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Resveratrol, a bioactive natural product found in many plants, is a secondary metabolite
and has attracted much attention in the medicine and health care products fields due to its
remarkable biological activities including anti-cancer, anti-oxidation, anti-aging, anti-
inflammation, neuroprotection and anti-glycation. However, traditional chemical
synthesis and plant extraction methods are impractical for industrial resveratrol
production because of low yield, toxic chemical solvents and environmental pollution
during the production process. Recently, the biosynthesis of resveratrol by constructing
microbial cell factories has attracted much attention, because it provides a safe and
efficient route for the resveratrol production. This review discusses the physiological
functions and market applications of resveratrol. In addition, recent significant
biotechnology advances in resveratrol biosynthesis are systematically summarized.
Furthermore, we discuss the current challenges and future prospects for strain
development for large-scale resveratrol production at an industrial level.
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INTRODUCTION

Resveratrol has been universally found in a variety of plants including berries, bilberries, peanuts,
grapes and even ferns since it was initially extracted from the root of white hellebore (Veratrum
grandiflorum) in 1940 (Lim et al., 2011; Jeandet et al., 2012; Li et al., 2015). In plants, resveratrol, the
de novo synthetic phytoalexin, acts as a protector against pathogen invasion and infection (Tian and
Liu, 2020). It is known that two isomeric forms exist in nature, including cis- and trans-resveratrol,
but the trans isomer is the primary biologically-active form. The anti-tumor properties of resveratrol
in multiple human organs or systems, include breast (Sinha et al., 2016), cervical (Liu Q et al., 2020),
uterine (Sexton et al., 2006), blood (Breuss et al., 2019), kidney (Den Hartogh and Tsiani, 2019), liver
(Jakubczyk et al., 2020), eye (Bola et al., 2014), bladder (Almeida and Silva, 2021), thyroid (Giuliani
et al., 2017), esophageal (Zhou et al., 2003), prostate (Zaffaroni and Beretta, 2021), brain (Kiskova
et al., 2020), lung (Feng et al., 2016), skin (Ravikumar et al., 2019), gastric (Zulueta et al., 2015), colon
(Li et al., 2019), head and neck (Shrotriya et al., 2015), bone (Chen et al., 2019), ovarian (Sirotkin
et al., 2020), and cervical (Sun et al., 2021), and have been extensively studied over the last few
decades (Baur and Sinclair, 2006). Moreover, as a plant secondary metabolite, resveratrol has also
been noted for many pharmacological applications such as an anti-oxidant, anti-inflammatory, anti-
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aging, and neuroprotective agent, as well as for many other
properties (Rauf et al., 2018) (Figure 1). However, the effects
of resveratrol, especially its clinical effects on human health,
currently must be further verified and studied because of a
limited number of human studies and small cohort sizes.
Nevertheless, considering its various physiological activities,
resveratrol has attracted much attention in the pharmaceutical,
cosmetic and many other industries. Because of an increasing
demand in all walks of life, large-scale resveratrol production is
urgently needed.

It is difficult to meet the current industry demand for
resveratrol by extracting and purifying it from plants, due to
the complex process, high production cost and low yield (Sáez-
Sáez et al., 2020). Although resveratrol production can currently
be increased by employing chemical synthesis, the complex
production process, the requirement for toxic solvents and the
production of byproducts limits large-scale production (Shrestha
et al., 2019). It is noteworthy that the use of microorganisms has
made significant contributions to the biosynthesis of
pharmaceutical and industrial compounds in recent decades,
because of its low production cost, high efficiency, high
product purity and simple genetic operation process, and it is
considered to have a promising potential for the production of
natural products (Cravens et al., 2019). De novo resveratrol
biosynthesis via metabolic engineering and synthetic biology in
microorganisms provides a feasible way to produce resveratrol,
and this has attracted worldwide interest (Liu et al., 2019; He
et al., 2020; Liu Z et al., 2020; Yuan et al., 2020; Costa et al., 2021).
This review discusses the current status and progress of
resveratrol production in recent years, as well as optimization
strategies for related hosts, pathways and enzymes for resveratrol
production. Hopefully in the next few years, researchers will

continue to improve process engineering strategies, and
increasingly utilize metabolic and protein engineering to meet
a series of more complex biosynthetic challenges.

MICROORGANISM HOSTS FOR
RESVERATROL PRODUCTION

Many properties should be considered when selecting hosts for
natural products production. Due to a long history of research,
microorganisms have been widely chosen because of mature
techniques such as gene editing and large-scale fermentation,
particularly for metabolic engineering (Yang et al., 2021). With
the increasing demand for resveratrol, many studies have focused
on heterologous resveratrol production in prokaryotes such as
Escherichia coli, Corynebacterium glutamicum and Streptomyces
venezuelae, and in eukaryotes, including Saccharomyces cerevisiae
and Yarrowia lipolytica (Dudnik et al., 2018; Cravens et al., 2019).
Table 1 presents studies using metabolically engineered strains to
produce resveratrol.

YEAST HOSTS

Yeasts are considered as a more suitable platform than bacteria
for the expression of natural products, because of their ability to
carry out eukaryotic post-translational modifications and
feasibility of genetic manipulation (Madzak, 2015; Braga et al.,
2018a). Yeasts and plants have a similar endoplasmic reticulum,
an intracellular compartment to support eukaryotic and
membrane protein biosynthesis (Rainha et al., 2020). S.
cerevisiae is a Generally Regarded As Safe (GRAS) organism
that is widely used for pharmaceutical products and food markets
because of its safety, and it is more commonly used for resveratrol
production than other host species (Fletcher et al., 2016; Pereira
et al., 2019). Becker et al. (2003) reconstructed for the first time a
biochemical pathway in a microorganism to produce resveratrol
and obtained a titer of 0.00145 mg/L resveratrol in yeast. The
biosynthesis of resveratrol via a tyrosine intermediate has been
achieved in S. cerevisiae; this was a first time demonstration of the
possibility of de novo resveratrol biosynthesis from glucose. By
using a pull-push-block strain engineering strategy, 800 mg/L
resveratrol was produced by the engineered host strains (Li et al.,
2015; Li et al., 2016). Yuan et al. (2020) constructed a consortium
system for de novo resveratrol biosynthesis and obtained 36 mg/L
resveratrol. Y. lipolytica, another yeast, has been widely
concentrated in industrial area for more than 50 years because
of its high production capacity for organic acids, which are widely
used in diverse research areas (Ma et al., 2020) (Madzak, 2018).
Gu et al. (2020) created resveratrol-producing strains of Y.
lipolytica, in which could produce 12.67 ± 2.23 mg/L of
resveratrol with glucose as the substrate. He et al. (2020)
engineered Y. lipolytica as a vehicle for high-level resveratrol
production and obtained 0.43 g/L resveratrol by exploiting the
tyrosine and the phenylalanine branches of the pathway.
Recently, Sáez-Sáez et al. (2020) tried to improve the
resveratrol titer in Y. lipolytica by metabolic engineering,

FIGURE 1 | Physiological function of resveratrol.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 10 | Article 8339202

Feng et al. Recent Advances in Resveratrol Biosynthesis

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


TABLE 1 | Biosynthesis of resveratrol in engineered microorganisms.

Microbial host Pathway genes
(source)

Pathway/Host
engineering

Substrate Titer
(mg/L)

References

S. cerevisiae
W303-1A

4CL1 (A. thaliana) PAD1 knockout p-Coumaric
acid

3.1 Shin et al. (2011)
STS (A. hypogaea)

S. cerevisiae WAT11 TAL (R. sphaeroides) Expression of araE transporter (E. coli) Tyrosine 3.1 Wang et al. (2011)
4CL:STS, 4CL1 (A. thaliana)-STS p-Coumaric

acid
2.3

(V.vinifera) fusion enzyme Grape Juice 3.44
S. cerevisiae
W303-1A

PAL (R. toruloides) Overexpression of ACC1 Tyrosine 5.8 Shin et al. (2012)
C4H, 4CL1 (A. thaliana)
STS (A. hypogaea)

S. cerevisiae WAT11 4CL1 (A. thaliana) Synthetic scaffold p-Coumaric
acid

14.4 Wang and Yu, (2012)
STS (V. vinifera)

S. cerevisiae WAT11 4CL:STS, 4CL1 (A. thaliana)-STS Overexpression of AAE13 p-Coumaric
acid

Up
to 3.7

Wang et al. (2014)
(V. vinifera) fusion enzyme

S. cerevisiae EC1118 4CL (A. thaliana) — p-coumaric
acid

8.249 Sun et al. (2015)
STS (V. vinifera)

S. cerevisiae
CEN.PK102-5B

TAL (H. aurantiacus) TAL (F.
johnsoniae) 4CL1 and 4CL2 (A.
thaliana)

Overexpression of ARO4fbr,ARO7fbr, and ACC1 Glucose (Fed-
batch)

415.65 Li et al. (2015)

RS (V. vinifera) Ethanol (Fed-
batch)

531.41

S. cerevisiae
CEN.PK102-5B

PAL2, C4H, 4CL2 (A. thaliana) Overexpression of ARO4fbr, ARO7fbr, ACC1,
CYB5 (S.cerevisiae), ATR2 A. thaliana), ACS (S.
enterica), and deletion of aro10

Glucose (Fed-
batch)

812 Li et al. (2016)

VST1 (V. vinifera) Ethanol (Fed-
batch)

755

Y. lipolytica 4CL (N. tabacum) Overexpression of:ACC1, PEX10 p-Coumaric
acid

48.7 Palmer et al. (2020)
STS (A. hypogaea)

Y. lipolytica Po1d (wt),
derived from W29

TAL (F. johnsoniae) — Glycerol 430 He et al. (2020)
PAL (V. vinifera)
C4H, 4CL1 (A. thaliana)
VST (V. vinifera)

Y. lipolytica
ST6512 (W29)

TAL (F. johnsoniae) Overexpression of:ARO4fbr and ARO7fbr Glucose 409 Sáez-Sáez et al. (2020)
4CL1 (A. thaliana) VST1 (V.
vinifera)

Glucose (Fed-
batch)

12,355

C. glutamicum
DelAro3

STS (A. hypogaea) Deletion of phdB, pcaF and pobA p-Coumaric
acid

12 Kallscheuer et al. (2016)

4CL (P. crispum) p-coumaric
acid +

158

cerulenin
C. glutamicum
DelAro4

TAL (F. johnsoniae) 4CL
(Petroselinum) STS (A. hypogaea)
aroH (E. coli)

Deletion of phdB, pcaF, qsuB and pobA Glucose 12 Braga et al. (2018b)
Glucose +
cerulenin

59

Glucose
(40 g/L)

4

Glucose
(80 g/L)

12

Glucose (Fed-
batch)

7

E.coli BW27784 4CL (A. thaliana) — p-Coumaric
acid

404 Lim et al. (2011)
STS (A. hypogaea)
4CL (A. thaliana) 1,380
STS (V. vinífera)
4CL (P. crispum) 142
STS (A. hypogaea)
4CL (P. crispum) 610
STS (V. vinífera)
4CL (A. thaliana) 2,340
STS (V. vinífera)

E. coli C41 (DE3) TAL (Saccharothrix espanaensis) — p-Coumaric
acid

1.4 Choi et al. (2011)
4CL (Streptomyces coelicolor)

E. coli BL21 (DE3) TAL (R. glutinis) — Tyrosine 35.02 Wu et al. (2013)
4CL (P. crispum)
STS (V. vinifera) matB and matC
(R. trifolii)

(Continued on following page)
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resulting in 12.4 ± 0.3 g/L resveratrol, which is the highest titer for
de novo resveratrol production up to now.

BACTERIAL HOSTS

E. coli has been the subject of industrial interest for resveratrol
production because of its fast growth the availability of advanced
technology for its genetic manipulation and synthetic biology
(Braga et al., 2018a). Furthermore, tyrosine and p-coumaric acid,
the basic precursors of resveratrol, are the critical for increasing
production, and are easily assessable and improved in E. coli via
multiple metabolic engineering strategies (Shrestha et al., 2019).
Additionally, E. coli is more suitable for resveratrol production
than yeast because of its high tolerance to p-coumaric acid,
another advantage (Shin et al., 2011; Huang et al., 2013)
(Donnez et al., 2009). Recently, Zhang et al. identified stilbene
synthase as the limiting enzyme via a novel probabilistic
computational model and improved the final resveratrol titer
from 62.472 mg/L to 172.799 mg/L, proving the model useful for
predicting and improving biological production (Cotner et al.,
2021).

Engineered C. glutamicum has also been employed as a
vehicle for resveratrol production. Kallscheuer et al. (2016)
introduced TAL from Flavobacterium johnsoniae into a strain
of C. glutamicum for resveratrol production; 60 mg/L
resveratrol was produced when using glucose as the carbon
source. They further achieved 5 mg/L trans-resveratrol in C.
glutamicum from 4-hydroxybenzoate, which is the first time a
phenylpropanoid was synthesized from 4-hydroxybenzoic acid
other than aromatic amino acids and ammonia lyase
(Kallscheuer et al., 2017). Milke et al. (2019) constructed a
recombinant C. glutamicum stain and increased the titer of

resveratrol to 112 mg/L by modulating the central carbon
metabolism of the host strain.

Engineered S. venezuelae has also been employed to produce
resveratrol. Park and others reported resveratrol synthesis by
expressing the heterologous phenylpropanoid biosynthetic
pathway genes in S. venezuelae for the first time, although
they only obtained 0.4 mg/L of resveratrol (Park et al., 2009).
Likewise, the use of other organisms such as Lactobacillus lactis
and Aspergillus niger has also been reported for resveratrol
bioproduction (Chong et al., 2012).

TABLE 1 | (Continued) Biosynthesis of resveratrol in engineered microorganisms.

Microbial host Pathway genes
(source)

Pathway/Host
engineering

Substrate Titer
(mg/L)

References

E. coli C41 (DE3) TAL (S. espanaensis) — Glucose 5.2 Kang et al. (2014)
4-CL (S. coelicolor)
STS (A. hypogaea)

E. coli BW27784 4CL (A. thaliana) — p-Coumaric
acid

160 Afonso et al. (2015)
STS (A. hypogaea)

E. coli BL21 (DE3) TAL (S. espanaensis) — Tyrosine 114.2 Wang et al. (2015)
4-CL (A. thaliana)
STS (A. hypogaea)

E. coli BW25113 4CL2 (P.crispum) — p-Coumaric
acid

268.2 Yang et al. (2015)
STS (V. vinifera)

E. coli
BW25113 (DE3)

TAL (R. glutinis) Inactivation of tyrR and deletion of trpED by
chromosomal integration

Glucose 4.6 Liu et al. (2016)
4CL (P. crispum)
STS (V. vinifera)

E.coli W (pheA-) Rg TAL (R. glutinis) tktAfbr and
aroGfbr (E. coli)

Deletion of pheA Glycerol 22.58 Camacho-Zaragoza
et al. (2016)

E.coli W-Vv 4CL (S. coelicolor) STS (V. vinífera)
E. coli BL21 (DE3) TAL (Trichosporon cutaneum) Down-regulation of fabD, fabH, fabB, fabF, fabI Glucose 304.5 Wu et al. (2017)

4CL (P. crispum)
STS (V. vinifera) matB and matC
(R. trifolii) tyrAfbr and aroGfbr
(E.coli K12)

FIGURE 2 | Metabolic engineering at multiple levels has enabled
engineering of increasingly complex heterologous resveratrol pathways.
Heterologous resveratrol production in a microbial host can involve
engineering at three different scales: host, pathway, and enzyme.
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FIGURE 3 | Biosynthetic pathway for resveratrol starting from glucose. The pathways for generating precursors of resveratrol biosynthesis such as
phenylpropanoyl-CoAs and malonyl-CoA are highlighted. Dotted arrows refer to multiple steps. Genes and enzymes in blue are targets for overexpression. Genes and
enzymes in red are targets for knockout or inhibition. Note that the malonate is externally supplied. DAHP Synthase, 3-deoxy- D-arabinoheptulosonate-7-phosphate
(DAHP) synthase; DAHP, 3-deoxy-D arabinoheptulosonate 7- phosphate; ARO7, chorismate mutase; ARO7, chorismate mutase; tyrA/pheA, genes that encode
the chorismate mutase protein; tyrB, gene that encodes the tyrosine aminotransferase; PAL, phenylalanine ammonia lyase; TAL, tyrosine ammonia-lyase; C4H,
cinnamate 4-hydroxylase; PAD, phenyl acrylic acid decarboxylase; 4CL, 4-coumaroyl-coA ligase; STS, stilbene synthase; PYK, pyruvate kinase; Acetyl-CoA, acetyl-
coenzyme A; ADH, alcohol dehydrogenases; fabH, gene that encodes 3-oxoacyl carrier protein synthase III; PTA, phosphate acetyltransferase; ACK, acetate kinase;
ACS: acetyl-CoA synthase; Acetyl-ACP, acetyl-acyl carrier protein; ACC complex, acetyl-coA carboxylase multienzyme complex; Malonyl-CoA, malonylcoenzyme A;
MatB, malonyl-CoA synthetase; MatC, malonate carrier protein; fabD, gene that encodes the malonyl-CoA-acyl carrier protein transacylase; Malonyl-ACP, malonyl-acyl
carrier protein; fabB/fabF, genes that encode the beta-ketoacyl-acp synthase I/II protein.
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METABOLIC ENGINEERING TO ENHANCE
RESVERATROL PRODUCTION

The design-build-test cycle (DBT cycle) has been widely used in
metabolic engineering for the production of plant natural
products (Nielsen and Keasling, 2016). In DBT iterative
engineering cycles, host engineering includes the sufficient
provision of precursor via precursor metabolites
overproduction. Pathway engineering includes biosynthesis via
a heterologous route to produce natural products, and enzyme
engineering includes directed evolution to improve the properties
of key rate-limiting enzymes (Cravens et al., 2019) (Figure 2).
The rapid development of synthetic biology and enabling
technology has accelerated DBT iterative engineering cycles,
which have been widely employed for the engineering of
resveratrol biosynthesis.

HOST ENGINEERING

In recent years, significant progress toward high-level resveratrol
production has been achieved by microbial metabolic
engineering. Nevertheless, an insufficient precursor supply
(i.e., aromatic amino acids and malonyl-CoA) is still the main
rate-limiting factor for resveratrol production in heterologous
hosts. Thus, increasing the precursor supply via genetic
manipulation of the host strain is considered a fundamental
strategy for resveratrol bioproduction (van Summeren-
Wesenhagen and Marienhagen, 2013; Milke et al., 2018).

As shown in Figure 3, resveratrol is produced from the aromatic
amino acids L-phenylalanine (L-Phe) or L-tyrosine (L-Tyr). The
metabolic engineering of the shikimic acid pathway primarily
regulates the carbon flux into chorismate, followed by L-Phe and
L-Tyr (Jiang et al., 2005; Rodriguez et al., 2015). Frequently-used
strategies to increase the biosynthetic flux of the shikimic acid
pathway are the elimination of enzyme feedback inhibition and
the regulation of transcription. Furthermore, extending the supply
and availability of erythrose-4-phosphate (E4P) and
phosphoenolpyruvate (PEP) are the primary methods for
improving chorismate production (Bulter et al., 2003; Lütke-
Eversloh and Stephanopoulos, 2007). Significant strategies have
been developed to enhance the production of aromatic amino
acids or derived phenylpropanoic acids in microorganisms
(Juminaga et al., 2012; Zhang and Stephanopoulos, 2013;
Rodriguez et al., 2015). For example, Juminaga et al. (2012)
reported the biosynthesis of resveratrol by encoding the key
enzymes for converting E4P and PEP to L-Tyr, which
significantly increased L-Tyr production to 80% of the
theoretical yield.

Malonyl-CoA also serves as an important precursor for
resveratrol biosynthesis. Moreover, malonyl-CoA is mostly used
as an essential intermediate for fatty acid biosynthesis to support cell
growth, so only a limited level of malonyl-CoA remains for
resveratrol biosynthesis, which is a major challenge in resveratrol
production. Therefore, two prime strategic steps have been utilized
in order to expand the intracellular malonyl-CoA pool in
microorganisms: 1) repressing fatty acid biosynthesis to inhibit

malonyl-CoA consumption; 2) expanding the cytoplasmic
malonyl-CoA pool by carboxylation of acetyl-CoA carboxylase
(ACC), which can increase the amount of acetyl-CoA
carboxylation to malonyl-CoA. Zha et al. (2009) found that
overexpression of ACC increased the concentration of malonyl-
CoA in E. coli. In addition, deleting genes encoding competing
pathways, such as pta and ackA, which are involved in the
degradation of acetyl-CoA into acetic acid, and the adhE gene,
which is involved in ethanol production, can achieve significant
effects (Finzel et al., 2015). Yang et al. (2015) revealed that blocking
malonyl-CoA consumption and the deletion of the fab genes were
lethal in microorganisms. Thus, three procedures have been carried
out to inhibit malonyl-CoA consumption: 1) inhibiting FabB and
FabF by adding the antibiotic cerulenin (Lim et al., 2011; Lu et al.,
2016); 2) using antisense RNA to repress the fab operon, especially
the fabD genes (Wu et al., 2014; Yang et al., 2015); 3) using CRISPRi
technology to inhibit the fab gene and direct the carbon flux toward
malonyl-CoA (Wu et al., 2015; Liang et al., 2016). Furthermore,
another significant approach is to introduce biosynthetic pathway
genes for malonate assimilation, such as matB and matC, into the
system. (Shin et al., 2011).

PATHWAY ENGINEERING

By introducing the entire biosynthetic pathway into
microorganisms, efficient synthesis of resveratrol from
precursors (L-Phe or L-Tyr) or low-cost materials (such as
glucose, ethanol or glycerol) can be realized, which is a great
help for de novo biosynthesis or biotransformation of resveratrol
(Jeandet et al., 2012; Li et al., 2016; Chen et al., 2020). The
biosynthetic pathway for resveratrol is shown in Figure 3. The
secondary metabolite phenylpropanoid route is the major
metabolic pathway for resveratrol biosynthesis (Lu et al.,
2016). The first step in resveratrol biosynthesis is the
production of phenylpropanoic acids (i.e., p-coumaric acid and
cinnamic acid) through nonoxidative deamination via tyrosine
ammonia lyase (TAL) and L-phenylalanine ammonia lyase
(PAL), which are then converted to p-coumaroyl-CoA and
cinnamoyl-CoA by 4-coumarate-CoA ligase (4CL). Cinnamic
acid can also be hydroxylated with the assistance of cinnamic
acid-4-hydroxylase (C4H) to form p-coumaric acid. Finally,
malonyl-CoA is condensed with p-coumaroyl-CoA to produce
resveratrol, catalyzed by stilbene synthases (STSs) (van
Summeren-Wesenhagen and Marienhagen, 2015; Milke et al.,
2018). Themain objective for the engineering of this pathway is to
efficiently convert the aromatic amino acids to phenylpropyl by
introducing hyper-active ammonia lyases such as PAL or TAL
(Huang et al., 2013; Zhang and Stephanopoulos, 2013), which is a
bottleneck in the resveratrol production from glucose (Yang et al.,
2015; Kallscheuer et al., 2016). Liu et al. (2016) introduced TAL,
4CL and STS genes into E. coli strain and obtained 4.6 mg/L of
resveratrol from glucose. Soon after, Wu et al. (2017) applied
multiple metabolic engineering approaches to produce
resveratrol from glucose in E. coli. However, the low activity
of TAL and PAL enzymes is still themain obstacle for introducing
the entire de novo pathway into the microorganism.
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ENZYME ENGINEERING

As mentioned above, in many cases the function of one or a few key
enzymes acts as a bottleneck in the overall metabolic fluxes, which
are considered as the rate-limiting steps. Microorganisms cannot
produce enough targeted product because of enzymes that have
limited turnover or poor expression (Song et al., 2017; Song et al.,
2018; Lian et al., 2018). Therefore, protein engineering, particularly
directed evolution, has become one of the most powerful and
widespread tools for engineering improved or novel functions in
enzymes (Wu et al., 2013; Wang et al., 2021). Researchers employed
protein engineering of 4CL and STS in E. coli for higher and more
efficient resveratrol production (Becker et al., 2003; Zhang et al.,
2015). Likewise, a yeast host harboring codon-optimized TAL and
fused 4CL and STS, which allowed the production of 1.06 mg/L
resveratrol without the use of L-Tyr (Wang et al., 2011). Moreover,
the robustness of the rate-limiting enzymes or the metabolic activity
of pathways can be optimized in vivo via metabolite-responsive
biosensors (Skjoedt et al., 2016). Xiong et al. (2017) selected
resveratrol hyper-producers rapidly and efficiently by reapplying
the TtgR regulatory protein to a resveratrol-responsive biosensor in
E. coli. Compared to the wild type, 4CL variants displayed improved
catalytic properties for the production of this aromatic compound.

PRODUCTION PROCESS OPTIMIZATION
TO INCREASE RESVERATROL SYNTHESIS

The balance and optimization of microbial growth and product
formation have been identified as essential for increasing resveratrol
production. In order to satisfy the world’s sustainable demand,
researchers have conducted some important studies for large-
scale industrial production. Braga et al. (2018b) observed that
increasing the glucose concentration from 40 g/L to 80 g/L
resulted in a resveratrol titer that increased from 4mg/L to
12mg/L, which demonstrated that proper culture conditions,
i.e., substrate concentration, were essential for the resveratrol
production in C. glutamicum (Braga et al., 2018b).

In order to optimize and construct recombinant strains, the
metabolic burden caused by the competition between natural
metabolism and chemical production pathways (including
chemical precursors, energy molecules and reduction
equivalents) is one of the most important challenges to be
urgently faced and resolved. Considering that polyphenols
such as resveratrol are produced through complex biosynthetic
pathways, the concept of co-culture has gained increasing
attention in recent years. Through co-culture, that is, using
multiple strains to produce different products or metabolize
different substrates, it is feasible to co-produce resveratrol.
Furthermore, the entire pathway can be divided and
introduced into each strain as an entire module (Zhou et al.,
2015). Yuan et al. (2020) recently described an approach utilizing
a co-culture of E. coli–S. cerevisiae to produce resveratrol, with a
final titer of 36 mg/L using glucose as a carbon source. To alleviate
the metabolic burden of a single host, researchers divided the
labor among artificial microbial communities using a cell
consortium strategy (Yuan et al., 2020).

There are many other obstacles to resveratrol production in
microbial hosts, such as the high cost of precursors and precursor
toxicity. Researchers recently attempted to overcome these
difficulties by using engineered strains to obtain low-cost and
sustainable substrates and by using fed-batch cultures to reduce
the toxicity of precursors (Wu et al., 2017) (Watts et al., 2006;
Huang et al., 2013; Zhang and Stephanopoulos, 2013).

CONCLUSION AND FUTURE
PERSPECTIVES

As of now, the efforts and results mentioned above have
demonstrated the feasibility of converting microorganism hosts
into cell factories to produce resveratrol, which can be achieved
by grafting exogenous biosynthetic pathways into the endogenous
metabolic network of cells. However, the current problem is that
although they have promising potential for development and
popularization, at present the performance of most engineered
strains cannot achieve the goals required for industrial production.
How to use microorganisms as vehicles to produce resveratrol more
economically is still an important challenge. Multiple factors,
including the cytotoxicity of end products, the low activity and
stability of catalytic enzymes, and metabolic imbalances at the
biosynthetic pathway level and across the cellular network, are
challenges for the advancement of cell growth, the rate of
production, product titer and yield to a certain degree.
Furthermore, the production process is also hampered by the lack
of critical, basic information about the interactions and regulation of
metabolic networks, which require more time to discover and verify
the contribution of potential biosynthetic pathways for resveratrol
production. However, with the recent rapid development of
metabolic engineering principles, it is expected that novel and
reliable solutions will be found that will break the shackles that
hinder industrial biological resveratrol production.

The cellular adaptation and metabolic stability of engineered cell
factories has frequently been affected by heterologous chemicals,
which are tremendously cytotoxic during the process of biosynthesis
and long-term accumulation. Consequently, some approaches,
including adaptive laboratory evolution (ALE) (Sandberg et al.,
2019) and the multi-functional genome-wide CRISPR (MAGIC)
system (Lian et al., 2019), have been designed to reduce the toxicity
of products while maximizing the potency and yield of chemical
products. For instance, Pereira et al. (2019) recently investigated
through ALE experiments the mechanism of tolerance of S.
cerevisiae to the cellular stress imposed by inhibiting
concentrations of dicarboxylic acids. Lian et al. (2019) improved
furfural tolerance in yeast using the MAGIC system; a method that
identifies complex phenotypic genetic determinants that have not
been previously identified, especially those interacting synergistically
when disturbed to different levels of expression. The novel strategies
mentioned above represent a promising alternative strategy to
improve the resveratrol production capability of microbial hosts.

In order to alleviate the rate-limiting steps, protein engineering,
especially directed evolution, has been applied to improve enzyme
properties. It is particularly worth noting that machine learning has
been increasingly utilized for protein engineering. Luo et al.
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developed a high-performancemethod called Evolutionary Context-
Integrated Neural Network (ECNet), providing generalization from
low-order mutants to higher-order mutants, which can predict
protein function levels from sequence to protein engineering
process (Luo et al., 2021). Besides, recent advances in the
development of sequence-based, MD-based, structure-based, and
machine learning-based computational tools will promote the
identification of the beneficial mutations and accelerate the
protein engineering process by creating smaller but smarter
libraries to enhance the robustness of catalytic enzymes (Huang
et al., 2016). Moreover, attention should be paid to a combinatorial
method to guide every precursor and metabolite towards the large-
scale resveratrol production. Additionally, for resveratrol
biosynthesis processes based on a microbial platform, the
application of complete biosynthetic and related knowledge of
molecular biology, including the entire genome, transcriptome,
proteome and metabolome, will be promising for the
improvement of the production efficiency and yield of resveratrol.

In summary, the goal of efficient resveratrol production in
microbial hosts can be advanced by the integration of multiple

tools such as metabolic engineering, systems and synthetic biology
for strain design, as well as by improving process engineering
strategies. By using such strategies, heterologous resveratrol
production can be competitive with existing chemical synthesis
and plant extraction processes, which will be a better choice to
achieve the goal of sustainable resveratrol production.
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