotoxicity. Lung transplantation (LuTx) is a clinical condition
with a high incidence of acute kidney injury (AKI). In this study, we investigated the plasma levels of
CFH and haptoglobin, a CFH-binding serum protein, in prospectively enrolled LuTx patients (n = 20)
with and without AKI. LuTx patients with postoperative AKI had higher CFH plasma levels at the
end of surgery compared with no-AKI patients, and CFH correlated with serum creatinine at 48 h.
Moreover, CFH levels inversely correlated with haptoglobin levels, which were significantly reduced
at the end of surgery in LuTx patients with AKI. Because multiple other factors can contribute to AKI
development in the complex clinical setting of LuTx, we next investigated the role of exogenous CFH
administration in a mouse model of mild bilateral renal ischemia reperfusion injury (IRI). Exogenous
administration of CFH after reperfusion caused overt AKI with creatinine increase, tubular injury,
and enhanced markers of renal inflammation compared with vehicle-treated animals. In conclusion,
CFH is a possible factor contributing to postoperative AKI after LuTx and promotes AKI in an
experimental model of mild transient renal ischemia. Targeting CFH might be a therapeutic option to
prevent AKI after LuTx.

Keywords: acute kidney injury; free hemoglobin; hemolysis; lung transplantation

1. Introduction

Acute kidney injury (AKI) frequently complicates lung transplantation (LuTx) [1–3] and is
associated with increased risk of death [4–6]. The pathogenesis of AKI after LuTx is multi-
factorial, including systemic inflammation and nephrotoxic side effects of pharmacological
immunosuppression. Moreover, transient kidney hypo-perfusion with subsequent renal
ischemia reperfusion injury (IRI) and the need for extracorporeal membrane oxygenation
(ECMO) have been associated with AKI after LuTx [7,8]. In particular, the shear-stress-
induced red blood cell (RBC) damage associated with ECMO support and transfusion of
RBC units leads to hemolysis with high levels of cell-free hemoglobin (CFH) in this condi-
tion [9,10]. CFH can be toxic via interactions with nitric oxide and its pro-oxidant effects.
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Moreover, CFH can release redox reactive free heme that may damage lipids, proteins, and
DNA. In addition, CFH can translocate from the intravascular to the extravascular space
and may cause detrimental effects in the parenchyma of various organs such as the kid-
ney [11]. The nephrotoxic effects of CFH have been demonstrated in several in vitro [12,13]
and in vivo models of transfusion [14], sickle cell disease [15], and sepsis [16], but the role
of CFH in the development of AKI after LuTx is largely unknown. To investigate the role
of CFH for AKI in LuTx, we chose two approaches in this study. First, we examined the
association of plasma CFH levels with AKI in a cohort of LuTx patients. Second, because
the clinical setting of LuTx is complex and multiple factors can contribute to AKI in this
condition, a mouse model of mild experimental renal IRI was applied to determine specific
effects of CFH in transient renal ischemia. The findings suggest that CFH is a critical factor
for the pathogenesis of AKI in LuTx.

2. Results
2.1. Patient Characteristics and Pre-, Peri-, and Postoperative Factors

The clinical relevance of CFH in AKI was assessed in a cohort of LuTx patients.
The patient characteristics and pre-, peri-, and postoperative factors are detailed in Table 1.
The need for intraoperative ECMO was not different between the groups (n = 2 in the
no-AKI and n = 3 patients in the AKI-group, Table 1). The other patients underwent surgery
without extracorporeal circulation. The ischemia times of the first and second lung were
significantly higher in patients that developed postoperative AKI. The transfusion of blood
products was comparable between AKI- and no-AKI patients.

Table 1. Pre-, peri-, and postoperative data of LuTx patients (mean ± standard deviation).

All pts. n = 20 No AKI n = 10 AKI n = 10 p-Value

Patients

Age (years) 49.3 ± 11 48.7 ± 13 49.9 ± 8 0.813

Sex n (%; male/female) 10 (50)/10 (50) 4 (40)/6 (60) 6 (60)/4 (40) 0.371

Body mass index (kg/m2) 22.0 ± 3.9 21.1 ± 4.2 22.9 ± 3.5 0.773

Indication for transplantation. n (%)

COPD/emphysema 10 (50) 5 (50) 5 (50) -

Cystic fibrosis 2 (10) 1 (10) 1 (10) -

Fibrosis 6 (30) 2 (20) 4 (40) -

Other 2 (10) 2 (20) 0 (0) -

Comorbidities

Arterial hypertension. n (%) 5 (25) 3 (30) 2 (20) 0.606

Diabetes mellitus. n (%) 5 (25) 2 (20) 3 (30) 0.606

Preoperative factors

FEV 1 (%) 25.0 ± 17 26.1 ± 20 23.8 ± 15 0.773

FVC (%) 40.6 ± 18 42.8 ± 19 38.4 ± 18 0.599

Baseline serum creatinine (µmol/L) 61.0 ± 15 63.8 ± 14 58.1 ± 16 0.396

Baseline eGFR (mL/min) 106 ± 15 103 ± 20 109 ± 10 0.400

Baseline serum C-reactive protein (mg/L) 11.2 ± 13 16.4 ± 17 6.0 ± 6 0.090

ECMO pre-operative. n (%) 1 (5) 0 (0) 1 (10) 0.305

Perioperative factors

Duration of surgery (min) 302.5 ± 63 273.7 ± 44 331.2 ± 69 0.039

Ischemia time first side (min) 401.8 ± 98 356.0 ± 68 447.6 ± 105 0.033

Ischemia time second side (min) 518.8 ± 107 464.0 ± 76 573.5 ± 108 0.017

ECMO intraoperative. n (%) 5 (25) 2 (20) 3 (30) 0.606
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Table 1. Cont.

All pts. n = 20 No AKI n = 10 AKI n = 10 p-Value

Transfused packed red blood cells
(pRBCs) during surgery 1.4 ± 1.8 1.2 ± 1.5 1.6 ± 2.0 0.624

Transfused fresh frozen plasma (FFP)
during surgery 1.5 ± 1.9 1.9 ± 1.9 1.1 ± 1.9 0.380

Transfused platelets during surgery 0.3 ± 0.7 0.4 ± 0.9 0.2 ± 0.6 0.493

Serum creatinine 24 h (µmol/L) 92.8 ± 45 69.2 ± 18 116.4 ± 52 0.019

Serum creatinine 48 h (µmol/L) 87.9 ± 48 61.8 ± 18 113.9 ± 55 0.016

eGFR 24 h (mL/min) 82 ± 30 97 ± 24 66 ± 29 0.019

eGFR 48 h (mL/min) 87 ± 36 104 ± 25 73 ± 34 0.026

Reoperation. n (%) 4 (20) 1 (10) 3 (30) 0.264

Transfused packed red blood cells
(pRBC) postoperative 2.5 ± 2.0 2.5 ± 2.4 2.5 ± 1.8 1.000

ECMO postoperative. n (%) 2 (10) 1 (10) 1 (10) 1.000

Hospital stay (days) 28.2 ± 12 24.2 ± 6 32.1 ± 15 0.149

Intensive care unit treatment (days) 3.8 ± 4 2.8 ± 2 4.7 ± 4 0.257
Abbreviations: COPD, chronic obstructive pulmonary disease; ECMO, extracorporeal membrane oxygenation;
eGFR, estimated glomerular filtration rate; FEV 1, forced expiratory volume in 1 s; FVC, forced vital capacity;
h, hours; pRBCs, packed red blood cells; Tx, transplantation.

2.2. CFH and Haptoglobin Levels in LuTx Patients

Baseline CFH levels were immediately obtained after anesthesia induction. A moder-
ate increase in CFH levels was observed at the end of surgery in patients with postoperative
AKI (Figure 1A). CFH levels reached baseline values by day 1. The levels of the CFH-
binding protein haptoglobin were significantly lower compared with baseline in the AKI
group at the end of surgery (Figure 1B). The CFH levels at the end of surgery correlated
with duration of surgery (r = 0.57; p = 0.018) (Figure 1C) and serum creatinine 48 h after
LuTx (r = 0.53; p = 0.031) (Figure 1D). As a reference value for CFH, <100 µg/mL [17–20]
was considered for healthy patients. A moderate correlation between CFH levels and
ischemia times of the first (r = 0.5; p = 0.06) and second donor lung (r = 0.5; p = 0.07), which
did not reach statistical significance, was observed.

2.3. AKI and Distant Organ Injury in a Mouse Model of Mild Renal IRI and Exogenous
CFH Administration

The pathophysiological events that may cause AKI in LuTx are highly complex and
include multiple factors. To investigate the specific role of exogenous CFH in transient
renal ischemia, we applied a mouse model of short-term bilateral renal IRI (15 min).

The exogenous administration of CFH after reperfusion, but not vehicle, caused a
marked increase in serum creatinine and blood urea nitrogen (BUN) levels after 24 and
48 h (Figure 2A,B). The liver enzymes alanine-aminotransferase (ALT) and aspartate-
aminotransferase (AST) were also significantly elevated in the plasma of IRI mice treated
with CFH (Figure 2C,D), indicating that CFH may induce distant organ injury in subclinical
renal IRI. IRI-vehicle mice and sham-operated mice had normal ALT and AST levels
(Figure 2C,D).

Tubular neutrophil gelatinase-associated lipocalin (NGAL) staining was significantly
higher in IRI + CFH mice than in IRI + vehicle mice (Figure 3A,C,E), whereas sham-
operated and IRI-vehicle mice showed only minor tubular NGAL staining (Figure 3A,E).
α1-microglobulin (A1M) tubular cast formation is a sign of impaired tubular transport
function [16] and was significantly enhanced in IRI mice challenged with CFH compared
with vehicle mice (Figure 3B,D,F).
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Figure 1. Plasma-free hemoglobin (CFH, (A)) and haptoglobin levels (B) in lung transplant (LuTx)
patients with AKI (black bar) or without AKI (white bar). CFH was significantly higher at the
end of surgery in LuTx patients with subsequent AKI (A). In parallel, a marked decline in plasma
haptoglobin levels was found at the end of LuTx (B). CFH levels at the end of surgery (surg.-end)
significantly correlated with duration of surgery (C) and serum creatinine 48 h after LuTx (D).
Spearman’s r and p-values are shown. * p < 0.05, *** p < 0.001.

Proinflammatory and profibrotic cytokine expressions in the kidney tissue were mea-
sured by quantitative PCR (qPCR). CFH administered in mild renal IRI mice caused
marked renal upregulation of the proinflammatory cytokines interleukin (IL)-6 (Figure 4A),
monocyte chemoattractant protein (MCP)-1 (Figure 4B), and tumor necrosis factor (TNF)α
(Figure 4C), as well as the profibrotic cytokine plasminogen activator inhibitor (PAI)-1
(Figure 4D). The levels of these cytokines were not significantly elevated in sham surgery
or subclinical renal IRI + vehicle treatment mice.

Mice exposed to mild renal IRI + vehicle displayed only minor histological damage
(Figure 5A,E), whereas acute tubular injury (ATI) was significantly pronounced in the renal
cortex of mice exposed to IRI + CFH (Figure 5C,E). Severe neutrophil infiltration in the
outer medulla of the ischemic kidneys was present after CFH administration in renal IRI
mice (Figure 5D,F).

In summary, exposure to CFH in this mouse model of transient mild (15 min) bilateral
renal IRI caused overt AKI with kidney tissue damage and proinflammatory alterations.
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Figure 2. Serum creatinine (A), blood urea nitrogen (BUN) (B) and the liver enzymes ALT (C) and AST
(D) in mice before (baseline) and at days 1 (d1) and 2 (d2) after sham surgery (white bar) and bilateral
renal ischemia reperfusion injury (IRI) for 15 min with vehicle (grey bar) or cell free-hemoglobin
(CFH, black bar) treatment. Bilateral renal IRI (with vehicle) did not cause acute kidney injury (AKI)
in this model as evidenced by normal serum creatinine ((A), grey bar) and BUN ((B), grey bar) levels.
However, CFH administration in this model of subclinical renal IRI caused overt AKI with marked
increases in serum creatinine ((A), black bar) and BUN ((B), black bar) levels in this subclinical IRI
model. Moreover, signs of distant organ injury such as elevation of the liver enzymes ALT ((C), black
bar) and AST ((D), black bar) were observed after renal IRI with CFH administration. * p < 0.05,
** p < 0.01, *** p < 0.001.
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Figure 3. Kidney immunofluorescence staining for the renal injury marker NGAL (A,C) and the
tubular transport marker A1M (B,D) in mice 48 h after IRI with or without CFH administration.
Autofluorescence of renal tubuli is displayed in green; the NGAL or A1M staining signal is displayed
in orange. Renal IRI and vehicle treatment only induced minor tubular NGAL staining (A,E).
IRI + CFH resulted in significant increase in tubular NGAL staining (C,E). Tubular transport function
was only slightly impaired in renal IRI and vehicle treatment as indicated by A1M tubular cast
formation (B,F). However, CFH administration in mild renal IRI caused severe impairment of tubular
transport function as evidenced by significantly increased A1M cast staining (D,F). ** p < 0.01,
*** p < 0.001. Scale bar 100 µm.
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Figure 4. mRNA expressions of the proinflammatory cytokines IL-6 (A), MCP-1 (B), TNFα (C), and
the profibrotic cytokine PAI-1 (D) in mice kidney tissue were analyzed 48 h after sham (white bar),
IRI and vehicle (grey bar) and IRI + CFH administration (black bar). Renal RI with an ischemia time
of 15 min did not cause significant renal upregulation of proinflammatory or profibrotic cytokines.
In contrast, mice exposed to CFH after IRI exhibited enhanced renal expression of IL-6, MCP-1,
and PAI-1. * p < 0.05.
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Figure 5. Renal morphology (PAS staining, (A,C)) and neutrophil infiltration (immunofluorescence
for Gr-1 (B,D)) in mice 48 h after IRI with and without CFH treatment. The renal IRI model used in
this study was characterized by only minor morphological kidney damage (A,E). However, CFH
administration in renal IRI mice caused severe acute tubular injury (ATI) with loss of brush border,
tubular dilatation, and tubular cast formation (C,E). After renal IRI and vehicle treatment, minor
renal neutrophil infiltration was observed (B,F). In contrast, severe neutrophil infiltration was present
48 h after IRI and CFH treatment (D,F). * p < 0.05, *** p < 0.001. Scale bar 100 µm.
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3. Discussion

AKI occurs in 39–69% of patients after LuTx [21–25], depending on the criteria for
defining AKI [26], and is associated with increased mortality [5,6]. Multiple factors can be
relevant for the development of AKI after LuTx. Previous studies have shown that diabetic
patients [27] and patients with supratherapeutic levels of tacrolimus [28] are at increased
AKI risk following LuTx. In addition, severe arterial hypotension, intraoperative ECMO,
and red blood cell transfusion have also been described as risk factors for AKI in the setting
of LuTx [1,29–31].

So far, an association of increased CFH levels in LuTx patients and primary graft
dysfunction has been demonstrated [20], but the role of CFH in AKI following LuTx is
unknown. Transfusion of RBC units and shear-stress-induced hemolysis from ECMO are
common in LuTx and the two major sources of CFH in this setting. The rationale for the
current study was to determine the association of CFH with AKI in LuTx patients and to
investigate whether exogenous CFH administration causes AKI when combined with a
second injury factor relevant for LuTx-associated AKI: renal IRI.

In the clinical part of the study, we found that the CFH level was significantly increased
and the haptoglobin level significantly decreased at the end of LuTx surgery. Furthermore,
the levels of CFH correlated with the duration of surgery and serum creatinine levels.
Despite the small sample size, the only clinical factors that were different between AKI
and no-AKI patients in this LuTx cohort were the duration of surgery and lung ischemia,
which may be associated with a complicated course of surgery. During tissue ischemia,
free heme can be released into the circulation, which is known to be nephrotoxic [32] and
might be an additional factor contributing to AKI development. In contrast with previous
reports [30], the amount of transfused RBC units was comparable in patients with and
without AKI in the current study. This might be contradictory at first glance, because
higher CFH levels were observed in AKI patients and transfusion of packed RBCs is a
major source of CFH. However, it was shown that the CFH levels in RBC units increase
during prolonged storage periods [33]. Although transfusion of long-term stored RBC
units did not affect mortality in critically ill patients [34], it was associated with increased
AKI risk after liver transplantation [35]. Therefore, the increased CFH levels observed in
LuTx patients with AKI might be due to the transfusion of aged RBC units. Moreover, few
patients required intraoperative ECMO support, and there were no differences between
the AKI and no-AKI groups (Table 1). The rest of the patients underwent surgery without
extracorporeal circuit. Therefore, the pronounced CFH level increase in LuTx patients with
AKI might be associated with the transfusion of stored RBCs.

In the experimental part of the study, the exogenous administration of CFH was found
to promote overt AKI in subclinical renal IRI with marked serum creatinine elevation
and ATI. Moreover, we found that CFH caused tubular A1M cast formation, indicating
impairment of tubular transport function [36]. CFH induced a strong proinflammatory
milieu with enhanced the renal expression of the proinflammatory cytokines IL-6, MCP-1,
and TNFα and the severe kidney neutrophil infiltration that is usually observed after
extended renal ischemia times of 35 min [37,38]. These findings suggest that CFH is a
functional second hit that exacerbates renal IRI to overt AKI. Similar to our present findings,
administration of CFH was previously shown to cause severe AKI with tubular injury in
septic mice [16].

The current study has two limitations. First, the age of transfused RBC units was not
recorded. Future studies will address whether CFH level elevation in the plasma of LuTx
patients may correlate with the age of transfused RBC units. Second, mouse experiments
lacked a sham control group treated with CFH because Shaver et al. previously showed
that CFH administration to sham-operated mice did not cause renal injury in a mouse
model on CFH and sepsis [16].

In summary, our current study shows that increased levels of CFH correlate with AKI
in LuTx patients. The factors associated with increased CFH are prolonged lung ischemia
and duration of surgery. The increased levels of CFH inversely correlated to haptoglobin
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depletion in LuTx patients with AKI. Experimentally, the exogenous CFH administered
in subclinical renal IRI appears to cause a second hit that mediates AKI via tubular injury,
renal inflammation, and tubular transport impairment.

In conclusion, we show that CFH may have an important role in the development of
AKI after LuTx and is a causal injury factor in renal IRI. Targeting of CFH (e.g., with the
scavenger protein haptoglobin) may serve as a therapeutic approach for counteracting its
clinical toxicity in LuTx.

4. Methods and Materials
4.1. Clinical Study
4.1.1. LuTx Patients

In a cohort of 185 adult double lung transplant patients prospectively enrolled into a
clinical study at Hannover Medical School, Germany, during 2013 and 2014, n = 10 patients
with and without AKI each were randomly selected for this study to measure CFH and
haptoglobin. The study was approved by the local ethics committee (no. 6895), and written
informed consent was obtained from all patients. Patient characteristics are summarized in
Table 1. Surgical management of LuTx patients at our institution has been described previ-
ously [39,40]. LuTx surgery is usually performed without extracorporeal circulation such as
ECMO. ECMO during surgery is applied in conditions associated with severe pulmonary
hypertension or refractory hemodynamic instability [40]. All patients received initial triple
immunosuppressive therapy by tacrolimus, mycophenolate mofetil, and steroids. Postop-
erative aggressive weaning from mechanical ventilation whenever possible was intended.
The time points for sample collection were immediately recorded after anesthesia induction
(baseline), at the end of surgery (surg.-end), and on day 1 after surgery (d1).

4.1.2. Sample Preparation and Measurement of CFH and Haptoglobin

Following collection of blood from the patients’ central venous catheter, patient plasma
was obtained by centrifugation at 200× g for 10 min and the supernatant was transferred
to Eppendorf tubes and centrifuged again at 200× g for 10 min to remove residual RBCs.
The supernatants obtained were aliquoted and immediately stored at −80 ◦C until further
analysis. CFH (LSBio, Seattle, WA, USA) and haptoglobin (Abcam, Cambridge, UK) were
measured using a commercially available ELISA kit in accordance with the descriptions
from the manufacturer.

4.1.3. AKI Definition

AKI was graded according to the Kidney Disease Improving Global Outcomes (KDIGO)
criteria [41] into stage I–III based on serum creatinine (sCr) elevation during 48 h post-
surgery as follows: stage I: sCr increase by 1.5- to 1.9-fold from baseline or absolute sCr
increase by ≥0.3 mg/dL (≥26.5 µmol/L); stage II: sCr increase by 2.0- to 2.9-fold from base-
line; stage III: sCr increase by 3.0-fold from baseline or absolute sCr increase by≥4.0 mg/dL
(≥353.6 µmol/L) or initiation of renal replacement therapy.

4.2. Experimental Study
4.2.1. Animals

Male CD1 mice (7 weeks of age, body weight 30–35 g) purchased from Charles River
(Sulzfeld, Germany) and housed at the Institute of Laboratory Animal Sciences, Hannover
Medical School (Hannover, Germany) were used for the experiments. All mice had free
access to drinking water and food and were kept under a day/night cycle of 14/10 h.
All experiments were approved by the local animal protection committee of the Lower
Saxony State department for animal welfare and food protection (33.19-42502-04-14/1657,
Germany). Mice were monitored daily for physical condition after surgery.
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4.2.2. Renal Ischemia Reperfusion Injury (IRI)

Isoflurane was used for anesthesia (3% induction, 1–2% maintenance) and butorphanol
(1 mg/kg) for analgesia. IRI was induced by bilateral renal pedicle clamping with a micro
aneurysm clip (Aesculap, Tuttlingen, Germany) for 15 min, and reperfusion was visually
assessed. Sham surgery with opening of the abdominal cavity for 15 min, but without
manipulation of the renal vessels served as control. CFH (isolated from human packed
red blood cells) was intravenously administered at a dose of 2.5 mg/mouse immediately
after reperfusion. The vehicle group received injection of CFH buffer (20 mM Tris HCl,
100 mM NaCl, 0.1 mM CaCl2, pH 8.0, 5 µL/g). N = 5 mice from each group were used
for experiments.

4.2.3. Organ Preservation

Mice were sacrificed in deep general anesthesia (5% isoflurane) at 48 h after IRI, and
organ retrieval was performed. After midline laparotomy, whole-body perfusion with
ice-cold 0.9% PBS via the left cannulated ventricle resulted in circulatory arrest. Organs
were dissected and fixed in RNA and later in 4% paraformaldehyde or shock-frozen in
liquid nitrogen.

4.2.4. Measurement of Serum Creatinine, BUN and Liver Enzymes

Serum creatinine, BUN, ALT, and AST levels were measured using an Olympus AU400
Chemistry Analyzer (Backman Coulter, California, CA, USA).

4.2.5. Cytokine Expression

Total mRNA was isolated from cross-sectioned kidney slices using an RNeasy Mini Kit
(Qiagen, Hilden, Germany), and cDNA was subsequently synthetized with Prime Script Re-
verse Transcriptase reagent (Takara, Japan) from DNase-treated total RNA. A LightCycler 96
(Roche, Penzberg, Germany) was used to conduct qPCR. The following primers were used:
interleukin-6 (IL-6, Qiagen, #QT00098875), monocyte chemoattractant protein-1 (MCP-1,
Qiagen, #QT00167832), tumor necrosis factor alpha (TNFα, Qiagen, #QT00104006), and plas-
minogen activator inhibitor 1 (PAI-1, BioTez, Berlin, Fwd:5′-ATGTTTAGTGCAACCCTGGC-
3′, Rev: 5′-CTGCTCTTGGTCGGAAAGAC-3′). Hypoxanthine phosphoribosyl transferase
(HPRT, Qiagen, #QT00166768) served as housekeeper for normalization.

4.2.6. Renal Morphology and Immunofluorescence

After paraffin embedding, 2 µm sections were cut and stained with periodic acid
Schiff (PAS) according to standard protocols. Acute tubular injury (ATI) scoring was
conducted as previously described [36] in the renal cortex using a semiquantitative grading
system: 0 = focal ATI with <5% of tubuli of the cortex affected, 1 = mild ATI with 5–25% of
tubuli affected, 2 = moderate ATI with 26–50% of tubuli affected, 3 = severe ATI with
51–75% of the tubuli affected, and 4 = very severe ATI with >75% of tubuli affected.
Immunofluorescence was performed with the following antibodies: Gr-1+ for neutrophils
(Ly-6G/Ly-6C+, Serotec, UK), NGAL (Dianova, Biozol, Germany) and A1M (polyclonal
rabbit anti-mouse A1M “Sven”, Lund, Sweden). Tubulointerstitial neutrophil infiltration in
the outer medulla was semiquantitatively scored using the following score 0: <5 cells/view
field (VF), 1: 5–10 cells/VF, 2: 11–20 cells/VF, 3: 21–50 cells/VF, and 4: >50 cells/VF, as
previously described [37]. Tubular NGAL staining was semiquantitatively assessed using
the following scoring system: 0 = <5% of tubuli displaying NGAL staining, 1 = NGAL
staining in 5–25% of tubuli, 2 = NGAL staining in 26–50% of tubuli, 3 = NGAL staining
in 51–75% of the tubuli, and 4 = NGAL staining in >75% of tubuli. A1M tubular cast
formation was quantified as percentage of the affected tubuli in 10 different areas. Analysis
was conducted on a Leica imaging microscope (Leica, Wetzlar, Germany) at 200-fold
magnification. Investigators were blinded to the group assignment. Images were captured
with the same magnification.



Int. J. Mol. Sci. 2022, 23, 13272 12 of 14

4.2.7. Statistical Analysis

Statistical analysis of the CFH and haptoglobin levels in the clinical study and the
results of the experimental study was performed with GraphPad Prism, version 5.0 (Graph-
Pad Software, San Diego, CA, USA). IBM SPSS Statistics, version 26 (SPSS Inc., IBM
Corporation, Chicago, IL, USA) was used to determine the Spearman correlation of CFH
with duration of surgery and s-creatinine level after 48 h and to perform statistical anal-
ysis of clinical patient data. The Mann–Whitney test was used to compare numerical
data and Fisher’s exact test and the Chi-square test to compare categorical data. Multiple
comparisons were analyzed by one-way ANOVA or Kruskal–Wallis, and group means
were compared using Tukey’s post hoc test. Experimental data are reported as mean
value ± standard error of the mean (SEM). p-values < 0.05 were accepted as significant.
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