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Abstract

Background

The superior temporal gyrus (STG) is one of the key regions implicated in psychosis, given

that abnormalities in this region are associated with an increased risk of conversion from an

at-risk mental state to psychosis. However, inconsistent results regarding the functional

connectivity strength of the STG have been reported, and the regional heterogeneous char-

acteristics of the STG should be considered.

Methods

To investigate the distinctive functional connection of each subregion in the STG, we parcel-

lated the STG of each hemisphere into three regions: the planum temporale, Heschl’s

gyrus, and planum polare. Resting-state functional magnetic resonance imaging was

obtained from 22 first-episode psychosis (FEP) patients, 41 individuals at ultra-high-risk for

psychosis (UHR), and 47 demographically matched healthy controls.

Results

Significant group differences (in seed-based connectivity) were demonstrated in the left pla-

num temporale and from both the right and left Heschl’s gyrus seeds. From the left planum

temporale seed, the FEP and UHR groups exhibited increased connectivity to the bilateral

dorsolateral prefrontal cortex. In contrast, the FEP and UHR groups demonstrated

decreased connectivity from the bilateral Heschl’s gyrus seeds to the dorsal anterior cingu-

late cortex. The enhanced connectivity between the left planum temporale and right dorso-

lateral prefrontal cortex was positively correlated with positive symptom severity in

individuals at UHR (r = .34, p = .03).
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Conclusions

These findings corroborate the fronto-temporal connectivity disruption hypothesis in schizo-

phrenia by providing evidence supporting the altered fronto-temporal intrinsic functional

connection at earlier stages of psychosis. Our data indicate that subregion-specific aberrant

fronto-temporal interactions exist in the STG at the early stage of psychosis, thus suggest-

ing that these aberrancies are the neural underpinning of proneness to psychosis.

Introduction
The superior temporal gyrus (STG) plays an important role in auditory perception and cogni-
tive functions, including language [1], and impairment in this area has been identified as the
core pathophysiology of psychosis [2, 3]. Patients with schizophrenia and first-episode psycho-
sis (FEP) consistently exhibit decreased gray matter (GM) volume in the STG [4, 5] and abnor-
mal language task-related functional connectivity networks within the STG [6–8]. Even before
the onset of psychosis, an aberrant connection between the STG and prefrontal cortex was
noted in individuals with an at-risk mental state (ARMS) during working memory tasks [8].
Furthermore, the degree to which of the GM volume is reduced in the STG is associated with
the onset of psychosis in ARMS individuals [9, 10]. These studies suggest that aberrations of
the STG may be related to the pathological process of psychosis.

Previous studies have reported discrete patterns in the cytoarchitectonic organization [11,
12] and enzyme distribution [13] in the STG. They have also suggested that subregional differ-
ences in the architectonic arrangements influence its connectivity pattern to other areas of the
brain [14, 15]. The STG consists of at least three histologically distinctive areas [16], and it can
be anatomically divided into three different subregions [17] that exhibit different roles: the pla-
num temporale (PT), Heschl’s gyrus (HG), and the planum polare (PP). Although few studies
have carefully explored the various STG subregions, a volumetric study investigated progres-
sive GM loss in the STG subregions in patients transitioning into psychosis. The study demon-
strated a distinct pattern for each of the subregions and suggested the importance of assessing
the STG by using a more detailed approach [18]. A functional anatomy study suggested that
the STG subregions are projected to different parts of the brain and that these projections are
involved in different language processing streams [19]. Meaningful studies have investigated
the functional connection of the STG subregions in schizophrenia patients, further linking the
aberrant connectivity to hallucinations. When comparing patients with and without auditory
hallucinations, the aberrant functional connectivity of HG, increased connections to the fron-
toparietal region and decreased connections to the hippocampus and thalamus were reported
among patients with auditory hallucinations [20]. A reduction in the functional connection of
the PT with the temporal, parietal, and limbic regions was observed in schizophrenia patients
and their relatives, which correlated with the tendency to experience hallucinations [21]. How-
ever, no study has revealed how each subregion is distinctively connected to other areas in the
brain or how those connections interact with each other.

Whereas task-dependent functional network analyses could underestimate the networks
not relevant to the task-dependent circuits, task-independent functional network analyses can
identify submerged neural networks rather than an induced phenomenon, which enables us to
understand the comprehensive properties of brain physiology [22]. Recently, instead of mea-
suring functional networks across tasks, an alternative approach for measuring the spontane-
ous dynamics of the brain involves functional magnetic resonance imaging (fMRI) during the
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resting state [23]. Although few studies have investigated the resting-state network of the STG,
moderate evidence suggests network alterations in the region. Some studies have directly
explored the resting-state networks of the auditory perception areas in schizophrenia patients
[20, 21, 24–26], and other studies have indirectly identified the networks within the auditory-
associated area that are connected to other regions of the brain [27, 28]. However, there is
inconsistency in the reports regarding the increased or decreased strength of connectivity
within the auditory perception areas due to the non-homogeneous characteristics of the subre-
gions in the temporal lobe [27].

We hypothesized that the discrepancy regarding the resting-state functional connectivity
strength of the STG is caused by the different characteristics of each subregion. Given the
advantages of resting-state studies and the distinctive role of STG subregional networks in indi-
viduals at an ultra-high-risk of developing psychosis, we compared the resting-state functional
connectivity of the three subregions of the STG to the entire brain using the parcellated seeds
of the STG according to the Destrieux atlas [17]. This led to the hypothesis that alterations in
functional networks within the STG are closely related to psychosis progression; thus, the net-
works may demonstrate distinctive patterns in individuals at ultra-high-risk for psychosis
(UHR) and in patients shortly after the onset of psychosis. In addition, the alteration is poten-
tially associated with symptom severity. To directly examine the functional connectivity pat-
tern of the entire brain with the STG, voxel-wise seed-based correlation analyses were applied
during the resting-state by using different parts of the STG as seeds. Then, we extended our
findings to characterize the circuit-level alterations associated with psychotic symptom sever-
ity. We will further explore how the presence of hallucinations is reflected in the altered con-
nections. We expect our approach to unearth buried networks that were concealed by other
task-dependent networks and monolithically defined seeds.

Materials and Methods

Participants
Twenty-four FEP patients, forty-two UHR individuals, and forty-eight healthy controls (HC)
were selected. The FEP and UHR subjects were recruited from a longitudinal project to study
individuals at a high risk for developing psychosis at the Seoul Youth Clinic, Seoul, Republic of
Korea [29, 30]. For the present study, individuals were selected from the subject pool of the
previous forty-one months (April 2010 to August 2013). The participants initially contacted
the Seoul Youth Clinic via our website, telephone or referral from local clinics.

All participants were interviewed based on the Structured Clinical Interview for DSM-IV
(SCID) Axis I [31] by experienced psychiatrists. The Positive and Negative Syndrome Scale
(PANSS) [32] was applied to the FEP and UHR groups, and individuals scoring equal to or
greater than 3 in the hallucinatory behavior subscale were considered to have hallucinations.
The Korean version of the Wechsler Adult Intelligence Scale [33] was administered to all par-
ticipants to assess their intelligence quotient (IQ).

The inclusion criteria for FEP were defined as individuals satisfying the diagnosis of brief
psychotic disorder, schizophreniform disorder, schizophrenia or schizoaffective disorder
according to the DSM-IV criteria and exhibiting symptoms for less than 1 year. All UHR sub-
jects were assessed according to the Structured Interview for Prodromal Syndromes [34]. Our
UHR subjects satisfied at least one of the prodromal states of psychosis criteria: attenuated pos-
itive syndrome (APS), brief intermittent psychotic syndrome (BIPS), and/or genetic risk with
deterioration (GRD). APS is defined as the presence of any positive items on the Scale of Pro-
dromal Symptoms (SOPS) [35] in the prodromal range, with an occurrence of the symptoms
within the past year, or exhibiting attenuated psychotic symptoms upon at least one point
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within the past year and showing these symptoms at one or more occasions per week for the
past month. BIPS subjects exhibited at least one symptoms from the positive items on the
SOPS scale in the psychotic range, with symptoms initiated within the past 3 months and the
presence of the symptoms several minutes a day at least once per month. GRD is defined as a
significant decline in functioning, showing at least a 30% decrease in the Global Assessment of
Functioning (GAF) scale over the past year, and individuals who have a genetic risk due to a
first-degree relative with any psychotic disorder or schizotypal personality disorder [36].

At the time of enrollment, seventeen FEP patients were receiving antipsychotics. These
patients were also receiving mood stabilizers (n = 1), antidepressants (n = 3), and anxiolytics
(n = 8). None of the UHR subjects were medicated with antipsychotics or mood stabilizers, but
they were receiving antidepressants (n = 4) and anxiolytics (n = 4).

HC subjects were recruited from internet advertisements. All HC were screened and con-
firmed using the SCID Non-patient Edition [37]. None of the HC had any history of a psychi-
atric disorder or any first- to third-degree biological relatives diagnosed with a psychiatric
disorder. The participants were excluded if they were considered to have any of the following:
i) a known history of a psychotic disorder, neurological illness, substance abuse, or consider-
able head injury; ii) evidence of a medical disease with documented cognitive sequelae; or iii)
an intellectual disability (IQ below 70).

The present study was performed in accordance with the Declaration of Helsinki. This
study was approved from the Institutional Review Board of Seoul National University Hospital.
After providing a complete description of the study to the participants, written informed con-
sent was obtained from each participant before study inclusion. For minors who were enrolled
in this study, written informed consent was obtained from both the participants themselves
and their caretakers or guardians.

Image Acquisition and Data Preprocessing
Functional and structural images were obtained with a Siemens 3T Trio MRI scanner (Siemens
Magnetom Trio, Erlangen, Germany) using a 12-channel head coil. The T1-weighted anatomi-
cal image was acquired using magnetization prepared rapid gradient echo (echo time [TE] /
repetition time [TR] = 1.89 / 1670 ms, field of view [FOV] = 250 mm, flip angle = 9°,
matrix = 256 × 256, voxel size = 1.0 × 1.0 × 1.0 mm3, 208 slices). For each subject, we collected
a rest scan comprising 116 contiguous echo-planar imaging (EPI) functional images (TE /
TR = 30 / 3500 ms, FOV = 240 mm, flip angle = 90°, matrix = 128 × 128, voxel
size = 1.9 × 1.9 × 3.5 mm3, 35 slices). During resting-state image acquisition, the participants
were asked to relax with their eyes closed. To limit possible head movements and subsequent
motion artifacts, cushions were used, and the participants were instructed to move as little as
possible. The time required to collect the resting-state scans was 6 minutes and 58 seconds.

The first four echo-planar images were discarded. The remaining 112 contiguous EPI func-
tional volumes were preprocessed using the Statistical Parametric Mapping software package,
version 8 (SPM8; www.fil.ion.ucl.ac.uk/spm; Wellcome Department of Cognitive Neurology,
London, UK). The images were first processed by slice-timing correction and subsequently
realigned to correct for head motions. Two subjects from the FEP group, one subject from the
UHR group and one subject from the HC group were excluded for exceeding the head motion
criteria, i.e., translation> 2.5 mm and rotation> 2.5° in any directions. The functional vol-
umes were then co-registered to each participant's structural volumes. The images were seg-
mented into GM, white matter (WM), and cerebrospinal fluid (CSF) partitions and were
spatially normalized to the Montreal Neurological Institute (MNI) standardized space (http://
www.mni.mcgill.ca/). The functional volumes were resampled to a 3 × 3 × 3 mm3 voxel size
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and spatially smoothed with a 6-mm full-width half-maximum (FWHM) isotropic Gaussian
kernel.

The CONN-fMRI functional connectivity toolbox (V 14f, http://www.nitrc.org/projects/
conn/) was used to remove confounding effects and for further analysis. For the nuisance
regression, the head motion measured in 6 dimensions with their first derivatives, and the com-
ponent-based noise correction (CompCor) [38] noise components were designated as nuisance
variables. The CompCor strategy built in the CONN toolbox was used to increase the precision
of the GM signal by erasing physiological noise, such as the heart rate and respiration signals,
and to remove principal components from both the WM and CSF signals. In addition, the
CompCor strategy is reported to remove motion-related artifacts effectively [39]. Subsequently,
the linear trend was removed through the time course, and the band-pass filter (.008< f< .09
Hz) was applied.

Functional Connectivity Analysis
Wemeasured the connectivity patterns of the regional mean time series in the resting-state
fMRI data using six different seed regions-of-interests (ROI) located in the STG. Freesurfer
image analysis (http://surfer.nmr.mgh.harvard.edu/) was used to parcellate the STG into six
different ROIs in both hemispheres: HG, PT, and PP (S1 Fig). The six different ROIs of the
STG were defined using the Destrieux atlas from the Freesurfer image analysis suite; thus, the
seed locations were independent of our data [17].

The functional connectivity networks were measured in the EPI time series. Pearson’s corre-
lation (bivariate) analyses were performed to estimate the connection from the seed ROIs to
other voxels in the entire brain. By setting the explicit mask images, between-group compari-
sons could be performed among voxels presenting significant connectivity with each seed ROI.
The explicit mask images were created by applying a cluster-level family-wise error (FWE) rate
of p< .05 to correct for multiple comparisons over the entire brain. Then, three mask images
from each group were combined; thus, all of the significant voxels of the 3 groups were
included in a single explicit mask. The combined group explicit masks were applied to prevent
potential bias by using the mask acquired from individuals in the psychosis spectrum or the
healthy controls alone.

Significant between-group differences were compared by entering the (Fisher’s Z trans-
formed) connectivity map of each ROI into a one-way analysis of variance (ANOVA) model.
Regions of significant difference were defined by the clusters surviving the voxel-level height
threshold of uncorrected p< .001 and the cluster-level extent threshold of p< .05 that was cor-
rected for multiple comparisons using the FWE rate. For the post-hoc tests and correlation
analyses, the Region of Interest Extraction Tool (http://software.incf.org/software/rex) in the
CONN toolbox was used to extract Fisher's Z transformed signal intensity values of the selected
clusters. The post-hoc tests were executed using the Bonferroni correction. Correlation analy-
ses were performed to explore the relationship among different functional connectivities and
to measure the correlation between an individual’s connectivity intensities and clinical symp-
tom scores from the PANSS. In addition, a two sample t-test was performed on the connectiv-
ity strength of individuals with and without hallucinations to compare the connectivity
strength between each group.

Results

Demographic and Clinical Characteristics
No significant differences in age, gender, education level, handedness, or IQ were noted.
The FEP group [duration of untreated psychosis: 0.54 ± 0.32 years] exhibited an increased
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total score (p = .04) and positive score (p = .03) in the PANSS scale, which indicated that
these patients displayed worse symptom severity compared with the UHR group [duration
of untreated prodromal positive symptoms [40]: 1.70 ± 1.49 years]. There were no signifi-
cant differences in the hallucinatory behavior subscale in the PANSS in both the FEP and
UHR groups (p = .05). Eleven of the 22 individuals from the FEP group and 12 of the 41 par-
ticipants from the UHR group scored greater than or equal to 3 on the hallucinatory behav-
ior subscale in the PANSS. The demographical and clinical characteristics are summarized
(Table 1).

Functional Connectivity Analysis
Each seed region exhibited distinct functional connectivity patterns (Fig 1). The significant spa-
tial group differences of the three groups revealed by the one-way ANOVA model were
observed in the left PT and in the right and left HG seed-to-brain networks. Five regions from
the left PT seed, 2 regions from the right HG seed, and 3 regions from the left HG seed demon-
strated significant group differences. The UHR group demonstrated an intermediate strength
between the FEP and HC groups in the 7 of the 10 altered functional connectivities. No statisti-
cal significance was observed for the seed-to-brain networks from the right PT as well as the
right and left PP seeds. Information regarding the clusters demonstrating significant differ-
ences and the post-hoc analysis results is summarized (Table 2 and Fig 2).

Relationship among the Functional Connectivities
In the FEP group, the increased connections between the left PT and the right dorsolateral pre-
frontal cortex (DLPFC) and decreased connections between the left HG and the dorsal anterior
cingulate cortex (ACC) were negatively correlated with each other (r = -.48, p = .02).

Table 1. Demographic and Clinical Characteristics.

FEP UHR HC Statistics

(n = 22) (n = 41) (n = 47) F / χ2 p

Mean SD Mean SD Mean SD

Age (year) 22.73 4.89 20.78 2.52 22.09 2.96 2.995 .054

Gender (M / F) 9 / 13 29 / 12 28 / 19 5.312 .070

Education (year) 13.32 1.94 13.17 1.22 13.94 1.55 3.010 .053

Handedness (R / L) 20 / 2 37 / 4 43 / 4 .041 .980

Estimated IQ 104.59 11.38 111.32 12.14 110.66 11.12 2.711 .071

Clinical rating scales Mean SD Mean SD t p

PANSS

Total 68.09 10.41 61.27 13.19 -2.099 .040

Positive 15.45 4.51 12.95 2.81 -2.368 .025

Negative 17.41 4.62 16.24 5.66 -.828 .411

General 35.23 5.90 32.07 7.70 -1.673 .099

GAF 48.36 8.77 50.51 7.56 1.017 .313

Note: FEP, first-episode psychosis; UHR, ultra-high-risk for psychosis; HC, healthy control; IQ, Intelligence quotient. PANSS, Positive and Negative

Syndrome Scale; GAF, Global Assessment of Functioning

doi:10.1371/journal.pone.0135347.t001
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Association between the Functional Connectivities and Symptom
Severity
In the UHR individuals, the level of increased connection strength between the left PT seed
and the right DLPFC was positively associated with overall positive symptom severity as
assessed by the PANSS (r = .34, p = .03) (Fig 3A). The enhanced connectivity in the UHR par-
ticipants was positively correlated with the hallucinatory behavior subscale in the PANSS (r =
.33, p = .03). Among individuals in the FEP and UHR groups, there were significant differences
in the degree of the augmented connection between individuals with (n = 23) and without

Fig 1. One sample t-tests in healthy controls (HC) to demonstrate the functional connectivity of each subregion of the STG. The far left illustrates the
location of each seed: right planum temporale (PT), left PT, right Heschl’s gyrus (HG), left HG, right planum polare (PP), and left PP in yellow (from top to
bottom). The green color indicates a significant functional connectivity map of the HC. Axial slices are presented at z = -50, -38, -26, -15, -4, 8, 19, 30, 42, 53,
and 64 (from left to right) (displayed at p < .05, family-wise error rate corrected).

doi:10.1371/journal.pone.0135347.g001

A Resting-State Functional Connectivity MRI Study

PLOS ONE | DOI:10.1371/journal.pone.0135347 August 12, 2015 7 / 16



T
ab

le
2.

B
et
w
ee

n
G
ro
u
p
D
if
fe
re
n
ce

in
F
u
n
ct
io
n
al

C
o
n
n
ec

ti
vi
ty

o
fS

u
p
er
io
r
T
em

p
o
ra
lG

yr
u
s.

S
ee

d
R
eg

io
n

B
ra
in

R
eg

io
n

M
N
IC

o
o
rd
in
at
e

S
iz
e
o
f
C
lu
st
er
s

C
lu
st
er

p
va

lu
e

G
ro
u
p

F
u
n
ct
io
n
al

C
o
n
n
ec

ti
vi
ty

F
E
P
-H

C
U
H
R
-H

C
F
E
P
-U

H
R

(x
,y

,z
)

(#
o
f
V
o
xe

ls
)

(F
W
E
co

rr
ec

te
d
)

M
ea

n
S
D

Le
ft
pl
an

um
te
m
po

ra
le

R
ig
ht

P
rim

ar
y
M
ot
or

C
or
te
x

+
58

–
04

+
34

16
5

.0
09

F
E
P

0.
07

0.
12

.0
07

<
.0
01

1.
00

0

U
H
R

0.
04

0.
15

H
C

0.
19

0.
16

R
ig
ht

D
or
so

la
te
ra
lp

re
fr
on

ta
lc

or
te
x

+
40

+
52

+
24

13
8

.0
21

F
E
P

0.
30

0.
15

<
.0
01

.0
01

.0
61

U
H
R

0.
19

0.
16

H
C

0.
06

0.
18

Le
ft
D
or
so

la
te
ra
lp

re
fr
on

ta
lc

or
te
x

-3
8
+
50

+
22

13
5

.0
23

F
E
P

0.
24

0.
16

<
.0
01

<
.0
01

1.
00

0

U
H
R

0.
24

0.
15

H
C

0.
08

0.
14

R
ig
ht

M
id
dl
e
te
m
po

ra
lg

yr
us

+
62

+
02

–
20

13
5

.0
23

F
E
P

0.
00

0.
19

<
.0
01

<
.0
01

.7
02

U
H
R

0.
07

0.
20

H
C

0.
24

0.
19

Le
ft
S
up

er
io
r
te
m
po

ra
lg

yr
us

-4
8–

44
+
06

11
9

.0
40

F
E
P

0.
20

0.
16

<
.0
01

1.
00

0
<
.0
01

U
H
R

0.
39

0.
18

H
C

0.
42

0.
15

R
ig
ht

H
es

ch
l's

gy
ru
s

Le
ft
In
su

la
r
co

rt
ex

-3
2–

20
–
06

73
1

<
.0
01

F
E
P

0.
19

0.
10

<
.0
01

.1
79

<
.0
01

U
H
R

0.
39

0.
12

H
C

0.
34

0.
09

D
or
sa

la
nt
er
io
r
ci
ng

ul
at
e
co

rt
ex

0
+
28

+
18

13
6

.0
17

F
E
P

0.
08

0.
15

<
.0
01

<
.0
01

1.
00

0

U
H
R

0.
11

0.
14

H
C

0.
23

0.
14

Le
ft
H
es

ch
l's

gy
ru
s

D
or
sa

la
nt
er
io
r
ci
ng

ul
at
e
co

rt
ex

0
+
50

–
06

29
4

<
.0
01

F
E
P

0.
00

0.
15

<
.0
01

<
.0
01

.5
42

U
H
R

0.
05

0.
12

H
C

0.
16

0.
12

Le
ft
In
su

la
r
co

rt
ex

-4
4–

14
+
12

17
0

.0
06

F
E
P

0.
35

0.
16

<
.0
01

1.
00

0
<
.0
01

U
H
R

0.
54

0.
13

H
C

0.
55

0.
15

Le
ft
P
ut
am

en
-3
2–

16
–
02

15
1

.0
11

F
E
P

0.
12

0.
12

1.
00

0
<
.0
01

<
.0
01

U
H
R

0.
27

0.
11

H
C

0.
14

0.
10

N
ot
e:

F
W
E
,f
am

ily
-w

is
e
er
ro
r;
F
C
,f
un

ct
io
na

lc
on

ne
ct
iv
ity
;F

E
P
,fi

rs
t-
ep

is
od

e
ps

yc
ho

si
s;

U
H
R
,u

ltr
a-
hi
gh

-r
is
k
fo
r
ps

yc
ho

si
s;

H
C
,h

ea
lth

y
co

nt
ro
l

do
i:1
0.
13
71
/jo
ur
na
l.p
on
e.
01
35
34
7.
t0
02

A Resting-State Functional Connectivity MRI Study

PLOS ONE | DOI:10.1371/journal.pone.0135347 August 12, 2015 8 / 16



Fig 2. Significant difference in functional connectivity among groups. The differences among
individuals with first-episode psychosis (FEP), ultra-high-risk for psychosis (UHR), and the healthy controls
(HC) were revealed by one-way ANOVA (p < .05, family-wise error rate corrected). Significant differences
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auditory hallucination (n = 40) (p = .02) (Fig 3B). None of aberrant connectivity showed a sig-
nificant association with the lengths of the prodromal syndrome in the UHR group.

Discussion
This study investigated the resting-state functional connectivity network within the subregions
of the STG in FEP and UHR individuals to explore subregion-specific alterations in connectiv-
ity. The widespread disorganization of networks, including the frontal area, as measured by the
aberrant strength of the functional connectivity, was evident in both the FEP and UHR groups
with the left PT and in the right and left HGs. Notably, the strength of the altered network
between the left PT and the right DLPFC in the UHR group correlated with psychotic symp-
tom severity. To our knowledge, the present study is the first to report the disorganization in
fronto-temporal functional connectivity in both FEP and UHR individuals during the resting-
state. Taken together, our results suggest that the alteration in fronto-temporal functional con-
nectivity is evident at the earliest stages and the prodromal stages of psychosis.

The hyperconnectivity between the left PT and the bilateral DLPFC and the hypoconnectiv-
ity between the bilateral HG and the dorsal ACC demonstrate the existence of disorganized
functional connections between the prefrontal cortex and the STG. The dysconnection hypoth-
esis of schizophrenia comprises not only hypoconnectivity, which refers to decreased interac-
tions between regions, but also hyperconnectivity, which represents reinforcement between
regions [41–43]. Previously, both hyper- and hypoconnectivity in fronto-temporal functional
connectivity have been reported [6, 24, 27, 44, 45], and our results demonstrate the distinctive
fronto-temporal connectivity patterns in different subregions of the STG and are thus consis-
tent with previous findings. No significant difference in fronto-temporal connectivity strength
was noted between the FEP and UHR groups; however, all of the altered fronto-temporal con-
nections demonstrated the highest degrees of dysconnectivity in the FEP individuals, and inter-
mediate values were noted in the UHR group. These results resemble previous studies

Fig 3. Associations between functional connectivity strength and symptom severity. (A) Scatterplot of
the correlation between the overall positive symptom severity and altered functional connectivity of the ultra-
high-risk for psychosis (UHR) subject group (r = .34, p = .03): Fisher's Z transformed connectivity strength
between the left planum temporale (PT)–right dorsolateral prefrontal cortex (DLPFC) (x axis) and the overall
positive symptom scale score of Positive and Negative Syndrome Scale (PANSS) (y axis). (B) Bar plot of the
mean functional connectivity strength (Fisher's Z transformed) of the hallucination group (n = 23) and non-
hallucination group (n = 40) among individuals in the FEP and UHR groups (p = .02).

doi:10.1371/journal.pone.0135347.g003

(presented in yellow) were revealed between the (A) left planum temporale (PT) and right primary motor
cortex (PMC); (B) left PT and right dorsolateral prefrontal cortex (DLPFC); (C) left PT and left DLPFC; (D) left
PT and right middle temporal gyrus (MTG); (E) left PT and left superior temporal gyrus (STG); (F) right
Heschl’s gyrus (HG) and left insular cortex (INS); (G) right HG and dorsal anterior cingulate cortex (dACC);
(H) leftt HG and dACC; (I) left HG and left INS; (J) left HG and left putamen (PUT). The functional connectivity
coefficients (mean value) of each region showing significant spatial differences are presented in a bar graph.

doi:10.1371/journal.pone.0135347.g003
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investigating WM disconnections [46] and fronto-temporal functional connectivity during
working memory tasks in UHR and FEP subjects [8].

The hyperconnectivity between the left PT and the right DLPFC was positively correlated
with the overall positive symptom severity, as measured by the PANSS, among the UHR indi-
viduals (Fig 3A). The relationship between the disorganization in neural activity and the posi-
tive symptoms has been discussed for decades [47]. In particular, the hyperconnectivity of the
neural circuitry is thought to be due to excessive attention to inconsequential information [48].
We suggest that the excessive attention induces positive symptoms, which are consequences of
impairment in selective attention [49]. Additionally, the relationship between hyperconnectiv-
ity and hallucinatory symptom severity was analyzed, and a positive correlation among UHR
individuals was observed. There were significant differences in the degree of hyperconnectivity
between participants with or without hallucinatory symptoms among the FEP and UHR
groups (Fig 3B). A meta-analysis revealed that the core regions responsible for hallucinations
are the regions related to speech production, whereas an individual’s hallucinatory trait is asso-
ciated with the speech perception areas [50]. The DLPFC is involved in numerous high-level
functions, including speech perception [51]. Collectively, an enhanced connection between
both speech perception regions leads to an exaggerated attention to irrelevant cues, which con-
tributes to an individual’s proneness to hallucinations. However, we were unable to reveal an
association between the positive symptom severity and aberrant fronto-temporal connectivity
in the FEP group. The differences in fronto-temporal connections between the FEP and HC
groups were greater than those between the UHR and HC groups. We hypothesize that the
more severely altered connections or medications in FEP individuals influenced the positive
symptoms in a more complex manner; thus, the relationship between a single aberrant connec-
tion and positive symptom severity was potentially blurred.

A divergent trend was observed between the left PT to bilateral DLPFC and the bilateral HG
to dorsal ACC networks. In addition, the FEP group exhibited decreased connectivity to the
insula via the bilateral HG seeds. The ACC and the insula comprises the salience network [52].
The reduced functional connection in the salience network are related to the information pro-
cessing disturbance in schizophrenia and are regarded as the core pathology of the disease [53,
54]. One possible explanation for the dissimilar trend in fronto-temporal functional connections
could be attributed to our brain’s compensatory mechanism when the reduced functional con-
nectivity between the HG and salience network triggers an abnormal increase in top-down con-
trol. Evidence supporting this notion was evident in the FEP group, where a negative correlation
between the left PT to right DLPFC and the left HG to dorsal ACC connections was noted. The
interaction between the auditory cortex and subregions of the salience network were also assessed
by electrophysiological studies analyzing mismatch negativity (MMN) [55–58], which is consid-
ered a potent biomarker of psychosis [59]. The present findings revealed a decreased interaction
between the auditory cortex and the salience network and thus extend our previous electrophysi-
ological studies, which demonstrated a decreased MMN in UHR individuals [60, 61].

There are meaningful studies reporting aberrant connectivity between the prefrontal area
and temporal area during various tasks [8, 44, 62]. We expand these task-induced network
studies by demonstrating aberrant connections between the prefrontal and temporal areas dur-
ing the resting-state. Resting-state research is expected to better reflect the trait of brain physi-
ology by presenting comprehensive fluctuations in intrinsic brain activity [63]. Therefore, our
findings demonstrate an alteration in the spontaneous neural activity rather than evoked disor-
ganization. Furthermore, the resting-state better represents the phenomenology of schizophre-
nia compared with the task-induced neural activity [64]. Because our findings were obtained
from FEP and UHR individuals, we suggest that the aberrant connectivity, which has been con-
sistently reported between the temporal and frontal lobes in schizophrenia patients, potentially
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existed from earlier stages of the illness. Our results conclusively show that the alteration in
fronto-temporal functional connectivity is a trait noted in individuals at early or prodromal
psychosis and that the aberrant connection is rather intrinsic. These findings suggest that the
functional disjunction is a candidate phenotype for the transition to psychosis.

Our study includes a few limitations. First, although none of our UHR participants were
receiving antipsychotics, 17 of our 22 FEP participants were taking antipsychotics. However,
we did not observe a significant difference in connection strength in the disease-affected con-
nections between FEP patients taking antipsychotics and FEP patients who were not adminis-
tered antipsychotics. Regardless, the effect of medication on connectivity should be
investigated in further studies. Second, compared with our UHR and HC groups, a relatively
smaller number of FEP individuals were included in our study. No significant group differences
in the right PT and bilateral PP seeds were noted, and the between-group differences of these
seed-based connections may be underestimated due to the small size of the FEP group. Third,
an association between functional connectivity strength and symptom severity was only noted
in the UHR group. Our UHR group exhibited significantly milder positive symptom severity
compared with the FEP group. This fact could potentially serve as one of the strengths of our
study. The UHR group exhibited symptoms at a subthreshold for psychosis, which suggests
that the enhancement in connectivity is not the consequence of severe psychotic symptoms. To
validate our conclusions, a longitudinal effect of enhanced connections to positive symptoms,
including hallucinations, should be verified in a follow-up study.

In summary, our results identified altered temporal and cortical functional connectivity in
FEP patients and UHR individuals. Disorganized fronto-temporal connectivity was observed
in both groups, and such disorganization was associated with psychotic symptom severity. By
highlighting fronto-temporal functional connectivity alterations in early psychosis patients and
UHR individuals, our results clarify the controversy regarding hyper- or hypoconnectivity in
resting-state fronto-temporal functional connectivity. Furthermore, the aberrant fronto-tem-
poral connections were associated with psychotic symptom severity, thus emphasizing the clin-
ical significance of the circuit in the progression of psychosis. Together with additional studies
emphasizing the role of the STG in individuals at ultra-high-risk of developing psychosis, our
study extends the previous studies by underscoring the role of the STG as the core hub for
functional interactions with other areas of the brain.

Supporting Information
S1 Fig. Placement of primary seed region of interest (ROI). The ROIs are overlaid on a stan-
dard neuroanatomical template.
(TIF)
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