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Abstract

It is generally the case that a significant degree of uncertainty exists concerning the behavior of ecological systems.
Adaptive management has been developed to address such structural uncertainty, while recognizing that decisions must
be made without full knowledge of how a system behaves. This paradigm attempts to use new information that develops
during the course of management to learn how the system works. To date, however, adaptive management has used a very
limited information set to characterize the learning that is possible. This paper uses an extension of the Partial Observable
Markov Decision Process (POMDP) framework to expand the information set used to update belief in competing models.
This feature can potentially increase the speed of learning through adaptive management, and lead to better management
in the future. We apply this framework to a case study wherein interest lies in managing recreational restrictions around
golden eagle (Aquila chrysaetos) nesting sites. The ultimate management objective is to maintain an abundant eagle
population in Denali National Park while minimizing the regulatory burden on park visitors. In order to capture this
objective, we developed a utility function that trades off expected breeding success with hiker access. Our work is relevant
to the management of human activities in protected areas, but more generally demonstrates some of the benefits of
POMDP in the context of adaptive management.
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Introduction

There is currently a paradigm shift in many conservation

organizations. Increasingly, these organizations are asked to come

up with clear conservation objectives, and to increase the efficiency

in their use of conservation funds. In this context, science can help

improve understanding about how a system will respond to

potential management actions, and as a result help achieve

conservation objectives more efficiently. Scientific experiments

represent the most rigorous and efficient way to reduce structural

(model) uncertainty, i.e., uncertainty about the behavior of a

managed system. This observation sometimes leads to a recom-

mendation to conduct adaptive management as a sequential, 2-

step ‘‘learn then manage’’ process. Unfortunately, in many

situations, experiments are not compatible with short term

conservation objectives. For example, it may not be legally

possible to implement an experiment that could potentially harm

an endangered species, even if the learning could ultimately

benefit the species and its habitat. Similarly, in the case of the

control of disease or invasive species, policy makers may be

reluctant to allow experiments that they view as risky. Further-

more, it is rarely optimal to postpone management in order to wait

until the analyses of experiments are complete. These perspectives

argue against this sequential ‘‘learn then manage’’ approach to

adaptive management.

By contrast, a decision that takes into consideration scientific

uncertainty but is focused simultaneously on reducing this

uncertainty and on addressing both conservation and socio-

economic objectives may be acceptable to management agencies.

This is effectively the goal of adaptive management: identifying the

best decisions given the current state of knowledge and specified

management objectives, and recognizing that current learning will

lead to future management gains. Indeed, structural uncertainty or

model uncertainty has most often been addressed by conducting

adaptive management [1–3], providing a decision framework to

balance short term conservation objectives and learning to better

manage a system in the future [4]. Adaptive management is a

special case of structured decision making, which is a decision

analytic framework that decomposes a problem into its compo-

nents: management objectives; potential management actions;

system models that project consequences of the potential actions

on the system; an optimization method that uses these components
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to identify optimal decisions; and a monitoring program to provide

estimates of the state of the system [4]. Outputs from the

optimization process can generally be synthesized into a format

that is easy to use by decision makers. For example, it is easy to

create decision tables, which display the optimal decisions given

information about the state of the system. The decision process

that we have described also allows one to explore and understand

the implications of choosing specific actions when one is uncertain

about how the actions may influence the system (for example

through simulations).

Adaptive management extends the basic Markov Decision

Process (MDP) framework [5] by recognizing that the structure of

the system that relates state and control variables to rewards and

future states is generally not known with certainty. Essentially

there is scientific uncertainty about how the system will respond to

specific actions and thus the goal is to improve management by

reducing this uncertainty. Specifically, adaptive management

augments a model with a set of additional state variables that

define a probability distribution over the unknown features of that

structure. When the uncertainty is characterized by a discrete set

of possible parameter values or fundamentally different model

structures, this distribution can be represented by a discrete set of

probability weights. As new information becomes available these

beliefs can be updated using Bayes Rule [4].

In this paper we use a partially observable Markov Decision

Process (POMDP) framework in order to extend the scope of the

adaptive management paradigm. Traditionally, the POMDP

approach deals strictly with the inability to directly observe the

current state [6] and the resultant need to incorporate this

uncertainty in computing expected rewards and changes in system

state. Unfortunately this standard POMDP approach is not well

suited for addressing the issue of structural uncertainty raised here.

To overcome its limitations we have applied a POMDP approach

(‘‘extended POMDP’’; Fackler and Pacifici [7]) that allows for

both structural uncertainty and partial observability (i.e., the

uncertainty about the state of the system due to imperfect

monitoring) to be handled in a common framework; here we focus

on structural uncertainty. To date most applications of adaptive

management use only the realized values of the state variable,

along with the transition probabilities, to update beliefs about

model parameters. The use of the extended POMDP framework

allows additional information signals to be used to update beliefs

about system parameters. This can potentially increase the speed

of learning, thus making learning more valuable.

In the remainder of the paper we briefly describe the extended

POMDP approach (see Fackler and Pacifici [7], for more details

and theory about this approach) and then highlight several

features of this approach by modifying an existing case study

wherein interest lies in managing recreational restrictions around

golden eagle nesting sites [8]. The computer codes for our models

are included in Supplement S1, and can be implemented with

MDPSolve: (https://sites.google.com/site/mdpsolve/).

Materials and Methods

Addressing Structural Uncertainty with POMDPs
The standard MDP is defined by some state variables S, some

possible actions A, a reward function R(S, A) and a transition

probability matrix that defines P( Sz jS, A) where Sz is the

value of the state in the next period. In a standard MDP the goal is

to find a decision rule At ( S) in order to maximize

Vt(St;A)~

XT

t~t

dt{tE½R(St,At(St))jSt�zdT{tE½VTz1(STz1)jSt�
ð1Þ

where d is a discount factor defined on [0,1], t is the current time

at which a decision must be made (t = 1, …, T), VTz 1 is a

terminal reward function, and E[] is the expectation operator.

In the extended POMDP approach used here, the state

variables are partitioned into those that are observable (O) and

those that are unobservable (U): S = {O, U}. In addition an

observed informational variable Y, called a signal, can be included

that provides information about the unobserved state. The

flexibility of this approach lies in defining a general dependency

between the signal and current and/or future state variables. In

some cases the information signal may be used to directly update

(i.e., estimate) states, while in other cases it is simply a source of

information that can increase the speed of learning (e.g.,

information used to differentiate competing structural models).

For more information and examples of information signals, please

see Fackler and Pacifici [7]. To make this variable sufficiently

general we define the probability of the joint distribution of the

next period’s state and signal conditional on this period’s state and

action:

P(Oz, Uz, Y jO, U , A) ð2Þ

This framework extends the standard POMDP (for an overview

of POMDPs see [9]) in two ways: first it decomposes the state into

observable and unobservable components, thus incorporating the

so-called Mixed Observability Markov Decision Process

(MOMDP) introduced by [10], discussed further by [11], and

applied to a conservation decision problem by [12]. Second, it uses

the full joint distribution of future states and signals conditioned on

current states and actions, allowing for more flexibility in defining

dependence among observed and unobserved variables, which is

an important feature for our ecological application.

The MOMDP approach replaces the unobservable variable U
with a belief state variable B, representing a probability

distribution over the values in U, which incorporates the history

of the observable state, action and signal (note that B is a vector

with non-negative elements that sum to 1). The belief state is

updated after observation of O+ and Y using Bayes Rule such that

the probability for the future unobserved state, Uz is given by:

Bz(Uz)~P(UzjO, B, A, Oz, Y )

~

P
U P(Oz, Uz, Y jO, U , A)B(U)P

Uz

P
U P(Oz, Uz, Y jO, U , A)B(U)

ð3Þ

The goal is to find a decision rule At ( O, B) that is a function

of the observable states and the belief states in order to maximize

Vt(Ot, Bt; A)~
XT

t~t

dt{tE½R(St, At(Ot, Bt))jOt, Bt�

zdT{tE½VTz1(STz1)jOt, Bt�

ð4Þ
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To address adaptive management problems, and thus structural

uncertainty, in the extended POMDP framework, first define the

unobservable state U to be the true model out of a set of nu

possible models. Next define a probability distribution over U, B
= P(U), and update B after observations of O+ and Y. Note that

traditional adaptive management only permits updating of model

weights after observing the transition of the observable state

variables (O+) whereas here we can use observable state transitions

(estimated from data or strictly observed) as well as signal

information (Y), therefore potentially increasing the speed at

which we can learn and discriminate between models of the

system. We highlight the advantages of the extended POMDP

approach below with an example based on [8].

Recreational Restrictions near Golden Eagle Nesting Sites
Conflicts between human activities and wildlife survival are

common [13] although the extent of the problem varies

considerably across activities and species [14–17]. Recently,

concerns have been raised as to the effect that recreational hikers

may have on the breeding success of golden eagles in Denali

National Park (Alaska, U.S.A.). The expansion of recreational

hikers into pristine areas may disturb nesting golden eagles by

increasing their energetic costs, changing their behavior and nest

abandonment [18]. [8] developed a model to support the

management of recreational restrictions around golden eagle

nesting sites to learn about these impacts while managing them in

an efficient manner. The management action consists of restricting

access to hikers near known eagle nesting sites in order to reduce

disturbance to breeding birds. In that study, management actions

for a breeding season were determined prior to observing the

occupancy status of the site in that season. Here we develop an

alternative plan in which the management decision in season t is

made after the occupancy status of the site in season t is known.

The occupancy status at each site was determined by repeated

Figure 1. Optimal number of restricted sites with no structural uncertainty. The values of pu, pr are evaluated at the average hare level
h = 9.4. The colored lines indicate the optimal number of sites to be restricted sites (# of sites restricted: from 0 to 25 sites) for 5 levels of index of hare
abundance (from 2.5 to 32.5). Each subplot also shows the long-run expected number of occupied (E[#O]), restricted (E[#R]) and successful (E[#S])
sites. Note that the number of restricted sites can never be greater than the number of occupied sites.
doi:10.1371/journal.pone.0102434.g001
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visits at each site (up to three visits) prior to the start of the

recreational hiking season. Although it is possible that biologists

would overlook birds at a nest, [19] estimated that the average

detection probability (i.e., the probability of detecting breeding

golden eagles given that they are present at a site) was close to 1

(see Fig. 3 in [19]). Thus it is reasonable to assume that the

occupancy status is known before the action is taken. As in [8] we

focused on 25 potential sites that are accessible to hikers.

Single Site. Although the problem concerns the management

of multiple sites it is useful to develop the model in terms of a single

site and then to expand the problem to multiple sites. The state

variable S is the occupancy status of the site which can be either

empty or occupied (0 or 1). The management action A is whether

hiking activity at an occupied site is either unrestricted or restricted

(0 or 1). The state/action therefore takes on three possible values:

(1) empty, unrestricted, (2) occupied, unrestricted and (3) occupied,

restricted (we ignore the fourth case of a restricted empty site

because it is not a logical action). The signal variable for this model

concerns whether or not fledging is successful at the site. Table 1

specifies the possible events that can occur at each site. The

Figure 2. Number of restricted sites with active learning using information optimally. Each row of subplots corresponds to a specified
number of occupied sites (S). The subplots show the optimal action for each belief value, with the three corners representing complete certainty in
one of the models (lower left for the no disturbance model, lower right for the moderate disturbance model and top for the strong disturbance
model). The number of possible restrictions ranges from 0 to S (the number of restricted sites can never be greater than the number of occupied
sites).
doi:10.1371/journal.pone.0102434.g002
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columns of the table correspond to the current state and action

(occupancy/restriction) and the rows correspond to the signal and

future state (successful fledging/occupancy next year).

For reasons that will become clear when we move to a multiple

site model, it is useful to split the signal into two variables, one for

whether an occupied, unrestricted site was successful and the other

for whether an occupied, restricted site was successful. The cells of

Table 1 provide the joint probability distribution of the signals and

next period state conditional on the current state and action. The

success probabilities pu and pr, unrestricted and restricted

respectively, depend on the level of the arctic hare population h

(index of hare abundance, see [8]) which is assumed to be known

at the time restriction decisions are made. Specifically

pu~1=(1zexp({bINT{bHAREh{bDIST)) ð5Þ

and

pr~1=(1zexp({bINT{bHAREh)) ð6Þ

Figure 3. Probing activity using information optimally. Differences in the number of restrictions between the active management strategy
(shown in Figure 2) and the passive management strategy. Green values indicate no probing activity, blue values represent fewer restrictions with
the active strategy, yellow/red values indicate more restrictions with the active strategy.
doi:10.1371/journal.pone.0102434.g003
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Where b INT is the intercept, b DIST represents the impact of

hiker related disturbance on the fledging success probability and

b HARE represents the impact of the level of the arctic hare

population (for simplicity the hare level is set to its mean of 9.4; see

Table 2 for parameter values).

This is a case in which the joint distribution of the future state

and signal, (Y, S+) does not decompose in a way that would allow

the use of standard POMDP (or even MOMDP). To see this, note

that

P(SzjS, A, Y )~
1{pc 1{pn 1{ps

pc pn ps

� �
ð7Þ

where the columns represent (empty, not successful), (occupied,

not successful) and (occupied, successful); pc is the probability that

an empty site is occupied (colonized) next year, pn is the

probability that a site is re-occupied next year if fledging is not

successful, and ps is the probability that a site is re-occupied next

year if fledging is successful. Notice that knowledge of Y makes

knowledge of A uninformative for S+, i.e. P(Sz jS, A, Y )~

P(SzjS, Y ) . On the other hand the state transition matrix is

P(SzjS, A)

~
1{pc (1{pu)(1{pn)zpu(1{ps) (1{pr)(1{pn)zpr(1{ps)

pc (1{pu)pnzpups (1{pr)pnzprps

" #ð8Þ

(the dependence of pu and pr on the hare index is suppressed to

reduce notational clutter).

As discussed in [20], given alternative conditional probability

distributions P(X|W) and P(X|Z), a signal W is at least as

Table 1. Individual site joint state/signal probability matrix.

Signals and Future State Current State/Action (S, A)

Y1 Y2 S+
occupied/restricted

unrestricted/ restricted/ occupied

successful successful next year no/no yes/no yes/yes

no no no 1 { pc (1 { pu (h)) (1 { pn) (1 { pr (h)) (1 { pn)

no yes no 0 0 pr (h) (1 { ps)

yes no no 0 pu (h) (1 { ps) 0

no no yes pc 1 { pu hð Þð Þpn 1 { pr hð Þð Þpn

no yes yes 0 0 pr (h) ps

yes no yes 0 pu (h) ps 0

pc probability that an empty site is occupied (colonized) next year.
pn probability that a site is re-occupied next year if fledging is not successful.
ps probability that a site is re-occupied next year if fledging is successful.
pu(h) probability that fledging is successful if access to the site is unrestricted.
pr(h) probability that fledging is successful if access to the site is restricted.
pu and pr depend on the size of the arctic hare population h, which is assumed known at the time restriction decisions are made.
doi:10.1371/journal.pone.0102434.t001

Table 2. Parameter values of alternative models and assumptions.

Model b INT b HARE b DIST pu pr

pr certain

1) no disturbance 20.75 0.06 0 0.454 0.454

2) moderate disturbance 20.75 0.06 20.2 0.405 0.454

3) strong disturbance 20.75 0.06 20.6 0.313 0.454

both pu and pr uncertain

1) no disturbance 20.85 0.06 0 0.429 0.429

2) moderate disturbance 20.75 0.06 20.2 0.405 0.454

3) strong disturbance 20.65 0.06 20.5 0.358 0.479

pu certain

1) no disturbance 20.95 0.06 0 0.405 0.405

2) moderate disturbance 20.75 0.06 20.2 0.405 0.454

3) strong disturbance 20.55 0.06 20.4 0.405 0.504

pr ~ 1=( 1z exp( { b INT { b HARE h) )

pc = 0.2315, pn = 0.9427, ps = 0.9573.
The hare level is treated as constant and set to its mean value (h = 9.4).
doi:10.1371/journal.pone.0102434.t002
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informative as Z if there exists a probability matrix T such that

P(X jW )T~P(X jZ) ð9Þ

It can be seen from inspection that

P( Sz jS, Y ) T~ P( Sz jS, A) when

T~

1 0 0

0 1{pu 1{pr

0 pu pr

2
64

3
75 ð10Þ

This formally verifies the intuitively reasonable result that

knowledge of Y is more informative than knowledge of A.

Structural uncertainty. Structural uncertainty arises be-

cause there is considerable uncertainty about the effect of the

restrictions on the fledging success probabilities (i.e., on pu and pr).

In [8] it is assumed that pr is known but pu is uncertain. Three

alternative models were suggested, one that represented a best

estimate with pu ,pr, one with no disturbance effect pu = pr and

one with a strong disturbance effect pu ,,pr. To model this, we

augment the model with an additional state variable, taking on

values of 1, 2 or 3, to represent which of these three models is, in

fact, correct. This is a hidden or partially observed variable, and so

we have two state variables, the occupancy status which is

observed, and the disturbance effect, which is not. For this reason

the mixed observability feature of the extended POMDP approach

is useful, as this model could not be conveniently solved using

standard POMDP approaches (see [12], for further discussion of

this point).

The ability to learn arises from use of information about actual

fledging success to update beliefs about the effect of restrictions. In

a traditional adaptive management context, however, the updating

of beliefs does not use Y, but instead relies solely on S+ to update

model belief weights. For this model the implication is that we

must infer the success from the occupancy status next year to

update our beliefs. Observing a high number of occupied sites next

year is more likely if there was also a high number of successful

fledgings. This is clearly a noisy signal, and it is to be expected that

knowledge of fledging success is more useful than knowledge of

next year’s occupancy status.

Taken to the extreme if pn = ps (i.e., that fledging success this

year does not influence the probability of occupancy next year)

then the single site state transition would simplify, see Table 3.

In this case pu and pr have completely dropped out of the

transition probabilities and thus the occupancy history is

uninformative about the effect of restrictions on fledging success.

Although it was estimated that ps is slightly higher than pn, (see [8])

the effect is so small that traditional adaptive management

(updating using only the occupancy data) would be expected to

exhibit very slow learning.

What information is useful depends on what we take as known

and what is treated as uncertain. In Martin et al. [8] the

parameters were estimated under the assumption that pr, the

success probability when nests are restricted and thus undisturbed,

could be estimated (and thus, for simplicity, be treated as known

with certainty) given the data available but that pu is not known. In

this case the appropriate signal to reduce uncertainty is the

number of unrestricted/successful sites (which implies that rows 1

and 2 and rows 4 and 5 of Table 1 can be added together). To

explore other alternatives, suppose instead that in our historical

record the nesting territories were disturbed by hikers. In this case

pu is considered known (because unrestricted sites are potentially

disturbed by hikers) but there is uncertainty about pr and the

number of nesting territories that are restricted and successful is

the appropriate signal (implying that rows 1 and 3 and rows 4 and

6 of Table 1 can be added together). More generally, however, the

historical record might reflect a mix of disturbed and undisturbed

sites in which case both pr and pu are uncertain and both the

number of restricted/successful sites and the number of unre-

stricted/successful sites would be useful in making estimates more

precise.

Under the assumption (as in [8]) that pr, the success probability

when nests are restricted and thus undisturbed, was estimated

given the data available (and thus considered known) the

uncertainty centers around the value of bDIST (eqn 5). As in [8]

three alternative models are considered representing (1) no

disturbance effect (bDIST = 0) (2) a moderate disturbance effect

(bDIST = 20.2), which is the model considered most likely in [8]

and (3) a strong disturbance effect (bDIST = 20.6). In addition, two

alternative assumptions are examined. One alternative is that pu is

known but there is uncertainty about pr. A constant value of pu

results when bINT + bDIST is constant. Setting pu equal to the value

in the moderate disturbance case of 0.405 results in a value of bINT

+ bDIST = 20.95. The intermediate assumption is that there is

uncertainty about both pu and pr. Parameter values for this case

are set to represent a model that is half way between the two

extreme cases.

Table 3. Single site state transition when if pn = ps.

future state current state/action (S, A)

S+ E, U O, U O, R

empty 12pc 12pn 12pn

occupied pc pn pn

doi:10.1371/journal.pone.0102434.t003

Table 4. Enumeration of States and Signals with 2 Sites.

NE SE NO SO (Y1 , Sz)

2 0 0 0 0,0

1 0 1 0 0,1

0 0 2 0 0,2

1 1 0 0 1,0

0 1 1 0 1,1

1 0 0 1 1,1

0 0 1 1 1,2

0 2 0 0 2,0

0 1 0 1 2,1

0 0 0 2 2,2

The tabled values represent the number of sites in each category. The number
of unrestricted and successful sites, Y1, is the sum of columns 2 and 4 (SE and
SO). The number of occupied sites next period, S+, is the sum of columns 3 and
4 (NO and SO).
NE: either restricted or not successful/empty next period.
SE: unrestricted, successful/empty next period.
NO: either restricted or not successful/occupied next period.
SO: unrestricted, successful/occupied next period.
doi:10.1371/journal.pone.0102434.t004
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Table 2 provides parameter values for the three alternative

assumptions and the three alternative models (evaluated at the

mean hare level). Note that when there is uncertainty about pr the

no disturbance case gives the ‘‘best’’ outcomes because the

unrestricted probability is lower for the other models and the

restricted probability is constant. On the other hand when pu is

uncertain the high disturbance model gives the best outcomes

because it provides the greatest response to restricting access. This

is seen in the values of pu and pr (evaluated at the mean hare level)

in Table 2.
Multiple sites. The discussion thus far has focused on the

transition probabilities for a single site. For a model with N sites to

manage the state variable, S, is the number of occupied sites and

the action, A, is the number of occupied sites that are restricted.

Furthermore there are two possible signal variables, the number of

unrestricted/successful sites, Y1, and the number of restricted/

successful sites, Y2.

When there are multiple sites there may be multiple ways to

arrive at the same (Y, S+) pair. To illustrate how this arises consider

a case with a single signal for the number of occupied but

unrestricted sites that have successful fledging. For example,

suppose that there are N = 2 sites; Table 4 lists the possible

outcomes of assigning the 2 sites to the four possible outcome

categories along with the values of the Y and S+. The tabled values

represent the number of sites in each category with the number of

unrestricted and successful sites, Y, equal to the sum of columns 2

and 4 and next period’s number of occupied sites, S+, equal to the

sum of columns 3 and 4 and. Rows 5 and 6 both result in the same

signal/future state combination (1,1). In row 5, however, it occurs

because there is one site that, though successful, is not re-occupied

the following year and the other site is not successful but is

occupied in the following year. In row 6 there is a unsuccessful site

that is not re-occupied and a successful site that is re-occupied.

Table 5, using the moderate disturbance case parameters

(Table 2) and the category count approach discussed in [21],

displays the probability matrix for the N = 2 case. To obtain the

probability matrix associated with the (Y, S+) pairs any rows

associated with a specific (Y, S+) pair must be added together. In

this case rows 5 and 6 must be summed to obtain the probability of

getting 1 occupied site and having 1 successful unrestricted site.

Utility function. In addition to exploring alternative param-

eter values for underlying models, the utility function used here

differs from that of [8]. Previously, the objective was to maximize

hiker access subject to a penalty if a target expected success rate

was not met. Here we use the reward function

R(S, A)~E½Y jS, A�a(N{A)(1{a) ð11Þ

With N defined as the number of sites, A the number of occupied

sites that are restricted, and a= 0.85 (here Y is interpreted as the

number of successful sites). This utility function trades off between

expected breeding success ( E½Y jS, A�) and hiker access (N - A)

in a smooth way and rewards more of both. Also a discount factor

of d= 0.98 is used. Solving the undiscounted problem may

overvalue learning as any increase in knowledge is amortized over

an infinite future [3]. The use of a small but positive discount rate

discourages such over-probing.

Results

Optimal rules for the number of restricted sites when there is no

structural uncertainty are shown in Figure 1. In this figure (and all

subsequent ones) the columns represent the cases of pr known,

both pu and pr uncertain and pu known (see section: Recreational
Restrictions Near Golden Eagle Nesting Sites, Structural Uncer-
tainty). The rows in Figure 1 correspond to the cases of no

disturbance effect, moderate effect and strong effect. Note that the

middle row repesents the base case; these three plots are purposely

identical to make it easier to make comparisons among

alternatives.

Table 5. Joint state/signal probability matrix for 1 and 2 sites.

signal, future state state/action (S, A)

( Y1 , Sz ) 0,0 1,0 1,1 2,0 2,1 2,2

N = 1

0,0 0.769 0.034 0.051

0,1 0.231 0.561 0.949

1,0 0 0.017 0

1,1 0 0.388 0

N = 2

0,0 0.591 0.026 0.039 0.001 0.002 0.003

0,1 0.356 0.439 0.741 0.038 0.061 0.096

0,2 0.054 0.130 0.220 0.315 0.533 0.901

1,0 0 0.013 0 0.001 0.001 0

1,1 0 0.004 0 0.019 0.016 0

1,1 0 0.298 0 0.026 0.020 0

1,2 0 0.090 0 0.435 0.368 0

2,0 0 0 0 0.000 0 0

2,1 0 0 0 0.013 0 0

2,2 0 0 0 0.150 0 0

( S, A) = (i, j): i sites are occupied & j sites are restricted ( Y1 , Sz ) = (i, j): i unrestricted sites have successful fledging & j sites are occupied next year.
doi:10.1371/journal.pone.0102434.t005
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The subplots in the top row, associated with models with no

disturbance effect, show the intuitively reasonable result that no

restrictions are ever called for. For the other two rows in which

there is some disturbance effect, it is optimal to restrict all occupied

sites up to a maximum that depends on the hare level (note that

only occupied sites are potentially restricted so the restriction

curves must lie on or below the 45 degree line). More hares lead to

a greater success probability and hence less need for restrictions to

achieve a given level of success. For the strong disturbance effect

(the bottom row) the number of restrictions decreases as we move

from the pr known (left column) to the pu known (right column)

case because the increasing success probabilities again leads to a

lower need for restrictions to achieve a given expected success

level.

When there is structural uncertainty the optimal decision rule

depends not only on the number of occupied sites and the hare

level but also on the degrees of belief in the three models. To

simplify the presentation, however, the problem is solved treating

the hare level as a constant set at its mean level. The complete

decision rules are shown in Figure 2, with columns again

representing the three alternative assumptions concerning which

parameters are uncertain. The rows of subplots correspond to

alternative numbers of occupied sites (S) with each subplot

showing a ternary plot that displays the optimal strategy as a

Figure 4. Comparison of value results from use of signal. Each subplot gives the percent increase in value using the best signal relative to the
no signal case. Green values indicate equal value, blue values represent decrease in value with the signal, yellow/red values indicate an increase in
value with the signal.
doi:10.1371/journal.pone.0102434.g004
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function of the belief weights. The lower left ([1 0 0]) corner

corresponds to complete certainty in the no-disturbance model

where no restrictions are ever optimal. The lower right ([0 1 0])

corner corresponds to complete certainty in the moderate

disturbance effect case. The upper ([0 0 1]) corner corresponds

to the complete certainty in the strong disturbance effect case. The

colors in the plots represent the optimal number of restrictions,

ranging form 0 to 25. It should be noted again that the number of

restricted sites can never be greater than the number of occupied

sites. Hence, by definition, the plots for S = 0 in the top rows of

subplots are all blue.

A common distinction in the adaptive management literature

concerns the distinction between active and passive learning

strategies [4]. Passive learning strategies use decision rules derived

under the assumption that the current beliefs will not change in the

future. The difference in the strategies is therefore a measure of the

degree to which it is optimal to engage in probing behavior in

order to learn. The number of restrictions by which the active

management strategy, shown in Figure 2, differs from that of the

passive strategy is shown in Figure 3. The number of restrictions

used in an active strategy is higher than for the passive strategy

(yellow/red cells) in the pu known case. This reflects the fact that

restricted sites lead to learning about pr but not pu. Similarly, in

the case that pr is known it is optimal to use fewer restrictions in

the active case (blue cells) because unrestricted sites lead to

learning about pu. In the intermediate case with uncertainty about

Figure 5. Probing activity with the signal equal to the number of successes. Green values indicate no probing activity, blue values represent
fewer restrictions with the adaptive strategy, yellow/red values indicate more restrictions with the active strategy.
doi:10.1371/journal.pone.0102434.g005
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both pu and pr whether there is probing activity and the kind of

activity depends on the current belief weights. The comparison

reveals the intuitively reasonable result that more restrictions are

imposed when the main uncertainty is about the effect of

restrictions and fewer are imposed when the main uncertainty is

about the effect of disturbance.

The strategy that uses the success information contrasts strongly

with a strategy based on a traditional adaptive management

approach, which only updates beliefs based on the realized value

of the state variable after the state transition occurs but does not

allow beliefs to be updated using any additional information.

When only the occupancy status is used to update beliefs there is

almost no difference between the number of restrictions used in

the active and passive cases (there are a few specific belief values

with 1 or 2 site differences between the active and passive

strategies). The informational content of the future occupancy

status about success rates is very slight and stems entirely from the

small difference in the re-occupation probability if the previous

season had a successful fledging or not.

Figure 4 shows the percent increase in value due to the

additional use of the success information, which can result in over

4% increase in value. The level of the value function is somewhat

difficult to interpret (it is the sum of discounted utility values), so a

scaleless relative increase in value is used. It should be pointed out,

however, that the largest gains in value occur in a region of the

belief space that it not very likely, namely where the moderate

effect model has low weight and there is a more or less even split

between the no and strong effects models (near the left side of the

ternary plot); such a bimodel belief is deemed to be unlikely.

It is important to note that different information is used in the

three alternative cases. When pr is certain the information variable

is the number of unrestricted sites that are successful, whereas in

the pu known case it is the number of restricted sites that are

successful. The intermediate case with both parameters uncertain

uses both of these information variables. These signals are

arguably the best use of the success data to update model weights.

Suppose instead that only the number of successes is known but

not whether they are associated with restricted or unrestricted

sites. The strategy used with this less informative signal is shown in

Figure 5. Comparing Figures 2 and 5 shows that more restrictions

are used when pu is known and more sites are unrestricted when pr

is known. When only the number of successes is known to learn

effectively it is best to either restrict all the occupied sites or none

of them as then one knows what the signal implies for the efficacy

of the action taken. This means that far more probing is required

to obtain a similar learning outcome which could make a

difference as to whether a strategy is accepted by managers. The

strategy is relatively effective, however, in that the difference in

value relative using the optimal signal is quite slight (less than half

a percent).

Figure 6. Time paths of expected beliefs when pr is known. The three subplots represent cases for each of the three possible disturbance
effect models. Each plot shows time paths of expected beliefs over 100 years. Line color is associated with the belief in a specific disturbance effect:
blue – no disturbance, green –moderate disturbance, red – strong disturbance. Line type represents the signal used for updating beliefs: solid – full
information, dash/dot – number of successes only, dashed – no signal.
doi:10.1371/journal.pone.0102434.g006
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The speed at which learning occurs can be examined using plots

of the expected time paths of the belief weights. These are shown

for the three different assumptions in Figures 6, 7 and 8. Each

figure has three subplots representing which of the three models is,

in fact, correct. These plots are obtained by simulating 10000 time

paths and averaging for each year over a 100 year period, with the

initial beliefs putting equal weight on each model and the initial

occupancy of 20 out of 25 sites.

The expected speed of learning is faster when the curve for the

true model approaches 1 more quickly. The main message of these

plots is that learning occurs at a faster pace using information

optimally (shown as the solid lines). If only the number of sucesses

is used without distinguishing whether the successful sites are

restricted (dash/dot lines), the speed of learning is slower, although

how much slower depends on both the true model of the

disturbance effect and the assumption made concerning the

uncertainty of pr and pu. The traditional adaptive management

approach, which uses only the state variable to update beliefs, is

totally ineffective at producing any learning (dashed lines). This is

due to the fact that success only raises the probability of future

occupancy by a small amount (pn and ps are nearly equal) and

hence occupancy is only slightly helpful in learning about the effect

of restrictions on success.

Discussion

The extended POMDP framework is a flexible approach for

making decisions under uncertainty that is applicable to a wide

range of conservation and management problems (Fackler and

Pacifici [7]). It builds on the approach of [12] and extends it by

adding modeling flexibility in how observable variables relate to

state variables. The extended POMDP framework provides a way

to incorporate both structural and observational uncertainty,

though only the former is explored here. The approach allows

both observed state variables and other observable variables (like

fledging success) to be used in updating beliefs about model

parameters. By utilizing more information than is contained in the

state variables alone, the approach has the ability to expedite

learning and to improve our ability to more quickly discriminate

among competing models of system dynamics. Furthermore the

approach used here allows the observation (signal) variables to be

conditioned on both the current and future state variables, thereby

permitting great flexibility in modeling complicated systems.

We demonstrate the use of the framework for addressing

structural uncertainty using a case study involving the potential

need to restrict recreational hiking near golden eagle nesting sites

[8]. In this example it is evident that the information content of the

signal makes a large difference in determining both the optimal

strategy and the value of the strategy. It is also clear that the extent

of probing activity to undertake and under what situations

Figure 7. Time paths of expected beliefs when both pu and pr are uncertain. The three subplots represent cases for each of the three
possible disturbance effect models. Each plot shows time paths of expected beliefs over 100 years. Line color is associated with the belief in a specific
disturbance effect: blue – no disturbance, green –moderate disturbance, red – strong disturbance. Line type represents the signal used for updating
beliefs: solid – full information, dash/dot – number of successes only, dashed – no signal.
doi:10.1371/journal.pone.0102434.g007
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learning takes place depends on where the greatest uncertainty

exists (pu, pr, or both). The active adaptive management case

always takes probing actions to learn about the parameter with the

greatest uncertainty. This contrasts in two ways with the adaptive

management approach implemented in [8]. First, previously only

a passive adaptive strategy was used in which no probing occurs.

Second, only the state transitions were used to update model

weights. Both of these factors lead to a slower rate of learning. In

this case the rate of learning would be especially slow because the

state transitions (future occupancy status) provided very little

information about the effects of restrictions on fledging success.

Not surprisingly, the value of the traditional approach is

significantly less than one which uses an informative signal.

The extended POMDP approach provides the opportunity to

explore the use of multiple information signals. By identifying and

isolating where the greatest uncertainty exists, the extended

POMDP approach has the potential to identify which signal can

provide the greatest reduction in uncertainty. The choice of

information signal may ultimately depend on additional factors

(e.g., cost of obtaining different information signals), but the

flexibility to identify and choose the most valuable signal could add

substantial value to a management program.

We also believe that the extended POMDP approach can be

useful in exploring other features of adaptive management and

structural uncertainty. Traditionally the alternative models apply

to the transition model for the state variables, but they could also

apply to other outcome variables that enter the reward (utility)

function. This latter possibility has not been allowed in previous

adaptive management applications (see [4]) in which only the

realization of the state variables is used to update beliefs. In

principle one could expand the state space to include these

additional outcome variables, as was done in [8]. Doing this,

however, increases the dimensionality of the problem, increasing

computational problems, and causes interpretive difficulties

because the action does not depend on these variables. In the

extended POMDP approach uncertainty in the reward can be

handled seamlessly in an intuitive fashion.

It is worth noting that there are several critical distinctions

between the work done here and the original modeling approach

used in [8]. Most notably we have assumed that the occupancy

status (year t) and reproductive success (year t-1) are known before

the decision for year t is made. This occupancy information is

usually known around May of a particular year, but one

assumption of the previous model was that the decision regarding

which sites to restrict to hikers needed to be made the previous

winter. Our new approach allowed us to relax this assumption,

and we are now able to use information about occupancy in May

right before the hiking season that starts in June. We therefore

developed a new set of optimal actions assuming that we could

obtain the relevant information before making a decision. This in

Figure 8. Time paths of expected beliefs when pu is known. The three subplots represent cases for each of the three possible disturbance
effect models. Each plot shows time paths of expected beliefs over 100 years. Line color is associated with the belief in a specific disturbance effect:
blue – no disturbance, green –moderate disturbance, red – strong disturbance. Line type represents the signal used for updating beliefs: solid – full
information, dash/dot – number of successes only, dashed – no signal.
doi:10.1371/journal.pone.0102434.g008
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turn allowed us to be far more selective in restricting sites and

hence could achieve better outcomes and faster learning.

Our ecological application of the extended POMDP approach

demonstrates the potential of this recently developed decision

analytical framework to address natural resource management

issues. Another interesting feature of our application is that we

integrated the extended POMDP framework with a category

count model [21]. One benefit of using a category count model is

that this class of models is well suited to deal with spatially

structured populations, which is a common characteristic of many

managed ecological systems (e.g., metapopulations). Category

count models also naturally account for discrete stochastic

processes that are analogous to demographic stochasticity or

genetic drift but in an occupancy context. For instance, in a

metapopulation context patch extinction and colonization are

stochastic processes applied to discrete units. In this example, the

colonization in period t of a patch that is not occupied in period t-1
can be viewed as a Bernoulli trial with a given probability. Similar

to demographic stochasticity and genetic drift, the importance of

this source of variation to modeling is the size of the population of

interest, which in the case of patch occupancy corresponds to the

number of patches occupied. Ignoring this source of uncertainty

when implementing adaptive management may lead to overesti-

mating the rate of learning. Finally, we have demonstrated that the

use of a carefully chosen signal can significantly increase the

efficiency of learning and therefore improve management through

faster learning about the ecological system. We hope that this new

decision analytical framework will be useful to solve other

important management and conservation problems.
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