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Abstract

Background: The emergence of the third generation sequencing technology, featuring longer read lengths, has
demonstrated great advancement compared to the next generation sequencing technology and greatly promoted
the biological research. However, the third generation sequencing data has a high level of the sequencing error rates,
which inevitably affects the downstream analysis. Although the issue of sequencing error has been improving these
years, large amounts of data were produced at high sequencing errors, and huge waste will be caused if they are
discarded. Thus, the error correction for the third generation sequencing data is especially important. The existing error
correction methods have poor performances at heterozygous sites, which are ubiquitous in diploid and polyploidy
organisms. Therefore, it is a lack of error correction algorithms for the heterozygous loci, especially at low coverages.

Results: In this article, we propose a error correction method, named Q/HC. QIHC is a hybrid correction method,
which needs both the next generation and third generation sequencing data. QIHC greatly enhances the sensitivity of
identifying the heterozygous sites from sequencing errors, which leads to a high accuracy on error correction. To
achieve this, QIHC established a set of probabilistic models based on Bayesian classifier, to estimate the heterozygosity
of a site and makes a judgment by calculating the posterior probabilities. The proposed method is consisted of three
modules, which respectively generates a pseudo reference sequence, obtains the read alignments, estimates the
heterozygosity the sites and corrects the read harboring them. The last module is the core module of Q/HC, which is
designed to fit for the calculations of multiple cases at a heterozygous site. The other two modules enable the reads
mapping to the pseudo reference sequence which somehow overcomes the inefficiency of multiple mappings that
adopt by the existing error correction methods.
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Conclusions: To verify the performance of our method, we selected Canu and Jabba to compare with Q/HC in
several aspects. As a hybrid correction method, we first conducted a groups of experiments under different coverages
of the next-generation sequencing data. Q/HC is far ahead of Jabba on accuracy. Meanwhile, we varied the coverages
of the third generation sequencing data and compared performances again among Canu, Jabba and QIHC. QIHC
outperforms the other two methods on accuracy of both correcting the sequencing errors and identifying the
heterozygous sites, especially at low coverage. We carried out a comparison analysis between Canu and Q/HC on the
different error rates of the third generation sequencing data. Q/HC still performs better. Therefore, Q/HC is superior to
the existing error correction methods when heterozygous sites exist.

Keywords: Sequencing analysis, PacBio sequencing, Sequencing error, Error correction method, Hybrid correction

method, Heterozygous variant, Probabilistic model

Background

Genomic researches have been revolutionized by the
genome sequencing technology, especially the single-
molecule long-read sequencing technology, also called the
third-generation sequencing (TGS) [1]. The emergence of
TGS technology not only inherits the high throughput
of the next-generation sequencing (NGS), but also pro-
duces longer reads with the lengths greater than 10kbp
compared to NGS reads which are generally limited to
100bp [1-8]. TGS has also brought a huge boost to a
number of fields, such as detecting structural variations
[9,10], identifying methylations [11-13], and further facil-
itating disease diagnoses [14]. Although TGS is on the
cutting edge in read length and many other aspects, its
sequencing error rate falls behind NGS due to its tech-
nical limitations. For example, one of the key sequencing
technologies of TGS is to identify the spectrum caused
by different nucleotides passing a nanopore, during which
it is possible to misidentify the current nucleotides as
deletions or insertions when an abnormal speed occurs
[15-17]. More importantly, in terms of research value, the
importance of TGS has been steadily increasing, and its
sequencing error rate has also been gradually decreasing.
The PB-scale third-generation sequencing data, which
rapidly accumulated in the past decade, cannot be dis-
carded. It is considered that the sequencing errors can be
corrected by algorithmic methods.

Along with the development of TGS, bioinformatics
researchers have been gradually focusing on correct-
ing sequencing errors by error correction algorithms.
A bunch of algorithms have emerged. With continuous
optimization and development, the existing error correc-
tion methods have performed well on overall accuracy,
although the performance at heterozygous loci is not
satisfactory [18, 19]. However, heterozygous variations
are more common than homozygous variations in many
cases, and heterozygosity plays a valuable role in disease
genotype-phenotype analyses and genetics research. But

sequencing error correction becomes more complicated
in the presence of heterozygosity, the existing methods
encounter some challenges in handling heterozygosity.
According to the given data, and the existing methods
generally fall into two categories: self correction algo-
rithms and hybrid correction ones. The input data of self
correction is a set of TGS reads, long reads (LRs) for short.
Its core idea is to call a consensus between LRs, which is
achieved by building multiple alignments among LRs and
computing local alignments [20]. It is practical to estimate
heterozygous variations based on multiple alignments and
local alignments, however, the coverage of LRs limits the
correction performance. Currently, the coverages of the
published data sets are generally low due to the cost,
which results in short splicing sequences and unsatisfac-
tory correction performance. Therefore, the low coverage
of LRs limits applications of self correction [18], which
also makes it more difficult to properly handle heterozy-
gous sites. For example, when the coverage of LRs is lower
than 2, considering from the perspective of mathematical
expectation, it is impossible to distinguish a heterozygous
variation from sequencing errors, even from homozygous
variations.

Because of the problems of self correction, hybrid cor-
rection is more popular in practice. The basic idea of
hybrid correction is: given LRs and a set of NGS reads, for
simplicity, called short reads (SRs), map SRs to a read that
extracted from LRs, then vote with the mapping results
of SRs, the allele with the most votes is the final cor-
rection result [21]. It can be seen that the core of this
basic idea is voting, and some latest researches have also
improved the voting process. According to this idea, the
reason why the current hybrid correction algorithms can-
not solve the heterozygous condition lies in the structure
of the algorithms themselves. In the case of hybrid cor-
rection represented by proovread [22] and ECTools [23],
the heterozygous variations are not considered as special
situations in voting process. Figure 1 shows an example
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of miscorrection. Furthermore, even if the heterozygous
variations are considered on SRs, since each long read
(LR) is treated independently, the purpose of distinguish-
ing the heterozygous variations and the noise cannot be
achieved. On the other hand, the objective of the algo-
rithms is to correct LRs, so the coverage of SRs is low
in order to control the cost, which is also not conducive
to the identification of heterozygosity. In addition, all SRs
need to be mapped again for each LR, which leads to low
correction efficiency. All these make the existing hybrid
correction methods at a disadvantage when dealing with
heterozygous sites.

Distinguishing a heterozygous site from sequencing
errors is the key and difficult point for properly dealing
with heterozygosity, which makes the simple voting pro-
cess impossible to handle the complicated condition. Tak-
ing into account the characteristics of the heterozygous
variation and the limitations of the existing correction
methods, we propose a novel hybrid correction method,
named QIHC. The highlight of QIHC distinguishing it
from the existing methods is the adoption of probabilis-
tic models, which solves the problem that the existing
methods cannot effectively deal with error correction of
heterozygous genomic LRs to a great extent. Specifically,
according to the sequencing principle of reads, we can
assume that bases of reads mapped to the same site obey
binomial distribution. Since the bases for mapping are
respectively derived from LRs and SRs, the probability
in the binomial distribution is related to the sequenc-
ing error rate, in general, the prior error rate of LRs
ranges from 15% to 20%, and the prior error rate of SRs
is around 5% [15-17, 24]. Therefore, we propose two sets
of probabilistic models based on Bayesian classifer for
LRs and SRs respectively, which differ from the differ-
ent sequencing error rates and judge heterozygosity of
the mapping sites by calculating the posterior probabili-
ties before voting. More specifically, a set of probabilistic
models determines whether a position is homozygous or
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Fig. 1 The voting rule in existing hybrid correction methods
incorrectly handle heterozygous
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heterozygous by obtaining the maximum posterior proba-
bility. Then, according to the heterozygosity judgment, the
corresponding site is corrected by a voting mechanism.
Compared to the existing methods, Q/HC has better cor-
rection performance when using the probabilistic models
to judge heterozygosity before voting than simply voting.
Similarly, another set of probabilistic models works on
self correction module, which makes the results obtained
under low coverage more excellent than directly voting.

Through application of the above two sets of proba-
bilistic models, the correction of LRs is realized, and a
completed data process flow is formed. In this paper, we
compared QIHC with two methods called Canu [25] and
Jabba [26] and designed five groups of experiments, which
respectively compared the influence of coverage of SRs
on accuracy, the influence of error rate of LRs on accu-
racy, the accuracy and the heterozygosity quality of the
different correction methods, and the potential effects of
the different prior probability distributions on the perfor-
mance. Taking a set of accuracy comparison experiments,
when the coverage is 3x, the accuracy spans from 10.2%
of Jabba to 72.4% of Canu, and finally to 87.8% of QIHC.
From the experiment results, our method can always
achieve excellent results at low coverage, whether it is LRs
or SRs coverage.

Results

Experimental protocol

Let L denote a set of TGS reads and S denote a set of NGS
data, respectively. To demonstrate performance of Q/HC
at heterozygous positions, we performed experiments on
several aspects. Overall,

(1) We performed our experiments on the following
datasets: the third-generation sequencing data L with
coverage of 3%, 5%, 10x, 12x and 15X, respectively;
the next-generation sequencing data S with coverage
of 5x, 10x, 15x, 20x and 50x, respectively. It
should be noted that all third-generation sequencing
datasets used in our experiments contain 500
heterozygous variations. For a position with
heterozygous variation, we say that this position has
heterozygosity. We generated these data under
different configurations by PBSIM [27], specifically, a
portion of the human genome hgl9 was taken as a
reference genome for generating simulation data, we
called the reference genome hgl9_ref. In view of
BLASR’s fault tolerance and strong alignment ability
[28], we chose BLASR as the alignment tool. The
parameters we set for BLASR were: -header, -m 5.

(2) Except for Canu, we did not make too many
comparisons with other error correction methods
such as FMLRC [29], LoRDEC [20] or HALC [30],
because the experiments at heterozygous positions
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had already done in the literature [18], and the
performance of these methods on correcting bases at
heterozygous positions was proven not to be ideal.
The reason for choosing Canu was that from 2015 to
the present, the version of Canu was from 1.0 to 1.8,
and continuous improvement had made Canu a
stable and widely-used error correction tool. It is
worth mentioning that Canu v1.8 added a module
called trio bunning that specializes in handing
heterozygous conditions. Therefore, it would be
more convincing for us to choose Canu to compare.

Evaluation strategies

In order to show the error correction results efficiently
and pertinently, we only demonstrated the results of the
sites with heterozygous variation here. For each heterozy-
gous position, we investigated the change of its heterozy-
gosity after error correction. Specifically, the criteria for
judging whether the site is still heterozygous is as follows:
mapping the corrected long reads set to /1g19_ref; observ-
ing the distribution of corresponding bases mapped to
the heterozygous position, if the distribution satisfies het-
erozygosity, then the position remains heterozygosity;
otherwise, its heterozygosity is lost. True positive (TP)
positions are those heterozygous sites that maintain het-
erozygosity after correction, whereas false negative (FN)
positions are the sites with original heterozygosity that
cannot remain heterozygosity after correction, whether
it is noise or homozygous. To evaluate the error correc-
tion performance of different error correction methods
and different coverages in the TGS data with heterozygous
variations, we focused on accuracy, which was computed
by 1-error rate.

Analysis of experimental results

Analysis of accuracy under different coverages of NGS data
QIHC requires the participation of S, so it is necessary to
confirm the impact of different coverages of S on the cor-
rection results. § was generated from /g9 ref when the
coverages were 5x, 10x, 15%, 20x and 50x by PBSIM,
respectively. L was also derived from hg19_ref, its coverage
was set to 5x in consideration of runtime. Figure 2 shows
the accuracy values of QIHC influenced by the coverage
of S.

In order to analyze the results shown in Fig. 2, “het-
erozygous interval” needs to be described first. The het-
erozygous interval defines what conditions need to be
satisfied if the base distribution mapped to the heterozy-
gous variation site is identified as retaining heterozygosity.
For example, when the heterozygosity interval is set to
[0.2,0.8], a heterozygous variation site is considered to
retain heterozygosity only when the bases distribution
under this site falls within the interval. The interval
[0.2,0.8] is a heterozygous interval generally recognized
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Fig. 2 Accuracy of QIHC with different coverages of S

in the field of bioinformatics [31]. Here, for the sake of
more illustrative experiments, we also selected [0.25,0.75],
[0.3,0.7] and [0.35,0.65] as other intervals. Since Canu
does not need to input S, we chose Jabba to compare with
QIHC under different coverages of S, Table 1 shows the
results. As can be seen from the results, QIHC performed
much better than Jabba, specifically, the difference value
of accuracy was up to 85.6% when coverage of L was 5x
and heterozygous interval was [0.2,0.8]. According to Fig.
2, QIHC’s correction accuracy reached best when the cov-
erage was 10x. It can be seen that Q/HC is not sensitive
to the coverage of S, which facilitates the use of lower
coverage S for the purpose of correction L.

Comparison to the existing methods on accuracy

In this part of the experiment, we chose Canu and Jabba
as the comparison methods. The results are shown in
Table 2. It can be seen that we experimented with low
coverages. The reason is that TGS technology generates a
large amount of low-coverage sequencing data due to its
cost, it is more practical to experiment with low-coverage
data. Among the results, Jabba was significantly less accu-
rate than QI/HC and Canu, which also confirmed that
the early error methods did not consider the heterozy-
gous variation sites at all. For the results of Canu and

Table 1 The comparisons on accuracy between QIHC and Jabba

Coverage of §

Heterozygous 5% 10x 15% 20x 50x
interval

QIHC 0948 0958 0954 0942 0940
[0.20,0.80]

Jabba 0092 0230 0322 0316 0288

QIHC 0938 0946 0936 0922 0914
[0.25,0.75]

Jabba 0086 0206 0290 0294 0258

QIHC 0826 0876 0866 0836 0.838
[0.30,0.70]

Jabba 0066 0.168 0224 0236 0200

QIHC 0666 0750 0702 0676 0.710
[0.35,0.65]

Jabba 0022 0110 0138 0166 0.138
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Table 2 The comparisons on accuracy among QIHC, Canu and Jabba
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Heterozygous [0.20,0.80] [0.25,0.75]

interval

Coverage 3% 5% 10x 12x 15x 3% 5% 10x 12x 15x%
of L

QIHC 0.888 0.954 0978 0.95 0972 0.878 0.940 0972 0.940 0.956
Canu 0.780 0.922 0.968 0.958 0.988 0.724 0.896 0.962 0.948 0.982
Jabba 0.112 0234 0.336 0.344 0.368 0.102 0222 0.304 0.302 0.336

QIHC, when the coverage was set to 3%, the accuracy
of QIHC was up to 15 percentage points ahead of Canu.
As the coverage increased, QIHC’s performance had been
more excellent until the coverage reached 12x. After that,
although Canu had a slight overshoot, the gap was not sig-
nificant. Figure 3 graphically shows the experiment result
when the heterozygosity interval was [0.25,0.75].

Comparison between Canu and QIHC on heterozygosity
quality

In this part of the experiment, the quality of heterozygos-
ity maintained by Canu and QIHC would be analyzed. The
so-called heterozygosity quality analysis is that the cor-
rected heterozygous site examines alleles mapped to the
site after ensuring that the base distribution falls within
the heterozygous interval. For example, a heterozygous
site consisting of allele A and C, after correction, the bases
mapped to this site should still be dominated by base A
and C; otherwise, although the site remains heterozygosity
within the heterozygous interval, its heterozygosity qual-
ity is very low. To more clearly analyze the heterozygosity
quality, we quantify it. Specifically, for a A-C heterozygous
site, we compare the proportion of base A and C mapped
to this site with the proportion of base T and G. If the for-
mer is larger than the latter, that is, the difference value
is positive, the heterozygosity quality of the site is high,
otherwise, the quality is poor. Other types of heterozy-
gous site are similar. Thereafter, a more detailed analysis of
the sites with high heterozygosity quality is conducted to
classify them as good and excellent. Specifically, the case

1
09 WMfF :
08 e
07
2 06
©
g 05 =8=QIHC
< 04 === Canu
0.3 Jabba
0.2
01
0
3 5+ 10+ 12+ 15+
Coverage of L
Fig. 3 Accuracy of QIHC, Canu and Jabba

where the difference value is between 0 and 0.3 is defined
as good, and between 0.3 and 1 is defined as excellent. No
doubt, excellence is better than good.

The experiment results with coverage 15x were selected
for heterozygosity quality analysis. The results are shown
in Table 3. After removing the sites that did not main-
tain heterozygosity, 494 and 486 heterozygous sites left
in Canu and QIHC results, respectively. Among the sites
that maintained heterozygosity, the difference value of 246
heterozygous sites in Canu result were negative, that is,
their heterozygosity qualities were poor; in comparison,
although the number of heterozygous sites maintained
in QIHC result was slightly less than that of Canu, the
number of heterozygosity sites with poor quality was sig-
nificantly less than Canu, which was 210. Similarly, QIHC
was also significantly better than Canu in terms of the
number of high quality heterozygous sites, 245 and 211,
respectively. Among the high quality heterozygous sites,
QIHC had a higher proportion of excellence. Therefore,
from the above analysis, QIHC was slightly inferior to
Canu in accuracy when the coverage was 15x, but after
in-depth analysis, it can be concluded that QIHC was sig-
nificantly better than Canu in heterozygosity quality. This
is also the reason why we chose the 15x coverage for deep
analysis, that is, QIHC can still lead significantly in other
aspects when its accuracy result is not dominant.

Analysis of accuracy with different sequencing error rates of
TGS data

In this part of experiment, we tested the accuracy of
QIHC and Canu at different sequencing error rates of
L, the experimental results are shown in Table 4. Since

Table 3 The comparisons on heterozygosity quality between
QIHC and Canu

Difference value Negative Draw Positive
245

QIHC 210 31 excellence good
57 181
211

Canu 246 37 excellence good

20 191
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Table 4 The comparisons on accuracy with different sequencing error rates of L between QIHC and Canu

Heterozygous interval [0.20,0.80] [0.25,0.75]

Error rate of L 20% 15% 10% 5% 20% 15% 10% 5%

QIHC 0.920 0.868 0.882 0.882 0.902 0.850 0.862 0.870

Canu 0.868 0.852 0.864 0.866 0.846 0.796 0.802 0.836

Heterozygous interval [0.30,0.70] [0.35,0.65]

Error rate of L 20% 15% 10% 5% 20% 15% 10% 5%

QIHC 0.816 0.778 0.760 0.788 0618 0.560 0.536 0.592

Canu 0.780 0.710 0.690 0.768 0.592 0.520 0.504 0.626
T(@)T(b)

Jabba’s correction results at heterozygous sites were much
behind Q/HC and Canu, Jabba was not used as a compari-
son method here. We performed comparison experiments
with 20%, 15%, 10% and 5% sequencing error rates in the
heterozygous intervals [0.2,0.8], [0.25,0.75], [0.3,0.7] and
[0.35,0.65]. Combined with the results of QIHC and Canu,
the accuracy trends in the four heterozygous intervals
were roughly the same, that is, accuracy was optimal when
the sequencing error rate was 20%, then accuracy declined
as sequencing error rate decreased, finally, there was a
rebound in accuracy when the sequencing error rate was
5%. Comparing the results of QIHC and Canu, accuracies
of QIHC were almost all higher than Canu, no matter what
interval and sequencing error rate.

Analysis of potential effects of the different prior probability
distributions on the performance

So far, we focused on the presentation of the overall
framework of the algorithm, directly defined the homozy-
gous and heterozygous prior probabilities as point prob-
abilities. In this part of experiment, we further discussed
the potential effects of other prior probability distribu-
tions on performance. Here we chose Beta distribution
for discussion, the reasons are as follows: Beta distribu-
tion can be understood as a probability distribution of
probabilities, that is, it represents all the possible values
of a probability when we don’t know what that probabil-
ity is. Going back to the background of our method, the
prior probability P(c) is available in most cases, but in a
few cases we can’t explicitly obtain P(c), which happens
to be the area where Beta distribution is good at pro-
cessing. Moreover, by adjusting the shape parameters in
Beta distribution, the probability distribution can be made
into various shapes we want, so Beta distribution is suffi-
cient to express our estimation of the prior probabilities in

advance. We made P(c) obey Beta distribution, according

. L . I ) L
to the principle of Beta distribution, P(c) = —Bah

where a and b are shape parameters, 6 is a reasonable
guess of the probability of homozygosity or heterozygos-
ity derived from experiences in previous studies, Beta

function B(a,b) = Fath) * where gamma function is
defined as T'(x) = [;° £*le~'dt.

Based on the characteristics of Beta distribution, we var-
ied the probability density distribution by changing values
of the shape parameters 4 and b, and observed the poten-
tial effects of the different prior probability distributions
on the performance. Specifically, we made the expected
value of the distribution equal to 0.5 (that is, ﬁb = 0.5),
which means the probability of homozygosity will most
likely around 0.5, but it could reasonably carry out small
fluctuations. Users can set this value according to their
actual situations. Here, Fig. 4 shows four Beta distribu-
tions with the expected value equal to 0.5 by changing
a and b values. We can see that as the values of a4 and
b increase, the curve becomes more “sharp’, that is, the
probability distribution of the prior probability is more
concentrated around the expected value. We performed
comparisons experiments with 0.1, 0.25, 0.35, 0.5 and
0.75 prior probabilities of homozygosity in the heterozy-
gous intervals [0.20,0.80], [0.25,0.75] and [0.30,0.70]. Since
only QIHC involves the prior probability distribution, we
just did comparative experiments on it, the experimen-
tal results are shown in Table 5. Through the results we
can see, when the prior probability was from 0.25 to
0.75, which could be the common practice, the accuracy
decreased slightly as the prior probability was far from the
expected value, but it still maintained a relatively stable
state. Specifically, in the heterozygous interval [0.2,0.8],
the accuracy decreased from 0.964 to 0.95, then to 0.94,
and the corresponding prior probabilities were 0.5, 0.35,
and 0.25, respectively. Similarly, when the prior probabil-
ity changed in the opposite direction to 0.75, the accuracy
also reduced to 0.952. Further, when the prior probabil-
ity continued to drop to 0.1, the accuracy fell to 0.652,
which means the accuracy of the proposed method may
be attenuated when the prior probability is at extrem level.
Through the testimony of the experimental results, we
can conclude that the accuracy reaches the optimum at
the expected value of Beta distribution, then, as the prior
probability get further away from the expected value, the
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accuracy gradually deteriorate. Obviously, the smaller the
fluctuation of the prior probability, the smaller the impact
on the posterior probability calculation, that is, the more
stable the performance of QIHC. For example, in the case
of a = b = 5, the prior probability is even possible to
be more extreme, such as 0.1, although this situation is
less likely, it also increases the instability of the correc-
tion result. When shape and scale parameters are quite
large (e.g. a = b = 300), the prior probability reason-
ably ranges from 0.45 to 0.55, which has little effect on the
performance.

Conclusions

The third-generation sequencing (TGS) technology has
demonstrated unique advantages in terms of read length
and so on, which providing great convenience for down-
stream analysis. As we start to see the promising potential

Table 5 The comparisons on accuracy with different prior
probabilities of homozygosity on QIHC

Heterozygous interval [0.20,0.80] [0.25,0.75] [0.30,0.70]
Prior probability

0.10 0.652 0.638 0.576

0.25 0.940 0.936 0.844

035 0.950 0.936 0.872

0.50 0.964 0.944 0.866

0.75 0.952 0.940 0.868

of TGS, we must also be aware of where it might stum-
ble. High sequencing error rate is a major problem in TGS
technology, therefore, correcting the sequencing errors
is an inevitable step when we apply the TGS data. The
existing error correction methods are quite complete for
the correction strategy at normal sites, but they are often
not considered in the correction of heterozygous varia-
tion positions, which is an aspect that cannot be ignored.
We have therefore proposed a method to break this limi-
tation, solving the error correction at heterozygous sites.
Our novel error correction method, termed QIHC, adopts
probabilistic models to deal with heterozygous variantion
sites based on the advantages of the existing error cor-
rection methods. According to the sequencing principle,
QIHC reasonably assumes that the mapping bases obey
binomial distribution, uses Bayesian classifier to judge the
heterozygosity of sites by calculating the posterior prob-
abilities, and then performs error correction. In addition,
QIHC also generates a pseudo reference sequence, which
makes our algorithm suitable for genomic data without
reference sequences, and achieves high efficiency of single
mapping and repeated using. In the simulation exper-
iments, QIHC performs significantly better than Canu
and Jabba at heterozygous variantion sites, especially in
the case of low coverage. From the comparison of Canu
and QIHC, the performance of QIHC at low coverage
is significantly superior to that of Canu in all aspects;
as the coverage increases to 15x, the accuracy of QIHC
is also greatly improved, although Canu has the slightly
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upper hand in accuracy after eliminating the interference
of low coverage, but still far behind QIHC in terms of
the heterozygosity quality. In the case of low coverage,
since Canu-correct is a self correction algorithm, cover-
age of the TGS data is a key factor affecting performance
of Canu, making its performance worse than QIHC in
many aspects; with the coverage going up, Canu continues
the principle of Celera Assembler and adopts “Overlap-
Layout-Consensus’, that is, after the overlap of sequences,
voting correction is performed directly according to the
“the minority is subordinate to the majority” rule. QIHC
adds probabilistic models for judging heterozygosity, so
that even when the accuracy is slightly backward, it can
prevail in the heterozygosity quality. For future work, we
will try several assembly tools and generate the contigs
to optimize the correction results of Q/HC as much as
possible. Moreover, we will adjust the program code to
optimize running time and memory consumption.

Methods

Let L denote a set of TGS reads and S denote a set of
NGS data, respectively. Suppose that we are given L and §,
QIHC uses the probabilistic models to judge the heterozy-
gosity through Bayesian classifier, and corrects reads from
L based on the integration of self correction and hybrid
correction mechanism, finally outputs the corrected set
L. No reference sequence is required for the inputs. From
the inputs to the outputs, Q/IHC includes three major
modules, which are in turn:

1) Generating pseudo reference sequence. Specifically, a
pseudo reference sequence is obtained through
assembly process, which can be done by any popular
long-read assembly tool. Through this module, the
inefficiency of repeatedly mapping § to each read
from L in hybrid correction is solved. At the same
time, there is no need to narrow down the QIHC
scope of application in order to input a native
reference sequence.

2) Obtaining read alignment. Simultaneously mapping
S and L to the pseudo reference sequence, named
Ref. Let Lm denote a set of TGS reads which
successfully map to Ref, and Lu denote a set of TGS
reads which do not map to Ref. Specifically, mapping
L to Ref to get Lm and Lu. A standard was set to
accomplish this task. Dividing L into these two parts
facilitates subsequent implementation of targeted
correction strategies. For another, Ref provides
anchor points for the mapping of Lm and §, that is,
the sites on Ref sever as anchor points to ensure that
the corresponding bases of Lm and § are mapped to
the same site.

3) Judging heterozygosity and correcting reads. This
module consists of judging heterozygosity by the
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probabilistic models and performing the different
correction strategies according to the judgment
results. Specifically, after the first two modules are
completed, the mutual relationships and the
mapping positions between reads can be calculated.
At this time, the probabilistic models can be used to
calculate the posterior probabilities, furthermore,
Bayesian classifier is used to judge heterozygosity,
that is, the largest posterior probability is selected for
decision making, finally the targeted correction
strategies are implemented. This is our core module,
under the premise of not losing accuracy and greatly
increasing the sensitivity to heterozygosity, QIHC
accomplishes the error correction of L.

Generating pseudo reference sequence

As the beginning of the method, we perform sequence
assembly to get a pseudo reference sequence, the assembly
process is as following four steps:

Step 1 :Load reads from L and align all reads to each
other to get a directed graph, where each read is
treated as a node.

: Compute overlaps between any two reads based
on Smith-Waterman algorithm and obtain the
information of all possible overlaps. Specifically,
we set the user parameters min_length,
max_length and 0 as the minimum length, the
maximum length and a threshold score of
overlap, respectively. Using the Smith-Waterman
algorithm to compute the score of overlap
between any pair of reads. Of course, if there is no
overlap between two reads, the corresponding
score is 0, and the overlap length is also 0. When
the overlap length of a pair reads is between
min_length and max_length, and the score is
greater than 6, the overlap is established.

: According to the overlaps, the reads from L are
preliminarily assembled, and get the combined
relationship of fragments, defined as contig.

: Scan again, if there are overlaps in contigs,
merge the contigs to form a new contig, and
delete the original contigs. In this way, we get the
final contigs.

Step 2

Step 3

Step 4

Finally, we link these contigs to obtain a pseudo ref-
erence sequence—Ref. Since assembly principle of Canu
can achieve the purpose of our assembly idea, and Canu
adds correction and trimming before assembly to get high
quality contigs, we choose Canu as the assembly tool.

Obtaining read alignment
After obtaining Ref, L and S are mapped to the pseudo
reference sequence by BLASR [28], which has a strong
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fault tolerance and can map almost all reads to Ref. Since
BLASR may generate multiple mapping results for a read
and sort by the percentage of mapped base, we reserve the
best mapping result for each read and divide L into Lm
and Lu according to the percentage of mapped base, that
is, the critical value of the percentage is 90%, a read with
the percentage over 90% is assigned to Lm, otherwise it is
assigned to Lu. Next, it is necessary to map S to each read
of Lu separately in order to perform a correction strategy
different from Lm.

Judging heterozygosity and correcting reads

The highlight of QIHC is the heterozygosity judgment,
the core idea is as follows: two sets of the probabilistic
models are established for S and L respectively, the prob-
abilistic models are proposed based on Bayesian classifier.
According to the basic principle of Bayesian classifier,
we calculate the posterior probabilities of homozygosity
and heterozygosity respectively, and take the side with
higher probability value as the judgment result. More
specifically, the comparison of the posterior probabilities
is equivalent to the comparison of the product of the
prior probability and the conditional probability of het-
erozygosity. The prior probability is a fixed value obtained
through sequencing data features, the conditional proba-
bility is subject to binomial distribution. Alleles are sorted
according to the frequency of occurrence. For heterozy-
gous cases, the first two rank are taken as the heterozygous
alleles, and the rest are sequencing errors; for homozy-
gous cases, the first rank is taken as the homozygous allele,
similarly, the rest are sequencing errors. Each allele obeys
its respective binomial distribution, and the latter term is
calculated on the basis of the former term.

Specifically, the heterozygosity judgment process is
described in detail with respect to the site i on Ref. Let
Ly, St, By, by, R; represent the kth LRs, the ¢th SRs, the
mth base of Ly, the nth base of S;, the ith base of refer-
ence sequence Ref, respectively. Figure 5 intuitively shows
the dependency relationships and the distribution among
Ref, Ly, St, By, b and R;. According to the known knowl-
edge, a base may be four single-bases or null. Thus, B’
and b} have five possible alleles, which are A, T, G, C
and null label N. The mapping result is subdivided, the
number of long reads mapped to R; is defined as the read
depth of long reads, represented by RD;. Similarly, the
read depth of short reads is defined, denoted by rd;. Pro-
cessing the long reads which mapped to R;, let X, denote
alleles which are sorted according to the frequency of
occurrence from large to small, Xq| denote the corre-
sponding frequency, g=1, 2, 3, 4, 5. Then, we can draw

the binomial distribution for X,;: X, ~ Bin (Dq,Pl), where
X, _
foalpy = Cpf x Pyl x (1 - PP, Dy =

Zg |X4. Similarly, the alleles and frequency of occurrence
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R
Ref ¢

;B,"” Ly 3

Fig. 5 The dependency relationships and distribution among Ref, L,
St B, b7 and R;

of the alleles are defined in short reads, denoted as x, and
lx4l, g=1, 2, 3, 4, 5. Drawing the binomial distribution for

qs % ~ Bin (dg, Py), where f (X1 Py) = G x (P!

(1 — Py)%a— %4, dg = Zg !xq‘. It should be noted here
that P; and P, are the prior probability values of X and
x respectively, which vary according to the different situ-
ations, and the details are given in the probability model
calculation part.

Therefore, the posterior probability of L can be calcu-
lated by Eq. (1),

P (c|X1, X9, X3, X4, X5)
= P(XI)X21X3)X4;X5|C) X P(C)
= P (Xilc) x P (X3]X1,¢) x P (X3|X1,X2,0)
x P (X4|X1, X2, X3,¢) x P (X5|X1, X2, X3, X4,¢) X P(c)
(1)

where the value of ¢ is homozygosity or heterozygosity.
The probability of § is similar. For the allele whose occur-
rence frequency is 0, the corresponding item is removed
in actual calculation. So far, two kinds of the poste-
rior probabilities are obtained by multiplying the above
probabilities, which are the probabilities of observing the
bases distribution when homozygosity and heterozygos-
ity; inferring the heterozygosity of the site based on the
maximum probability value.

Then, the bases distribution as a new definition is
brought up, which reflects how many kinds of alleles are
mapped to R;, denoted as d/, which can be computed as

5

dl =" "1(|X,l #0) )

n=1

where I(-) is an indicator function, which outputs 1 when
the equation is true. Similarly, the bases distribution are
defined in short reads, denoted as ds. The possible distri-
butions of bases are given in Fig. 6, which contribute to
understanding of the heterozygosity judgment.
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Ref

[

RD;=10,X, =A |
1X;1=10, dl=1

Ref

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(RD;=10,X, =T, X, =C
X, = 6, 1X,] = 4, dI=2

Fig. 6 The possible distributions of bases

After |Xq s |%4|s dl, ds, RD; and rd; are calculated,
the heterozygosity judgment is performed. Let D; repre-
sent the bases distribution under the site i we observed.
According to the bases distribution, it can be divided into
five cases: d=1, d=2, d=3, d=4 and d=5, d here refers to d!
and ds.

Case 1:

If dI=1, then it is directly judged to be homozygosity.
If ds=1, then it is directly judged to be homozygosity.

Case 2:

If di=2, thus |X1| + |X2] = RD;, then the posterior
probability of D; under homozygosity and heterozygosity
are as follow (see the corresponding details of calculation
formulas in Additional file 1):

P (i is homozygosity|D; = {X1, X2}) 3)

P (i is heterozygosity|D; = {X1, X2}) (4)

After calculating the two posterior probabilities, the
result of judgment is corresponding to the larger value.

The judgment principle of S is similar to L, we do not
describe here, see the corresponding details in Additional
file 1.
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Case 3:

If dI=3, thus |X;| + |X2| 4+ |X3| = RD;, then the poste-
rior probabilities of homozygosity and heterozygosity are
given below (see the corresponding details of calculation
formulas in Additional file 1):

P (i is homozygosity|D; = {X1, X2, X3}) (5)

P (i is heterozygosity|D; = {X1, X2, X3}) (6)

Similar to the case with d=2, we take the larger value in
Egs. (5) and (6) as the judgment result of L.

Case 4:

If di=4, thus |Xi| + [X3] + |X3| 4+ |X4] = RD;, then
the posterior probabilities of homozygosity and heterozy-
gosity are given below (see the corresponding details of
calculation formulas in Additional file 1):

P (i is homozygosity|D; = {X1, X2, X3, Xa}) (7)
P (i is heterozygosity|D; = {X1, X2, X3, Xa}) (8)
Case 5:

If di=5, thus |X1| + |X3| + |X3| + |Xa| + [X5] = RD;,
then the posterior probabilities of homozygosity and het-
erozygosity are given below (see the corresponding details
of calculation formulas in Additional file 1):

P (i is homozygosity|D; = {X1, X2, X3, X4, Xs})
= P (D; = {X1, X2, X3, X4, X5}|i is homozygosity)
x P (i is homozygosity)
=f (X1|P1) x f (X2|P2) x f (X3|P3) X f (Xa|Ps)
x f (Xs5|Ps) x P (i is homozygosity) 9)

P (i is heterozygosity|D; = {X1, X2, X3, Xa, Xs})
= P (D; = {X1, X2, X3, X4, X5} |i is heterozygosity)
x P (i is heterozygosity)
=f (X1IP1) x f (X2|P2) x f (X3]P3) x f (Xa|Pa)

x f (Xs5|Ps) x P (i is heterozygosity) (10)

So far, the strategy of the heterozygosity judgment has
been given. In general, the input to this process is the
bases distribution under site i, and the different proba-
bilistic models are implemented for different sources of
reads. The final output is the result of heterozygosity of
site i.
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Then, we perform the different correction strategies for
Lm and Lu, respectively.

For the correction of Lm, the inputs are the bases dis-
tributions of Lm and S and their heterozygosity judgment
results. Correcting Lm is our goal, so the R; on Ref is
only used as an anchor point to locate related reads of
Lm and S, as shown in Fig. 5. Under the same anchor
point R;, results of heterozygosity judgment for the bases
distributions produce four possible combinations: het-
erozygous result from Lm and homozygous result from
S; heterozygous result from Lm and heterozygous result
from §; homozygous result from Lm and homozygous
result from S; homozygous result from Lm and heterozy-
gous result from S. For these four combinations, QIHC
makes a decision: when the judgment results of Lm and
§ are consistent, since the sequencing accuracy of NGS
is much higher than that of TGS, the judgment result of
S is adopted; otherwise, the party whose judgment result
is homozygosity is accepted. Thus, the final judgment
result of heterozygosity is obtained, which is defined as
H,,. According to H,,, the following correction rules are
implemented:

If H,, is homozygosity, then the site to be corrected is
replaced with the allele which appears most frequently
among bases mapped to R;;

If H,, is heterozygosity: if the site to be corrected is
already one of the top two frequent alleles among bases
mapped to R;, then leave the allele of this site as it is; oth-
erwise, the site to be corrected is randomly replace with
one of the top two frequent bases.

According to the above decision results, all reads corre-
sponding to the anchor point in Lm are corrected by the
correction rules, a correction result set Lm’ is outputted.

For the correction of Lu, since Lu is the set of long
reads that have not been successfully aligned to Ref,
it can be seen that there is not enough correlation
between each read in Lu. Therefore, the inputs are the
bases distributions of § mapped to reads of Lu and
their heterozygosity judgment results, using S to cor-
rect each read in Lu one by one. The basic principle is
obtaining the final heterozygosity judgment result of §
named Hy,, and correcting Lu according to the following
criterions:

If H, is homozygosity, then the site to be corrected is
replaced with the allele which appears most frequently
among bases mapped to the base B};

If H, is heterozygosity: if the base corresponding to the
site to be corrected is already one of the top two frequent
alleles among bases mapped to B}, then leave the base
of the site as it is; otherwise, the site to be corrected is
randomly replaced with one of the top two frequent bases.

It is worth noting that the implementation of heterozy-
gosity judgment and correction rules here only use the
information provided by S. All reads in Lu are corrected, a
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correction result set Ly’ is outputted. Eventually, Lm’ and
Ly’ form I together.

Overall, we design an error correction algorithm with
high sensitivity to heterozygosity, the algorithm mainly
consists of the following steps:

Step1 : Assemble L and get contigs;

Step 2 : Link contigs one by one and obtain a pseudo
reference sequence—Ref;

: Map L to Ref and get Lm and Lu;

: Map S to each read of Lu, obtain rd;, os (V;)
and ds, implement heterozygosity judgment and
save result;

: Map Lm to Ref. For R; of Ref, obtain RD;,

ol (Vy,) and dI, implement heterozygosity
judgment and save result;

: Map S to Ref. For R; of Ref, obtain rd;, os (V)
and ds, implement heterozygosity judgment and
save result;

: Make the final judgment H,, for Lm, if the
results of step 5 and step 6 are consistent, the
result of step 6 is adopted; otherwise, the step
whose result is homozygosity is accepted, jump
to step 9;

: According to the result of step 4 and the
correction rules mentioned above, correct each
read of Lu, obtain the correction set Lu’;

: According to the result of step 7 and the
correction rules mentioned above, correct all
reads of Lm which corresponding to the anchor
point R;, then load R;4+1 and jump to step 5, until
all sites on Ref are traversed, obtain the
correction set Lm’;

Step 10 : Combine Lu’ and Lm’ to get L.

Step 3
Step 4

Step 5

Step 6

Step 7

Step 8

Step 9
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