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Many mammalian genes are clustered on the genomes, and hence the genes in the same cluster can be regulated through a common
regulatory element. We indeed showed previously that the perilipin/PEX11α gene pair is transactivated tissue-selectively by PPARγ
and PPARα, respectively, through a common binding site. In the present study, we identified a gene, named GSPA, neighboring
a canonical PPAR target, acyl-CoA oxidase (AOX) gene. GSPA expression was induced by a peroxisome proliferator, Wy14,643,
in the liver of wild-type mice, but not PPARα-null mice. GSPA and AOX share the promoter and two peroxisome proliferator-
response elements. GSPA mRNA was also found in the heart and skeletal muscle, as well as 3T3-L1 cells. GSPA encodes a protein
of 161 amino acids that is enriched in 3T3-L1 cells. Even other gene pairs might be regulated through common sequence elements,
and conversely it would be interesting how each gene is aptly regulated in clusters.

Copyright © 2006 Mst. Hasina Akter et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

INTRODUCTION

Recent analyses of human and other mammalian genomes
have revealed that unexpectedly a large number of protein-
coding genes are clustered [1], being arranged head-to-head,
tail-to-head, or tail-to-tail. More recent comprehensive stud-
ies [2] revealed that more than 60% of the mouse genome
is transcribed into RNA, often for both strands in the same
regions. Many of the RNA products do not seem to code for
proteins [3], and most of such noncoding RNAs are yet un-
characterized.

Given such clustered arrangements of transcribed re-
gions, it would be inferred that two or more clustered genes
(or transcriptional units) are possibly regulated by common
cis-elements in considerable number of instances. Clustered
genes with related functions formed by gene duplication,
for example, the β-globin gene cluster [4] and albumin/α-
fetoprotein gene pair [5], have been known to be regulated
by common enhancers. However, it is expected that even
functionally and structurally unrelated genes can be regu-
lated by a common mechanism, simply because a regulatory
element for one gene is located close to the other in a clus-
ter. We have indeed reported that the genes of PEX11α, a

peroxisome biogenesis factor, and perilipin, a lipid droplet-
coating protein, are regulated by peroxisome proliferator-
activated receptor (PPAR) subtypes through a common cis-
element [6]. The PEX11α and perilipin genes are arranged
in tandem in this order, with the same transcriptional ori-
entation. A common peroxisome proliferator-response ele-
ment (PPRE), which serves as a binding site of PPAR/RXR
heterodimer [7], is located within the spacer region, 8.4 kb
downstream of the PEX11α promoter, whereas 1.9 kb up-
stream of the perilipin promoter. In the liver, this PPRE con-
fers the action of PPARα, leading to the induction of PEX11α
by the PPARα ligands, peroxisome proliferators. On the other
hand, in the adipose tissue, the same PPRE is recognized
by PPARγ, hence resulting in the expression of perilipin de-
pendent on adipogenesis. The differential regulation of these
genes is probably attained by the differential expression of
the two PPAR subtypes in the liver and adipose tissue, and
also by the differences in the positions and/or distances of
the PPRE relative to the promoters. Differential interactions
with other transcriptional factors also seem important [8].
One of such factors is NF-I, which is required for the activa-
tion of perilipin gene by PPARγ, but not for that of PEX11α
gene by PPARα.
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To examine the generality of such common regulatory
mechanisms for clustered genes, we searched in the mouse
EST databases for transcripts that start from positions close
to the promoters of known PPAR target genes. We report
here the identification of a gene that is transcribed in the op-
posite orientation from the promoter of acyl-CoA oxidase
(AOX) gene, a canonical target of PPARα. This gene also
shares the PPARα target sites with the AOX gene.

MATERIALS AND METHODS

Construction of reporter plasmids

We first searched for a gene that is mapped close to estab-
lished PPAR target genes in the mouse genome. Using NCBI
Mouse Genome Resources, we found a gene, named GSPA in
this work, which is located just upstream of the AOX gene
in the opposite orientation (see “results”). For constructing
reporter plasmids, we amplified appropriate DNA fragments
by PCR from a mouse BAC clone, RP23-174D24. For GSPA,
fragment encompassing positions−161 through 483 (for po-
sition numbers, see Figure 1(b)), which contained the basal
promoter, exon 1, and the early part of intron 1, was ampli-
fied with primers 1F, 5′-AGGAGGTGGCGACAGAAGTG-3′

and 1R, 5′-CAACGACAATGAACCGTCTCC-3′. This frag-
ment was inserted into the EcoRV site of pBluescript KS(-)
(Stratagene), yielding plasmids, pBSfr1-1 and pBSfr1-2. The
fragment was inserted in opposite orientations in these plas-
mids, the HindIII site of the multicloning region being on
the upstream and downstream sides relative to the insert, re-
spectively. Another genomic fragment, encompassing from
the position 340 bp upstream of intron 1/exon 2 boundary
to the 39th position of exon 2 of GSPA, was amplified us-
ing a primer pair 2F, 5′-ACCTCTGCAGGCCCATGCTG-3′

and 2R, 5′-ACCAGGATCCAAATCGTTGGC-3′. This frag-
ment was inserted into the EcoRV site of pBluescript-KS(-
), yielding pBSfr2, in which the HindIII site of the vector
is located on the upstream side. The insert of pBSfr1-2 was
cleaved out with HindIII and SalI, and inserted between the
HindIII and SalI sites of pBSfr2. The resulting plasmid, pB-
Sfr1/2, contains GSPA sequences for the basal promoter, exon
1, parts of intron 1, one of which containing the two pu-
tative PPREs, and a part of exon 2 before the putative ini-
tiation codon. A stretch of 5133 bp in the middle portion
of intron 1 was removed, to reduce the plasmid size. It was
expected that transactivation by PPARα would be observed
even with this partially deleted construct, if the putative
PPREs have sufficient functions as in the rat AOX gene. pB-
Sfr1/2 was cleaved with ApaI, blunt-ended with Klenow frag-
ment, and then cleaved with BamHI. The GSPA-derived se-
quence was isolated and inserted between the SmaI and BglII
sites of a promoter-less luciferase reporter vector, pGVBΔ, in
which the SV40 small T intron was eliminated from pGVB
(Toyo Ink) to prevent aberrant splicing [9]. The final prod-
uct, pGSPAluc, was used for the reporter assay to monitor the
activation by PPARα. For constructing the AOX reporter, the
insert of pBSfr1-1 was cleaved out with SmaI and HindIII,

and inserted between the SmaI and HindIII sites of pGVBΔ,
yielding pMmAOXluc, where the mark “Mm” was attached
for discriminating the construct from the rat AOX reporters
already described [10]. In this construct, the genome-derived
sequence was inserted in the vector, in the same orientation
as that of AOX, that is, reverse to that of GSPA. A trun-
cated reporter plasmid, pMmAOXBluc, was constructed by
removing the region between positions 21 and 483 from pM-
mAOXluc, exploiting an internal KpnI site (see Figure 1(b)).
pMmAOXBluc lacked both putative PPREs, while retaining
the sequence corresponding to the rat AOX minimal pro-
moter [11].

Site-directed mutagenesis

Mutant reporter constructs in which the putative PPREs,
PPRE-1, PPRE-2, or both, were destroyed were created
by the PCR-based overlap extension method [12]. The
following oligonucleotides carrying base substitutions in
the PPRE-1 or PPRE-2 portion were used: mutPPRE-
1F, 5′-AAAGGGTAACctcgagAAGGTTACGT-3′; mutPPRE-
1R, ACGTAACCTTctcgagGTTACCCTTT-3′; mutPPRE-2F,
5′-AAAGCAAGGTAAAAGcgatAGGGAC-3′; and mutPPRE-
2R, 5′-GTCCCTatcgCTTTTACCTTGCTTT-3′, where un-
derlines denote the sequences corresponding to PPREs, small
letters representing mutated bases. Two other primers de-
signed so as to match the vector sequences outside the in-
serts were also used: pGVB-uni, 5′-TGTATCTTATGGT-
ACTGTAACTG-3′, positioned upstream of the polylinker
region; Luc-rev, 5′-ATGTTTTTGGCGTCTTCCA-3′, posi-
tioned just downstream of the luciferase initiation codon
in the antisense direction. For PPRE-1 mutation in the
GSPA reporter, the first PCR was performed using primer
pairs, pGVB-uni/mutPPRE-1R and mutPPRE-1F/Luc-rev,
employing pGSPAluc as a template. The PCR products were
mixed, denatured, reannealed, and subjected to the second
round of PCR, using a primer pair, pGVB-uni/Luc-rev. The
product was digested with PstI, and used to replace the corre-
sponding PstI/PstI region of pGSPAluc, yielding the PPRE-1
mutant construct, pGSPA(mutPPRE-1)luc. For PPRE-1 mu-
tation in the AOX reporter, oligonucleotide pairs pGVB-
uni/mutPPRE-1F and mutPPRE-1R/Luc-rev were used as
primers, and pMmAOXluc as a template, in the first round
of PCR. The second PCR was performed as above, and
the product was used to replace the SmaI/HindIII region
of pMmAOXluc, yielding pMmAOX(mutPPRE-1)luc. The
PPRE-2 mutants, pGSPA(mutPPRE-2)luc and pMmAOX-
(mutPPRE-2)luc, were constructed by similar procedures
as above, except for using mutPPRE-2F and mutPPRE-2R
primers instead of mutPPRE-1F and mutPPRE-1R, respec-
tively. The double mutation constructs, pGSPA(mutPPRE1/
2)luc and pMmAOX(mutPPRE1/2)luc, were created by mu-
tating PPRE-2 of pGSPA(mutPPRE-1)luc and pMmAOXluc-
(mutPPRE-1)luc. All PCR procedures were performed using
KOD-plus DNA polymerase (Toyobo), and presence of de-
sired mutations and absence of unexpected mutations were
confirmed by DNA sequencing.
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Figure 1: Continued.

Reporter assays

HeLa cells were cultured in 12-well plates and transfected
with DNA by a calcium phosphate method. For each well,

transfection was performed using plasmid mixtures com-
posed of 0.8 μg of a reporter plasmid, 0.1 μg of a PPARα ex-
pression vector, pNCMVPPARα, as necessary, and 0.2 μg of
pCMVβ as an internal control. Total amount of DNA was
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Figure 1: Identification of GSPA in the mouse genome. (a) GSPA is positioned closely adjacent to the AOX gene in the opposite orientation.
Exons are shown with boxes and numbered. For AOX gene, only exon 1 is presented, starting from the minor transcriptional initiation site.
Open, filled, and gray areas indicate noncoding, GSPA-coding, and AOX-coding regions, respectively. Closed circles denote two PPRE-like
motifs. In the enlarged view, exon 1 of each gene is depicted together with the transcriptional orientation shown with horizontal arrow.
(b) Alignment of mouse and rat genomic sequences around the transcriptional initiation sites of GSPA and AOX genes including the two
PPRE-like motifs. Nucleotide numbers are shown starting from the transcriptional initiation site of GSPA, with increasing numbers in the
direction of GSPA transcription. Exon 1 of GSPA, mouse AOX, and rat AOX are boxed with solid, broken, and chain lines, respectively.
Major and minor transcriptional initiation sites of the genes are indicated with large and small arrows, respectively, pointing the direction
of transcription. Closed circles, asterisks, and dashes denote two PPRE-like motifs, nucleotides conserved between mouse and rat, and gaps,
respectively. Horizontal arrows indicate sites of PCR primers 1F and 1R, used for reporter construction. (c) cDNA and predicted amino acid
sequences of mouse GSPA. Nucleotides and amino acids are numbered taking the first letter of the predicted initiation codon and initiator
methionine as 1, respectively. Nucleotides of the 5′ noncoding region are indicated with negative numbers. Amino acids are presented with
single-letter codes, asterisk indicating a stop codon. Triangle denotes the position of intron insertion. Horizontal arrows and underline
indicate the sites of primers for RT-PCR and polyadenylylation signal, respectively.

kept at 1.5 μg/well by the addition of appropriate amount
of an empty vector, pCMX. Other experimental conditions
were as described previously [6].

Reverse transcription (RT)-PCR

Expression of GSPA in the tissues of wild-type and PPARα-
null mice was estimated by RT-PCR. Mice were fed ad libitum

with a laboratory chow containing or not containing a
peroxisome proliferator, Wy14, 643. RNA from undiffer-
entiated and differentiated 3T3-L1 cells were also ana-
lyzed. The following primers were used: GSPA-F, 5′-GA-
AGCACACTGCGAACATTTG-3′; and GSPA-R, 5′-TGTC-
ACTGGGAATCGATTGAG-3′. Other experimental condi-
tions and primer sequences were as described previously
[13].
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Western blotting

Expression of GSPA protein (GSPAp) in mouse tissues as well
as 3T3-L1 preadipocytes and adipocytes were estimated by
Western blotting. An antibody to GSPAp was raised in rab-
bits, using glutathione S-transferase (GST)-fused GSPAp ex-
pressed in Escherichia coli. Proteins were separated by SDS-
PAGE using a 13% polyacrylamide gel. Other experimental
procedures were as described previously [13].

Electrophoretic gel-mobility shift assay (EMSA)

A 32P-labeled double-stranded oligonucleotide contain-
ing the rat AOX PPRE-1 was used as a probe, as de-
scribed in [10]. Oligonucleotides encompassing mouse
AOX/GSPA PPRE-1, PPRE-2, and their mutant versions
were used as competitors. They were composed of the fol-
lowing sequences and the respective complements: PPRE-1,
5′-AAAGGGTAACAGGACAAAGGTTACGT-3′; mutPPRE-
1, 5′ -AAAGGGTAACctcgagAAGGTTACGT-3′; PPRE-2, 5′-
AAAGCAAGGTAAAAGGTCAAGGGAC-3′; and mutPPRE-
2, 5′-AAAGCAAGGTAAAAGcgatAGGGAC-3′. Assays were
carried out as described in [10], using a maltose binding pro-
tein (MBP)-fused PPARα and GST-fused RXRα.

RESULTS

Identification in silico of a gene sharing
the promoter with the AOX gene

We searched for a gene that is located near a known PPAR tar-
get gene in the NCBI mouse genome map. Several EST clones
derived from the same transcript (eg, AK009156 (Riken
2310004N24)) were found to be mapped in the upstream re-
gion of AOX gene (Acox1; GI:66793428) (Figure 1(a)), on the
mouse chromosome 11. The gene corresponding to Riken
2310004N24 and the AOX gene seem to share the promoter,
being transcribed in the opposite orientations. Hence, we
named the gene corresponding to Riken 2310004N24, GSPA
(a gene sharing a promoter with the AOX gene). GSPA is con-
stituted by four exons, spanning 17, 268 bp. Upon closer in-
spection of the promoter region, the first exons of GSPA and
AOX overlap to each other (Figure 1(b)), according to the
RefSeq of AOX mRNA (NM 015729.2). However, a vast ma-
jority of mouse AOX EST clones start at more downstream
positions (eg, AK054446.1; Figure 1(b)), and hence, with re-
gard to the major AOX start site, the GSPA and AOX genes
are arranged head-to-head, separated by a small space. The
nucleotide sequences of the GSPA/AOX promoter regions are
well conserved between mouse and rat (chromosome 10).
The major transcription start site of the rat AOX gene has
been mapped more downstream as compared with that of
the mouse AOX gene, with several minor initiation sites po-
sitioned more upstream [14], close to the major start sites
of mouse AOX gene. GSPA has an ORF starting from the
first ATG triplet located in exon 2, encoding a hypothetical
protein of 161 amino acid residues (BAB26112; Figure 1(c)),
which is the longest ORF predictable from the cDNA se-
quence.

Wild type PPARα (�/�)

Wy14,643

GSPA

AOX

36B4

1 2 3 4 5 6 7 8

� � + + � � + +

Figure 2: GSPA is a target gene of PPARα. RT-PCR was performed
with RNA samples from two animals for wild type or PPARα-null
mice treated or not with Wy14,643. A ribosomal subunit gene,
36B4, was used as a control unaffected by Wy14, 643. PCR was per-
formed for 30, 22, and 26 cycles for GSPA, AOX, and 36B4, respec-
tively. Other experimental conditions were as described in [13].

GSPA is a target gene of PPARα

The PPRE of rat AOX gene is best characterized among oth-
ers, being located 560 to 572 nucleotides upstream of the ma-
jor cap site, corresponding to PPRE-1 in Figure 1(b) [11, 15].
This element is conserved in the mouse genome, with a sin-
gle nucleotide deviation. These elements of rat and mouse
have one and two mismatches as compared with the consen-
sus PPRE sequence (AGGTCA N AGGTCA) [7], respectively.
In the mouse genome, another PPRE-like sequence, PPRE-2,
was found at positions 161 to 173 nucleotides upstream of
the AK054446.1 start site. This element was conserved in the
rat with a single base mismatch, and the deviation from the
PPRE consensus sequence is one for the mouse and two for
the rat, respectively. While PPRE-1 is located in the first in-
tron with respect to GSPA, PPRE-2 encompasses the exon
1/intron 1 junction of GSPA. Previous studies established
that the rat AOX gene is regulated by PPARα through the
PPRE-1 [10, 11, 15], while the role of PPRE-2 was not noted.
Because the mouse AOX gene is also regulated by PPARα,
PPRE-1 and/or PPRE-2 were likely to serve as functional
PPREs, and it was further expected that GSPA is also regu-
lated by the same mechanism through the same PPRE(s).

To examine this possibility, we studied the induction of
GSPA expression by a peroxisome proliferator, Wy14,643,
in comparison with that of AOX. Liver RNA was prepared
from the wild-type and PPARα-knockout mice, fed with or
without Wy14,643, and analyzed for gene expression by RT-
PCR (Figure 2). In the wild-type mice, GSPA was markedly
induced by the drug, whereas in the PPARα-null mice, no
induction was observed. For AOX, PPARα-dependent in-
duction by Wy14,643 was confirmed as reported previously
[6, 16]. Thus, GSPA is a bona fide target of PPARα.

Both PPRE-1 and PPRE-2 are involved in
the transcriptional regulation of GSPA and AOX

To assess the roles of these putative PPREs, we performed
gene reporter assays with respect to both AOX and GSPA
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Figure 3: Both PPREs contribute to the PPARα-dependent transactivation of GSPA and AOX. (a) Schematic view of the reporter constructs.
Upstream and intron regions are depicted with horizontally long boxes, whereas exons with vertically long gray boxes. Nucleotide numbers
correspond to those in Figure 1(b). The −161/483 region was included in common in both pGSPAluc and pMmAOXluc in opposite orien-
tations. Only parts of 5′ noncoding stretches of exon 2 of GSPA and exon 1 of AOX were included in the respective reporters. In pGSPAluc,
whole exon 1 that is noncoding and intron 1 were included, while a 5.1 kb region in the middle of intron 1 was omitted. pMmAOXBluc was
also prepared as to lack both PPRE-1 and PPRE-2, but retained the GC-rich region. (b) and (c) Reporter assays for GSPA and AOX expres-
sions, respectively. pGSPAluc, pMmAOXluc, and their mutants involving PPRE-1 (mutP1), PPRE-2 (mutP2), or both (mutP1/mutP2) were
transfected into HeLa cells with or without a PPARα expression plasmid, and after transfection, the cells were cultured in the presence or
absence of Wy14, 643. For AOX, a minimal promoter vector, pMmAOXBluc, was also employed. Letters “pMm” are omitted from the names
of plasmids in the figure. In both (b) and (c), the luciferase activities are shown as relative values, taking the values of respective wild-type
constructs in the absence of PPARα expression plasmid and Wy14643, as 1. Mean values of three independent assays are given, together with
standard deviations. The actual mean luciferase activity values in the presence of both PPARα and Wy14, 643 were 2.15× 106 and 2.37× 107

luciferase units for pGSPAluc and pMmAOXluc, respectively.

transcriptional orientations. For AOX, an upstream re-
gion containing both PPRE-1 and PPRE-2, as well as the
basal promoter region (nucleotide positions 483 to −161 in
Figure 1(b)) was placed upstream of the luciferase reporter

gene (Figure 3(a)). On the other hand, for GSPA, a region
encompassing the basal promoter starting at −161, exon1,
intron 1, and the early part of exon 2 up to 8 nucleotides be-
fore the initiation codon was inserted in a luciferase reporter
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vector. The inserts were oriented so that transcription would
occur in the same directions as those of natural AOX and
GSPA, respectively. Mutants were created in these reporter
plasmids, in which one of the half-sites was broken for PPRE-
1, PPRE-2, or both. For AOX, a reporter construct carry-
ing only the minimal promoter (positions 21 to −161 in
Figure 2), pMmAOXBluc, was also created. In reporter as-
says with HeLa cells, the reporter expression was significantly
enhanced by cotransfection of a PPARα expression vector,
which was further promoted by the addition of Wy14,643
for both AOX and GSPA (Figures 3(b) and 3(c)). The activa-
tion by PPARα was significantly reduced by a single mutation
of either PPRE-1 or PPRE-2, and further diminished by the
double mutations involving both PPRE-1 and PPRE-2, for
both AOX and GSPA. The residual transactivation by PPARα
and Wy14,643 of the double mutant construct was possibly
due to yet uncharacterized element(s) in the genome region
studied, or cryptic PPRE(s) in the vector. These results sug-
gest that PPRE-1 and PPRE-2 function in the transcriptional
activation by PPARα for both AOX and GSPA, synergistically.
It should be noted that the luciferase activity of pMmAOXluc
was about 10 times higher than that of pGSPAluc, for the
values in the presence of both PPARα and ligand. Thus, the
shared promoter functions much more efficiently for tran-
scription in the direction of AOX than that of GSPA. This re-
sult was consistent with that of RT-PCR (Figure 2), in which
GSPA required more cycles of PCR as compared with those
for AOX, to obtain comparable intensities of signals.

PPARα/RXRα heterodimer binds to
both PPRE-1 and PPRE-2

To examine whether these putative PPREs are recognized
by PPARα/RXRα heterodimer, we performed EMSA, us-
ing fusion proteins MBP-PPARα and GST-RXRα. Rat AOX
PPRE was used as a probe, and the wild type as well as
mutant PPRE-1 and PPRE-2 were tested for the ability to
compete with the probe for binding. Under the experimen-
tal conditions, PPARα alone did not exhibit a band with
the probe, though RXRα did, probably representing ho-
modimeric binding (Figure 4, lane 3). Mixed addition of
PPARα and RXRα yielded another band corresponding to
the heterodimer (lane 4). This band was efficiently com-
peted by the unlabeled probe itself, PPRE-1, and PPRE-
2 (lanes 5, 6, and 8), but not by the mutant sequence of
PPRE-1 or PPRE-2 (lanes 7 and 9). Thus, both PPRE-1 and
PPRE-2 served as efficient PPARα/RXRα binding sites in
vitro.

Expression of GSPA transcript and the protein product

PPARα is also abundantly expressed in mouse tissues
other than the liver, for example, the heart [15]. In ad-
dition, adipose tissue is a major site of PPARγ action.
Accordingly, we examined the expression of GSPA in
the mouse heart and skeletal muscle, as well as 3T3-L1
preadipocytes and adipocytes, in comparison with AOX ex-
pression (Figure 5(a)). By RT-PCR, the AOX transcript was
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Figure 4: Both PPRE-1 and PPRE-2 serve as effective binding sites
for the PPARα/RXRα heterodimer. EMSA was performed using
MBP-PPARα and GST-RXRα expressed in E coli, using the rat AOX
PPRE (corresponding to PPRE-1), as a probe. Competitors were rat
AOX PPRE (unlabeled probe; r1), mouse PPRE-1 (m1) or its mu-
tant (m1M), and mouse PPRE-2 (m2) or its mutant (m2M). Shifted
bands with PPARα/RXRα heterodimer and RXRα homodimer are
indicated, together with that of free probe.

found to be induced by Wy14, 643 in the heart and skeletal
muscle as in the liver, being consistent with a previous re-
sult [13]. In 3T3-L1, AOX RNA was significantly increased
upon differentiation. The GSPA transcript was also found in
all these tissues and cells, at comparable levels as that in the
liver. Fold induction of GSPA RNA by Wy14,643 in the heart
and skeletal muscle was smaller than that in the liver, due
to higher basal expression in the heart and skeletal muscle.
Similar levels of GSPA mRNA were detected for differentiated
and undifferentiated 3T3-L1 cells. Thus, the basal expression
of AOX and GSPA seems to be differentially regulated in dif-
ferent tissues and cells, albeit directed by the common pro-
moter.

We next examined whether GSPA encodes a protein. For
this purpose, we raised an antibody to predicted GSPA pro-
tein product (GSPAp), using a GST-GSPAp fusion protein
expressed in E. coli as an antigen. The antiserum recognized
GSPAp effectively, judged by the reactivity with both the fu-
sion proteins of GSPAp with GST and GFP (data not shown).
Presence of GSPAp was examined by Western blotting, for
protein samples from the heart and liver of mouse fed with
or without Wy14, 643, as well as 3T3-L1 preadipocytes and
adipocytes. The antibody recognized an extra band for the
extract of HeLa cells transfected with a GSPA expression vec-
tor as compared with that of the control cells (Figure 5(b);
lanes 1 and 2). We judged this band to be representing
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Figure 5: GSPA mRNA is expressed in a wide range of PPAR-
expressing tissues and cells, while GSPA protein is exceedingly
abundant in 3T3-L1 preadipocytes and adipocytes. (a) RT-PCR of
RNA samples from the mouse heart, liver, and skeletal muscle, as
well as 3T3-L1 preadipocytes (Pre) and adipocytes (Ad). Wild-type
mice were fed with or without Wy14, 643, two animals being used
for each condition. RT-PCR was performed as in Figure 2. (b) West-
ern blotting of protein samples from the mouse heart and liver, as
well as 3T3-L1 preadipocytes (Pre) and adipocytes (Ad). Extracts
prepared from HeLa cells transfected with a GSPA-expression vec-
tor (G) and an empty vector (V) were analyzed in parallel to reveal
the band position of GSPAp. Ch and Wy, tissue extracts from the
mice fed normal chow or Wy14, 643-containing diet, respectively.
Anti-GSPAp antiserum was used at 200-fold dilution. Membrane
was reprobed with anti-lactate dehydrogenase (LDH) antibody as a
loading control. Other conditions were as described previously [13].
All samples were analyzed in a single gel. Positions of size markers
(in kd) are shown on the right.

GSPAp, although the estimated size (27 kDa) of the band
was apparently larger than the calculated molecular mass of
GSPAp (18.1 kDa). A band was detected for 3T3-L1 samples
at the same position with that of GSPAp, at similar levels in
the adipocytes and preadipocytes, consistent with the result
of RT-PCR. A much fainter band of the same size was also
observed for the heart and liver samples, apparently being
induced by Wy14, 643. On the other hand, a corresponding
band was not detected for skeletal muscle (data not shown).
Thus, GSPA indeed encodes a protein product, but the con-
tent of the protein is highly variable among cell types, despite
comparable mRNA levels.

DISCUSSION

In the present paper, we have identified a mouse gene, GSPA,
as a novel target of PPARα on the mouse genome. GSPA is
located closely adjacent to the AOX gene, transcribed in the
orientation opposite to the latter. The transcriptional start
site of GSPA is separated by less than 70 nucleotides from
the predominant start site of AOX, or the transcripts of these
genes even overlap, with regard to the minor AOX transcript.
Hence, these genes are driven by a common promoter, which
is GC-rich, while lacking a TATA-box. It has been pointed
out that such TATA-less promoters often confer bidirectional
transcription from less defined initiation sites [17, 18].

GSPA and AOX also share the PPREs. Two PPREs, PPRE-
1 and PPRE-2, were found in the first intron of GSPA,
whereas in the upstream region of AOX major transcrip-
tional start site. Both of them are functional, acting syner-
gistically in driving transcription of both GSPA and AOX. In
the previous studies on the rat AOX, only an element corre-
sponding to PPRE-1 was noted in gene reporter assays [11].
As compared with the idealized sequence of nuclear receptor-
binding half-site, AGGTCA, mouse PPRE-1 is deviated at
two positions, one in each half-site, whereas mouse PPRE-2
at only one position. On the other hand, rat PPRE-1 deviates
by only one nucleotide from the consensus, while rat PPRE-
2 carries two mismatches in one of the half-sites. These dif-
ferences in the nucleotide sequences probably result in the
different functions of these elements in the transcriptional
regulation in the two species.

This is the second example of PPRE(s) shared by two
genes. In the first case, the PEX11α/perilipin gene pair, the
two genes are oriented in the same direction, and each gene
is activated by PPARα and PPARγ, selectively in a tissue-
specific manner [6]. In contrast, in the present case, the
two genes are oriented in the opposite directions, and both
genes are activated by PPARα. In view of the recent reports
that many mammalian genes are clustered in the genomes
[1], and more than 60% regions of the mouse genome are
transcribed [2], any PPREs as well as other transcriptional
regulatory sites can be by chance positioned close to more
than two genes. Hence, even more cases of shared regu-
latory elements would be found in future. Indeed, for ex-
ample, a bidirectional promoter has been recently reported
for Gabpα/ATP synthase coupling factor 6 genes [19]. If the
neighboring genes are functionally related, they would be ad-
equately regulated by similar mechanisms through common
regulatory elements. Neighboring genes, however, might not
necessarily have related functions. In such situations, a pair
of genes must be regulated independently, and hence the in-
fluence of a given regulatory element must be restricted for
one gene, whereas the other gene must appropriately be in-
sulated from it. Elements having functions similar to those of
“insulators” or “enhancer blockers,” which are usually imag-
ined to function in blocking long-range enhancer actions
[20], might also be involved in more nearby regulatory in-
teractions.

Despite the sequence conservation in the GSPA/AOX
promoter region between mouse and rat, it is not clear at
present whether GSPA is transcribed into RNA in the rat.
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Although considerable number of cDNA sequences appar-
ently derived from this genomic region have been deposited
in the rat EST databases, most of them are annotated to be
oriented opposite to the mouse GSPA. In human, on the
other hand, an EST clone homologous to GSPA is found in
the database (BC047782). In addition, another EST sequence
(AK097104) has been deposited, which further extends than
the mouse GSPA cDNAs on the 3′ side, continuing into the
exon sequences of neighboring gene, CDK3. It seems doubt-
ful whether the latter human cDNA represents a physiologi-
cally relevant transcript. Sequence of the promoter region of
human AOX is less conserved as compared with the mouse
and rat counterparts, neither PPRE-1 nor PPRE-2 being re-
tained. Human AOX is not likely to be induced by peroxi-
some proliferators [21], though a potential PPRE sequence
has been noted in a far upstream region [22].

We found that GSPA is widely expressed in tissues where
PPARα plays a regulatory role, such as liver, heart, and skele-
tal muscle. The dependence on PPARα ligand was less signif-
icant in the heart and skeletal muscle than in the liver, due
to higher basal expression. GSPA is also expressed in 3T3-
L1 cells, though apparently independent of differentiation.
Hence, it is not clear whether PPARγ is involved in the regu-
lation of GSPA expression in these cells. Thus, GSPA is pos-
sibly expressed in even other tissues, though the expression
may not be activated by PPARs. On the other hand, we found
significant expression of the GSPA protein product in 3T3-
L1 adipocytes and preadipocytes. In the heart and liver, the
protein abundance was much lower, despite the comparable
mRNA levels. Thus, GSPA expression must also be regulated
at a posttranscriptional level.

What would be the function of GSPA? In the GSPAp
amino acid sequence, neither a known protein motif nor a
predictable membrane-spanning domain was noted. A GFP-
fused version of GSPAp expressed in HeLa cells were dis-
tributed throughout the cells, without accumulating in any
subcellular compartments (data not shown), suggesting a cy-
tosolic nature of the protein. Enrichment of GSPAp in 3T3-
L1 cells over other tissues seems promising for the functional
studies. It would be an interesting issue whether the abun-
dant expression of GSPAp is characteristic in the adipocyte
lineage. Other important questions would be how GSPAp ex-
pression is posttranscriptionally regulated, and whether the
protein is accumulated in the liver, heart, and other tissues
under specific conditions. It should be noted that, for the ho-
mologous human cDNAs, an even shorter protein sequence
of 122 amino acid residues, 62% identical with the mouse se-
quence, is predicted, due to an in-frame stop codon at a more
upstream position. Thus, it is questionable whether the func-
tion of GSPA is conserved in human. The function of GSPA
should carefully be investigated also from an evolutionary
point of view.

ACKNOWLEDGMENTS

This work was supported in part by Grants-in-Aid for Sci-
entific Research from the Japan Society for the Promotion of
Science, and 21st Century Center of Excellence (COE) Pro-
gram.

REFERENCES

[1] Adachi N, Lieber MR. Bidirectional gene organization: a
common architectural feature of the human genome. Cell.
2002;109(7):807–809.

[2] Carninci P, Kasukawa T, Katayama S, et al. The transcrip-
tional landscape of the mammalian genome. Science. 2005;
309(5740):1559–1563.

[3] Katayama S, Tomaru Y, Kasukawa T, et al. Molecular biology:
antisense transcription in the mammalian transcriptome. Sci-
ence. 2005;309(5740):1564–1566.

[4] Nickol JM, Felsenfeld G. Bidirectional control of the chicken
β- and ε-globin genes by a shared enhancer. Proceedings of the
National Academy of Sciences of the United States of America.
1988;85(8):2548–2552.

[5] Godbout R, Ingram R, Tilghman SM. Multiple regulatory ele-
ments in the intergenic region between the α-fetoprotein and
albumin genes. Molecular and Cellular Biology. 1986;6(2):477–
487.

[6] Shimizu M, Takeshita A, Tsukamoto T, Gonzalez FJ, Os-
umi T. Tissue-selective, bidirectional regulation of PEX11α
and perilipin genes through a common peroxisome pro-
liferator response element. Molecular and Cellular Biology.
2004;24(3):1313–1323.

[7] Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM.
Convergence of 9-cis retinoic acid and peroxisome proliferator
signalling pathways through heterodimer formation of their
receptors. Nature. 1992;358(6389):771–774.

[8] Shimizu M, Akter H, Emi Y, et al. Peroxisome proliferator-
activated receptor subtypes differentially cooperate with
other transcription factors in selective transactivation of
the perilipin/PEX11α gene pair. Journal of Biochemistry.
2006;139(3):563–573.

[9] Nagai K, Yamaguchi T, Takami T, et al. SKIP modifies
gene expression by affecting both transcription and splic-
ing. Biochemical and Biophysical Research Communications.
2004;316(2):512–517.

[10] Osada S, Tsukamoto T, Takiguchi M, Mori M, Osumi T. Iden-
tification of an extended half-site motif required for the func-
tion of peroxisome proliferator-activated receptor α. Genes to
Cells. 1997;2(5):315–327.

[11] Osumi T, Wen J-K, Hashimoto T. Two cis-acting regulatory
sequences in the peroxisome proliferator-responsive enhancer
region of rat acyl-CoA oxidase gene. Biochemical and Biophys-
ical Research Communications. 1991;175(3):866–871.

[12] Sambrook J, Russell DW. Molecular Cloning: A Laboratory
Manual. Woodbury, NY: Cold Spring Harbor Laboratory
Press; 2001.

[13] Yamaguchi T, Matsushita S, Motojima K, Hirose F, Osumi
T. MLDP, a novel PAT family protein localized to lipid
droplets and enriched in the heart, is regulated by peroxisome
proliferator-activated receptorα. Journal of Biological Chem-
istry. 2006;281(20):14232–14240.

[14] Osumi T, Ishii N, Miyazawa S, Hashimoto T. Isolation and
structural characterization of the rat acyl-CoA oxidase gene.
Journal of Biological Chemistry. 1987;262(17):8138–8143.

[15] Tugwood JD, Issemann I, Anderson RG, Bundell KR, McPheat
WL, Green S. The mouse peroxisome proliferator activated
receptor recognizes a response element in the 5

′
flanking se-

quence of the rat acyl CoA oxidase gene. EMBO Journal.
1992;11(2):433–439.



10 PPAR Research

[16] Lee SS-T, Pineau T, Drago J, et al. Targeted disruption of the
α isoform of the peroxisome proliferator- activated receptor
gene in mice results in abolishment of the pleiotropic effects
of peroxisome proliferators. Molecular and Cellular Biology.
1995;15(6):3012–3022.

[17] Shimada T, Fujii H, Lin H. A 165-base pair sequence
between the dihydrofolate reductase gene and the diver-
gently transcribed upstream gene is sufficient for bidirec-
tional transcriptional activity. Journal of Biological Chemistry.
1989;264(34):20171–20174.

[18] Mitchell PJ, Carothers AM, Han JH, et al. Multiple transcrip-
tion start sites, DNase I-hypersensitive sites, and an opposite-
strand exon in the 5

′
region of the CHO dhfr gene. Molecular

and Cellular Biology. 1986;6(2):425–440.

[19] Patton J, Block S, Coombs C, Martin ME. Identification
of functional elements in the murine Gabpα/ATP synthase
coupling factor 6 bi-directional promoter. Gene. 2006;369(1-
2):35–44.

[20] West AG, Fraser P. Remote control of gene transcription. Hu-
man Molecular Genetics. 2005;14(1):R101–R111.
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