
RESEARCH ARTICLE

Multiscale network analysis identifies potential receptors
for SARS-CoV-2 and reveals their tissue-specific and age-
dependent expression
Christian V. Forst1,2,3,4 , Lu Zeng1, Qian Wang1,2,3, Xianxiao Zhou1,2,3, Sezen Vatansever1,2,3,
Peng Xu1,2,3, Won-Min Song1,2,3, Zhidong Tu1,3 and Bin Zhang1,2,3,5

1 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA

2 Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA

3 Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

4 Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

5 Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Correspondence

C. V. Forst, Department of Genetics &

Genomic Sciences, Department of

Microbiology, Icahn Institute for Data

Science and Genomic Technology, Icahn

School of Medicine at Mount Sinai, 1470

Madison Avenue, New York, NY 10029,

USA

Tel: +1 212 824 8948

E-mail: christian.forst@mssm.edu

The coronavirus disease 2019 (COVID-19) pandemic has affected tens of

millions of individuals and caused hundreds of thousands of deaths world-

wide. Here, we present a comprehensive, multiscale network analysis of the

transcriptional response to the virus. In particular, we focused on key regu-

lators, cell receptors, and host processes that were hijacked by the virus for

its advantage. ACE2-controlled processes involved CD300e (a TYROBP

receptor) as a key regulator and the activation of IL-2 pro-inflammatory

cytokine signaling. We further investigated the age dependency of such

receptors in different tissues. In summary, this study provides novel insights
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into the gene regulatory organization during the SARS-CoV-2 infection and

the tissue-specific, age-dependent expression of the cell receptors involved in

COVID-19.

Keywords: age dependency; CD300e; COVID-19; in silico validation;

multiscale modeling

On December 31, 2019, the WHO was notified about

a cluster of novel pneumonia cases in Wuhan City,

Hubei Province of China. The causative agent was

linked to a novel by Chinese authorities on January 7,

2020, inducing the activation of the R&D Blueprint as

part of WHO’s response to the outbreak. Corona-

viruses (CoVs) belong to the group of enveloped, sin-

gle, positive-stranded RNA viruses causing mild-to-

severe respiratory illnesses in humans [1]. In the past

two decades, two worldwide outbreaks have originated

from CoVs (severe acute respiratory syndrome, SARS;

Middle East respiratory syndrome, MERS) capable of

infecting the lower respiratory tract, resulting in

heightened pathogenicity and high mortality rates [2].

We are currently amid a third pandemic caused by a

new CoV strain, the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), the causative agent of

coronavirus disease 2019 (COVID-19). In the majority

of cases, patients exhibit either no or mild symptoms,

whereas in more severe cases, patients may develop

severe lung injury and die from respiratory failure

[2,3].

A viral infection generally triggers a physiological

response at the cellular level after the initial replication

of the virus [4]. The cellular system has an arsenal of

pattern recognition receptors (PRRs) [5] at its deposal

that guard against various microbes inside and outside

of the cell. PRRs bind distinct structural features that

are conserved among different pathogens [6]. In a viral

infection, intracellular PRRs are detecting viral RNA

defective particles that are often formed during virus

replication [7]. Pathogen detection assembles the initial

steps of a signaling cascade to activate downstream

transcription factors, such as interferon regulator fac-

tors (IRFs) and nuclear factor kB (NF-κB) [6,8], which
causes the activation of two general antiviral processes

[6]. The first, predominantly intracellular, process initi-

ates cellular defenses via transcriptional induction of

type I and III interferons (IFN-I and IFN-III, respec-

tively). Subsequently, IFN upregulates IFN-stimulated

genes (ISGs) with antiviral properties [9]. The second,

intercellular cascade of antiviral counteraction refers

to the recruitment and coordination of a multitude of

leukocytes. Chemokine secretion [10,11] orchestrates

this concerted action of immune-system countermea-

sures. This finding is confirmed when specifically com-

paring the host response between influenza virus (nine

datasets), rhinovirus (two datasets), RSV (three data-

sets), SARS-CoV-1 (three datasets), and SARS-CoV-2

(24 datasets) in blood (whole blood; peripheral blood

mononuclear cells, PBMCs), as well as respiratory

samples and cells [nasal wash, bronchoalveolar lavage,

Normal Human Bronchial Epithelial (NHBE) cells], as

performed by Smith et al. [12]. Most conserved path-

ways across all five respiratory viruses are innate

immune response signaling, such as the Janus kinase

(JAK)—signal transducer and activator of transcrip-

tion (STAT), tumor necrosis factor (TNF), and

interleukin-17 (IL-17) signaling pathways. The top five

upregulated host genes shared across all five respira-

tory viruses are DExD/H-box helicase 60 (DDX60)

and DExD/H-box helicase 60 like (DDX60L), fork-

head box N2 (FOXN2), interferon-induced protein 44

(IFI44), and Janus kinase 2 (JAK2). The top five com-

mon downregulated genes are coiled-coil domain con-

taining 106 (CCDC106), Fc gamma receptor and

transporter (FCGRT), inositol monophosphatase 2

(IMPA2), major facilitator superfamily domain con-

taining 3 (MFSD3), and zinc finger protein 219

(ZNF219). Upregulated genes of SARS-CoV-2

response that are downregulated in the response of the

other four respiratory viruses are CENPB DNA-

binding domain containing 1 (CENPBD1), deltex E3

ubiquitin ligase 3 (DTX3), mitogen-activated protein

kinase kinase 5 (MAP2K5), NF-κB inhibitor like 1

(NFKBIL1), regulator of G protein signaling 11

(RGS11), thrombospondin 3 (THBS3), and zinc finger

protein 581 (ZNF581). NFKBIL1 is involved in the

regulation of innate immune response as negative regu-

lator of TLR and IRF signaling pathways, thus

quenching IFN response during SARS-CoV-2 infec-

tion. Another significantly upregulated, SARS-CoV-2-

specific, gene, although shared with respiratory syncy-

tial virus (RSV), is transcriptional and immune

response regulator (TCIM). TCIM enhances NF-κB
activity inducing upregulation of cytokines involved in
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inflammation. This commonality with RSV as well as

high similarity in other differentially regulated genes is

shared between these two viruses together with the

resulting ‘cytokine storm’ and the caused damage to

the respiratory tract of SARS-CoV-2 and RSV

patients [12].

The selection pressure induced by such a broad anti-

viral response of the host and the evolvability of

viruses has resulted in countless viral countermeasures

[13]. Thus, the host response to a virus is generally not

uniform. Viral infections can cause a spectrum of vari-

ous degrees of morbidity and mortality.

Thair et al. [14] investigated host inflammation and

compared the systemic immune response from blood

transcriptomic data of patients suffering from a spec-

trum of viral infections, including COVID-19. Com-

mon pathways, which are all upregulated are related

to neutrophil activation, response to virus, regulation

of innate immune response, and type I IFN signaling.

All these pathways are well-known inflammatome sig-

natures [15,16]. However, downregulated pathways dif-

ferentiate between SARS-CoV-2 and non-SARS-CoV-

2-caused viral diseases. Ribosome-related processes are

highly significantly downregulated in COVID-19 but

not in non-COVID-19 viral infections. On the other

contrary, cell–cell adhesion, cell activation, leukocyte

activation, and immune response-activating cell surface

receptor signaling are more significant in non-COVID-

19 infections compared with COVID-19 infections [14].

Additional factors, such as sex, age, and other

genetic factors, contribute to the diversity of immune

response. Concerning COVID-19, age has been identi-

fied as the most significant risk factor in the mortality

of patients. The overall symptomatic case fatality risk

(the probability of dying after developing symptoms)

of COVID-19 in Wuhan was 1.4% (0.9–2.1%) as of

February 29, 2020. Compared with those aged 30–
59 years, those aged below 30 and above 59 years were

0.6 (0.3–1.1) and 5.1 (4.2–6.1) times more likely to die

after developing symptoms [17]. Similar data were

reported for the United States. From February 12 to

March 16, 2020, the Center for Disease Control

(CDC) estimated a case fatality rate of patients 55–
64 years old with 1.4–2%. This rate was 10.4–27.3%
for patients 85 years or older [18].

To better understand the molecular basis of the dis-

ease, we sought to characterize the transcriptional

response to infection in both in vitro cell systems (tis-

sue cultures and primary cells) and in vivo samples

derived from COVID-19 patients. We employed an

integrative network-based approach to identify host

response co-expression networks in SARS-CoV-2

infection. In particular, we investigated functional

processes and key regulators affected by this specific

virus, receptors, and processes hijacked for enabling

the viral life cycle. We further studied the age depen-

dence of targets, mainly receptors that the virus uti-

lizes for entry and its life cycle.

Materials and methods

RNA-seq analysis

Raw reads were obtained from the Beijing Institute of

Genomics (BIG) Data Center (https://bigd.big.ac.cn/) under

the accession number CRA002390. BALF RNA-seq data

from healthy subjects were obtained from NCBI/SRA

(SIB028/SRR10571732, SIB030/SRR10571730, and SIB036/

SRR10571724). The RNA-seq data were aligned to the

Homo sapiens reference genome GRCh38/hg19 using the

Star aligner v2.7.0f with modified ENCODE options,

according to Xiong et al. [19]. Raw read counts were calcu-

lated using featureCounts v2.0.1. Raw read counts after

Star alignment and featureCounts, as well as obtained from

GSE147507, cEDGER/VOOM (v3.32.1 with R v4.0.0).

Single-cell RNA-seq analysis

Filtered bar-coded matrix files from GEO with accession

number GSE145926 were integrated with SEURAT into a SEU-

RAT object and subjected to the standard SEURAT pipeline

(SEURAT v4.0.6) for scaling and clustering. BALF cell types

were called according to the cell markers based on Liao

et al. [20] (Fig. S2A). We used AddModuleScore() to calcu-

late module scores on single-cell level aggregated by cell

types. Function DotPlot() has been employed to calculate

(scaled) average expression and percent expressed values of

gene modules for each cell type (see Fig. S2B).

Identification of differentially expressed genes

We used the negative binomial models together with the

empirical Bayes approach as implemented in the EDGER-

package [21] to identify differentially expressed genes

(DEGs). We considered an absolute fold change of 1.5 or

higher and an FDR ≤ 0.05 as significant throughout the

paper.

Gene co-expression network analysis

Multiscale Embedded Gene Co-Expression Network Analy-

sis (MEGENA) [22] was performed to identify host mod-

ules of highly co-expressed genes in SARS-CoV-2 infection.

The MEGENA workflow comprises four major steps: (a)

Fast Planar Filtered Network construction (FPFNC), (b)

Multiscale Clustering Analysis (MCA), (c) Multiscale Hub

Analysis (MHA), (d) and Cluster-Trait Association
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Analysis (CTA). The total relevance of each module to

SARS-CoV-2 infection was calculated by using the Product

of Ranks method with the combined enrichment of the dif-

ferentially expressed gene (DEG) signatures as implemen-

ted: Gj ¼
Q
i

gji, where gji is the relevance of a consensus j to

a signature i; and gji is defined as maxj rji
� �þ 1�rji

� �
=∑

j

rji,

where rji is the ranking order of the significance level of the

overlap between the module j and the signature.

Identification of enriched pathways and key

regulators in the host modules

To functionally annotate gene signatures and gene modules

identified in this study, we performed an enrichment analy-

sis of the established pathways and signatures—including

the gene ontology (GO) categories and the Molecular Sig-

natures Database (MSigDB)—and the subject area-specific

gene sets—including, Inflammasome, Interferome, and

InnateDB. The hub genes in each subnetwork were identi-

fied using the adopted Fisher’s inverse chi-square approach

in MEGENA; Bonferroni-corrected P-values smaller than

0.05 were set as the threshold to identify significant hubs.

Module ranking

Based on module enrichment for DEGs, we ranked mod-

ules using cumulative enrichment scores. In particular, we

employed the ‘Product of Ranks’ (see also ‘Gene co-

expression network analysis’). The total relevance of each

consensus module to influenza infection was calculated by

summarizing the P-values of the DEG signature enrich-

ments: Gj ¼
Q
i

gji, where gji is the relevance of a consensus j

to a signature i. gji is defined as maxj rji
� �þ 1�rji

� �
=∑

j

rji,

where rji is the ranking order of the significance level of the

overlap between the consensus module j and the signature

i. We also explored alternative ranking methods, such as

mean, mean of log, mean of log(log), or the Aggregated

Cauchy Association Test (ACAT) with rather similar

results in ranked modules.

Network enrichment

Fisher’s exact test (FET) was performed to determine the

overlap between network neighborhoods of potential key

regulators (target) and an input DEG signature. For each

target in the network in the 95 percentile of node strength

(the sum of the edge weights for each node, divided

between connected nodes) after MEGENA, the genes in

the network neighborhoods between one and four steps

away from the target were intersected with the DEG signa-

ture. MEGENA networks were tested with DEGs of all

systems for further analysis (see the main text). Cumulative

network enrichment scores s ¼ 1=n∙∑i�log10Pi based on

individual FET P-values for each target were calculated. n

is the number of realizations (i.e., the number of different

neighborhoods and systems used to calculate the particular

score).

GTEx data preprocessing

We downloaded the Genotype-Tissue Expression (GTEx)

v8 data [23] from the Database of Genotypes and Pheno-

types (dbGaP) under accession phs000424.v8.p2. For all

the available tissues, we selected those with at least 80 sam-

ples and samples with more than 20 million mapped reads

and greater than a 40% mapping rate. Cell line data were

removed from our analysis. Only genes with expression

> 0.1 Transcripts Per Million (TPM) and aligned read

count of 5 or more in more than 80% of samples within

each tissue were used for aging gene identification. Expres-

sion measurements for each gene in each tissue were subse-

quently inverse-quantile normalized to the standard normal

distribution to reduce the potential impact of outlier gene

expression values. Our final dataset included samples from

46 tissue types. The sample size for each tissue ranged from

114 to 706, with an average of 315 samples.

Linear regression model for age and sex-

associated gene detection

We implemented a linear regression model to identify age-

associated gene expression (Eqn 1) [24].

Yij ¼ βj þ γjAgei þ δjSexi þ ∑
5

k¼1

μjkGenotypeik

þ ∑
N

k¼1

αjkPCik þ θjRINi þ δjPMIi þ εij: (1)

In this model, Yij is the expression level of gene j in sam-

ple i, Agei denotes the donor age of sample i, Sexi denotes

the donor sex for sample i, Genotypeik(k∈ 1, 2, 3, 4, 5ð Þ)
denotes the value of the k-th principal component value of

the genotype profile from the GTEx data (see GTEx

data preprocessing above) for the i-th sample,

PCik(k∈ 1, . . . ,Nð )) denotes the value of the k-th principal

component value of gene expression profile for the i-th

sample, N is the total number of top principal components

(PCs) under consideration, RINi denotes the RNA integrity

number (RIN) score of sample i, PMIi denotes the post-

mortem interval (PMI) of sample i, εij is the error term, γj,
δj, μjk, αjk, θj, δj are the regression coefficients for each

covariate. The corresponding correlation coefficients and P-

values (adjusted with the Benjamini and Hochberg (BH)

[25] method) were then calculated for all genes; FDR

values < 0.05 were considered as significant age-associated

genes. Several covariates [such as genotype PCs and proba-

bilistic estimation of expression residual (PEER) factors]

we adjusted in the regression model were selected following
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the method used by the GTEx consortium [23]. From the

consortium’s analysis, the top five genotype PCs were con-

sidered sufficient to capture the major population structure

in the GTEx dataset and were used for the consortium

paper.

Adjust gene expression for age analysis

We used a linear regression model to adjust gene expression

(Eqn 2).

Yij ¼ βj þ δjSexi þ μjPlatformi þ θjRINi þ δjPMIi þ εij
(2)

We regressed out the following confounding factors to

obtain adjusted gene expression, which include Sexi: the sex

of the donor for sample i, Platformi: the value of the plat-

form for the i-th sample, RINi: the RIN score of sample i,

and PMIi: the PMI of sample i.

Expression measurements for each gene in each tissue

were inverse-quantile normalized to follow the standard

normal distribution to reduce the potential impact of out-

lier gene expression values. Composite receptor score

(CRS) was then calculated for each receptor in each sample

(Eqn 3).

CRS Yið Þ ¼ sum sign Xij, τ
� �� �

where sign Xij, τ
� �

¼ 0, if Xij < τ

1, if Xij ≥ τ

�
(3)

In this equation, CRS(Yi) is the composite score of sam-

ple i, Xij is the expression level of gene j in sample i, ? is

the test score. We have tested ? with −0.25, 0, 0.25, 0.5,

0.75, and 1, spearman correlation coefficients and P-values

(adjusted with the BH method) were subsequently calcu-

lated between CRS score and age. ? = 0.25 showed the

overall best correlation and P-value between CRS and age

(Table S7). We termed this correlation coefficient between

SARS-CoV-2 surface protein receptors (STSPRs) CRS and

age, STSPR differential expression, and age dependence

(STSPR-DEAD) score.

Results

RNA-seq data from cell lines (NHBE, Normal

Human Bronchial Epithelial cells, A549, adenocarci-

nomic human alveolar basal epithelial cells, and Calu-

3, lung adenocarcinoma epithelial cells) and lung biop-

sies of two patients infected by SARS-CoV-2 were

recently made available on NCBI/GEO (GSE147507)

[6]. A second, clinical, transcriptomic dataset for a

cohort of COVID-19 patients together with uninfected

controls has recently been published [19]. Data were

obtained from bronchoalveolar lavage fluid (BALF)

and PBMCs (10 samples total: 3 PBMC control, 2 × 2

BALF infected, 3 PBMC infected). RNA-seq data are

available through the Beijing Institute of Genomics

(BIG) Data Center (https://bigd.big.ac.cn/) under the

accession number: CRA002390. We have combined

the BALF with the lung biopsy datasets after correc-

tion for sample location, yielding datasets containing

a total of 11 samples, that is, six infected and five con-

trol. In summary, four of the six infected (BALF)

samples are from the CRA002390 dataset. The other

two COVID-19 (lung biopsy) samples are from the

GSE147507 dataset. The latter dataset also includes

two samples from healthy controls. The study produc-

ing CRA002390 [19] did not generate control data.

However, Xiong et al. utilized three publically avail-

able BALF data of healthy subjects from NCBI/SRA

(SRR10571724, SRR10571730, and SRR10571732).

We retrieved the identical three datasets and added

them to the two control samples from GSE147507 for

a total of five control samples. These datasets were

processed by an integrative network analysis

approach. Data from PBMCs and cell lines were

excluded. For validation purposes, we have further

secured data from a second cohort of 142 patients

from the New York University (NYU) Langone

Health Manhattan campus that required invasive

mechanical ventilation [26].

Integrative network biology analysis of the β-
coronavirus–host system

The basis of our prediction of SARS-CoV-2 processes

and the host response is an integrative network analy-

sis approach that combines network inference and net-

work topological methods with molecular signatures.

We first identified differentially expressed genes

(DEGs) in each dataset that showed significant

changes during SARS-CoV-2 infection. The biological

functions of DEG signatures from each dataset were

assessed by gene set enrichment methods. Given the

particular interest in human patients’ COVID-19

response, we used a corresponding subset of transcrip-

tome data to infer multiscale gene co-expression

MEGENA networks. We ranked MEGENA network

modules based on their enrichment for SARS-CoV-2

infection responding DEGs. MEGENA modules were

functionally assessed by GO, MSigDB, and blood cell-

type-specific gene sets. We also investigated the under-

lying network topological structure by testing the net-

work neighborhood of target genes for enrichment by

SARS-CoV-2 DEGs and signatures responding to

angiotensin-converting enzyme 2 (ACE2) overexpres-

sion (see Materials and methods). Finally, we analyzed
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the age dependency of molecular processes during

SARS-CoV-2 infection by employing a linear regres-

sion model on baseline gene expression using

Genotype-Tissue Expression (GTEx) data.

Molecular signatures of SARS-CoV-2 infection

We have identified 572 up-, and 1338 downregulated

DEGs from patient-derived lung biopsy, as well as

3573 up- and 1630 downregulated DEGs from human

patient BALF expression data. 2382 DEGs are upre-

gulated, and 2526 DEGs are downregulated in adeno-

carcinomic human alveolar basal epithelial (A549) cell

lines [2017 up- and 2354 downregulated in non-small-

cell lung cancer (Calu3) cell lines, resp.]. The excep-

tions are the NHBE and the first batch (Series 2) of

the A549 data (GSE147507), which yielded a fraction

of significant DEGs, with 144 genes up- and 55 genes

downregulated in NHBE cells as well as 88 genes up-

and 14 genes downregulated in A549 (Series 2). All

datasets have comparable numbers of samples. DEGs

were considered significant with FDR ≤ 0.05 and a

fold change of 1.5 or higher.

As others have already noted [6], there is a lack of

ACE2 expression in cell line data. A key protein rele-

vant for SARS-CoV-2 entry as well as an ISG, ACE2

is not significantly expressed in cell lines (S5_A549:

3.2-fold, FDR = 0.15; Calu3: 0.77-fold, FDR = 0.12;

NHBE: 1.2-fold, FDR = 0.52). Only in the lung

biopsy (27.6-fold, FDR = 3.70 e-06) and in BALF

(50.5-fold, FDR = 0.066), we were able to identify sig-

nificant expression fold change between healthy/Mock

control and infection. According to GTEx data, ACE2

baseline expression is observed in the small intestine

(Terminal Ileum), female breast, thyroid, subcutaneous

adipose tissue, testis, and coronary artery (Table S1).

A detailed, single-cell-based study identified that ACE2

and transmembrane serine protease 2 (TMPRSS2) are

primarily expressed in bronchial transient secretory

cells [27]. TMPRSS2 expression is inconsistent in our

datasets. It is highly upregulated in BALF (47.2-fold,

FDR = 2.98 e-04) and upregulated in Calu3 cells

(2.13-fold, FDR = 2.71 e-03), but downregulated in

lung biopsy samples (0.16-fold, FDR = 8.91 e-07). The

third known receptor and host factor neuropilin-1

(NRP1) [28,29] is downregulated in BALF (2.0-fold,

FDR = 5.52 e-04) and marginally upregulated in A549

(1.37-fold, FDR = 5.02 e-03) and Calu3 (1.25-fold,

FDR = 0.096) cells. As we are interested in an organ-

ismal response, our primary focus is on samples of

human patients.

To validate our findings, we compared DEGs called

during our analysis of human patient samples and

results from the NYU COVID-19 study [26]. For this

purpose, we employed Super Exact Test [30], a gener-

alization of Fisher’s Exact Test to evaluate the set

overlap of multiple sets. BALF and lung biopsy data

show significant overlap with NYU COVID-19 data

(Fig. S1).

Receptors, host factors, and biological processes

required for the viral life cycle

Given that ACE2 is essential for SARS-CoV-2 entry

[31], and further, the viral life cycle, we hypothesize

that ACE2 expression may trigger other processes rele-

vant to the viral life cycle. As we have established in

the previous section that ACE2 is indeed upregulated

in human lung samples (both BALF and lung biopsy),

we were interested in the effect of ACE2 expression.

To determine which receptors and targets are involved

in such processes, we performed a network enrichment

analysis using the ACE2 overexpression (ACE2oe) sig-

natures from the Blanco-Melo et al. dataset [6] and

identified genes that potentially serve as novel host

receptors and targets potentially facilitating the entry

of the SARS-CoV-2 into the host cell and are required

for the viral life cycle. For this purpose, we con-

structed a multiscale co-expression network to investi-

gate co-expression and co-regulation relationships

among genes underlying SARS-CoV-2 infection. In

particular, we were interested in the organismal

response from patients infected by SARS-CoV-2.

Thus, we combined the available datasets from BALF

and lung biopsies to construct a multiscale co-

expression network of 13 398 genes and 35 483 inter-

actions using MEGENA [22] (Fig. 1A). This co-

expression network includes 900 modules. The major-

ity of the top-ranked modules (using DEGs from both

patient and cell data by excluding the ACE2 overex-

pression dataset; see Materials and methods section)

are enriched for well-known biological functions

related to viral infection, including cell cycle, ribo-

some/translation, NF-κB canonical pathway, or cyto-

kine signaling. The 20 top-ranked modules are shown

in Fig. 1B as a sector of a circus plot, together with

information on enrichment for up- and downregulated

DEGs and signature sets (MSigDB, blood cells, All

RNA-seq and ChIP-seq sample and signature search

(ARCHS [4]) tissues, and cell lines, SARS-CoV-2 life

cycle genes, inflammasome, ISGs, transcription factors,

miRNA targets). A few of these modules are enriched

for MSigDB functions (Fig. 1C). As expected, we have

identified a variety of cell types from the ARCHS [4]

database accordant to the infection scenario, ranging

from lung tissue and epithelial cells (Fig. 1D), alveolar
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macrophages as well as lymphocytes (Fig. 1D). We

have further validated the cell-type assignment with

the single-cell data from BALF samples of health,

moderately and severely ill COVID-19 patients [20]

(see Fig. S2, Table S2 and Materials and methods).

The enrichment for the two main DEG signature sets,

BALF and human lung biopsy are shown in Fig. 1E,

F. Although there are differences in the DEGs

between these two DEG sets, we have identified com-

mon DEG enrichment in modules M2, M9, M12,

Fig. 1. Gene co-expression modules associated with SARS-CoV-2 infection. (A) A global MEGENA network. Different colors represent the

modules at one particular compactness scale. (B) The top 20 MEGENA modules most enriched for the SARS-CoV-2 up- and downregulated

DEG signatures are shown (outer rings: ‘DEGs up’ and ‘DEGs dn’, resp.). The center rings (‘Sign.’) show additional signatures, including bio-

logical processes, cells, and tissues, as well as SARS-CoV-2 host factors based on PPI. (C) A Sunburst plot of all 934 modules enriched for

MSigDB canonical processes (C2.CP) is shown. (D) The module enrichment for 25 lung pathology-related tissue signatures after the

‘ARCHS4’ database [65] is depicted. (E, F) Sunburst plots of module enrichment for DEGs concerning (E) BALF and (F) lung biopsy tissues

are displayed. The color bars in (C, E, and F) show the negative decadic logarithm of the adjusted P-values.
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M66, M68, and M400. Most of these modules are

related to translation and the ribosome.

Based on network enrichment (see Materials and

methods), Fig. 2A shows a heat map of the 30 best-

ranked targets, along with fold change (FC) of expres-

sion during SARS-CoV-2 infection in lung samples

and cell lines. All the targets are members of the M2-

M10-M77 branch, except for Bruton tyrosine kinase

(BTK) and thymocyte selection associated family mem-

ber 2 (THEMIS2, M2-M8-M59 branch) and exocyst

complex component 7 (EXOC7) and protein tyrosine

phosphatase receptor type M (PTPRM, M3-M20-

M203 branch). Module M10, together with ACE2oe

signature genes, is shown in Fig. 2B (Fig. S3 depicts

parent module M2). As shown in Fig. 2C, M2, M10,

and M77 are highly enriched for the ACE2oe signature

with FET P-value = 1.20e-95 [1.7-fold enrichment

(FE)], 1.54e-20 (2.1FE) and 7.88e-13 (2.7 FE). All

three modules are further enriched for lung tissue sig-

natures after ARCHS [4] tissues. According to the single-

cell BALF data, the genes in these modules are abun-

dant and highly expressed in lung epithelial cells. How-

ever, we observed the highest expression of M2 genes

in alveolar macrophage cells (Fig. S2 and Table S2).

Other modules such as M4, M9, M66, M69, M265,

and M450 are also significantly enriched for ACE2oe

signature (Fig. 2C). Although M3 is significantly

enriched for ACE2oe signatures, we do not consider

M3 for further analysis. M3 is ranked number 248

based on SARS-CoV-2 infection signatures. Thus, this

module is not relevant to the infection process. M2

(module rank 1) and M4 (module rank 3) are the two

Fig. 2. Network neighborhood and network enrichment for gene signatures and key regulators. (A) Top-scored targets after network enrich-

ment by ACE2 overexpression signatures together with their directional response are shown. Many of these targets are members of M10.

(B) The number 35 ranked module M10 is depicted, which is significantly enriched for ACE2oe signatures. The node color indicates a direc-

tional response. Red nodes are upregulated, and blue nodes are downregulated after infection. Diamond-shaped nodes indicate key regula-

tors. The nodes with a black border denote genes significantly responding to ACE2 overexpression with fold change (FC) of 1.5 or higher.

Purple borders indicate ACE2oe responding genes with FC ≥ 2. (C) The color tiles refer to network enrichment scores. The ‘−log10(P)’ color
scale on the right refers to the cumulative P-value used for ranking. Dark red color denotes a higher rank. The bubble plot denotes up- (red)

and downregulated (blue) genes. The color of the circles refers to the fold change of expression between virus-infected and mock-infected

samples. The size indicates the FDR as −log10(qval). (E) A sunburst plot of the modules with ACE2oe enrichment is shown.
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largest modules associated with SARS-CoV-2 infection

(Fig. 1B shows the ranked modules after DEG enrich-

ment). They are associated with different biological

functions such as ribosome (M2) and transcription

(M4). Table S3 shows the most significantly enriched

functions, and Table S4 includes additional enrichment

results. M2 and M4 are the parents of several daughter

modules. For example, in addition to the modules

mentioned above, M10 (rank 35. Fig. 3A) and M77

(rank 38, Fig. 3B), M2’s daughter modules include

highly ranked M7 (rank 14), M9 (rank 5, Fig. 3C),

M66 (rank 4, Fig. 3D), M68 (rank 8), M400 (rank 9),

M450 (rank 12), and M1201 (rank 13). A few of these

modules are enriched for MSigDB functions (Fig. 1C).

Module M7 is enriched for phenylalanine metabolism,

M9 for epithelium development and IL-2 signaling,

M10 for developmental biology, M68 meiotic recombi-

nation, and nucleosome assembly. Although M66,

M400, M450, and M1201 are best-ranked and

enriched for SARS-CoV-2 signatures, they are not sig-

nificantly enriched for any known biological functions.

Thus, these modules potentially indicate novel biologi-

cal processes relevant to COVID-19. For example, the

fourth-ranked M66 is driven by downregulated key

regulators deoxyhypusine hydroxylase (DOHH), trans-

membrane protein 201 (TMEM201 or SAMP1), TNF

receptor superfamily member 25 (TNFRSF25), and

ZNF419, as well as upregulated ectonucleoside triphos-

phate diphosphohydrolase (ENTPD3) and interferon-

induced transmembrane protein 1 (IFITM1,

Fig. 3D).TMEM201 is required for mitotic spindle

assembly and γ-tubulin localization. The depletion of

TMEM201 results in aneuploidy phenotypes, that is,

the presence of an abnormal number of chromosomes

in a cell, yielding bi-nucleated cells, and failed cytoki-

nesis [32]. TNFRSF25 is a member of the TNF recep-

tor family. This receptor has been shown to stimulate

NF-κB activity and regulate cell apoptosis. TNFRSF25

is further thought to be involved in controlling lym-

phocyte proliferation induced by T-cell activation.

Thus, M66 likely plays a role in cytokinesis and cell

proliferation. Concerning M4, highly ranked submo-

dules (children) are M27 (rank 6, Fig. 3E), M265 (rank

7), and M276 (rank 2, Fig. 3F). M276, with 81 genes,

includes upregulated hemoglobin subunits δ, γ1, and μ
(HBD, HBG1, and HBM), which form part of the

hemoglobin complex (FET P-value = 0.05, 62.1 FE).

M276 is potentially responsible for oxygen transport

(FET P-value = 0.089, 49.7 FE). M27 and M265 are

not significantly enriched for any biological function

(Fig. 1A shows the M4-M27-M276 branch).

The best-ranked ACE2oe network enriched targets

are clock circadian regulator (CLOCK), CD300e,

CD81, chromosome 14 open reading frame 119

(C14orf119), and cathepsin Z (CTSZ). All but

C14orf119 are in the immediate network neighborhood

of CD81 (see Fig. 3B). Clock circadian regulator

(CLOCK) plays a central role in the regulation of cir-

cadian rhythms. CLOCK, a transcription factor, is

upregulated in BALF and A549 samples. CD300e is a

member of the CD300 glycoprotein family of trans-

membrane cell surface proteins expressed on myeloid

cells. It is upregulated in lung samples. The protein

interacts with the TYRO protein tyrosine kinase bind-

ing protein (TYROBP) and is thought to act as an

activating receptor. Activation via CD300e provided

survival signals that prevented monocyte and Myeloid

dendritic cell apoptosis, triggered the production of

pro-inflammatory cytokines, and upregulated the

expression of cell surface co-stimulatory molecules in

both cell types [33]. The expression and function of

human CD300 receptors on blood circulating mononu-

clear cells are distinct in neonates and adults [34],

potentially contributing to the difference in clinical

outcome after COVID-19 infection. Zenarruzabeitia

et al. [34] reported a stark downregulation of CD300e

on monocytes in patients with severe disease. How-

ever, we cannot confirm this finding in our BALF vali-

dation data. In the NYU COVID-19 study, CD300e is

upregulated 1.6-fold in patients with severe diseases

compared with patients with a mild outcome. Another

ACE2oe network enriched target is CD81, with down-

regulation in lung samples and cell lines. CD81 is a

tetraspanin cell surface protein instrumental for B-cell

activation, as a result of SARS-CoV-2 infection [35].

By regulating CD19 expression in B-cells, CD81

enables Hepatitis C virus infection of human cells [36].

Thus, CD81 is an entry co-receptor for the Hepatitis

C virus [37]. CD81 is also a host factor of the Chikun-

gunya virus and is required for viral replication [38].

CD81 is the only ACE2oe target which network neigh-

borhood is significantly enriched for SARS-CoV-2 sig-

natures, yielding a rank of 79 based on NWes.

Furthermore, CD81 is a key regulator in the M2-M10-

M77 branch (Fig. S2 and Fig. 3A,B). Although specu-

lative, CD81 may modulate SARS-CoV-2 replication.

CTSZ is a lysosomal cysteine proteinase and a member

of the peptidase C1 family. It is downregulated in lung

samples and slightly upregulated in A549. Similar to

CD81, CTSZ is a key regulator in M2-M10-M77.

Singh et al. [39], hypothesized that cathepsins are

among other factors facilitating SARS-CoV-2 entry

into the host cell. In particular, cathepsin L (CTSL)

plays a key role in SARS-CoV-2 infection by cleaving

the spike protein and enhancing virus entry [40]. The

epidermal growth factor receptor EGFR is a
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Fig. 3. Gene co-expression modules associated with SARS-CoV-2 infection. (A) With a rank of 35, M10 is not among the best 20 ranked

modules. It is potentially responsible for cellular stress response/Golgi apparatus/antigen processing and presentation and is enriched for

DEGs, ACE2oe, and bulk lung tissue signatures. (B) Number 38 ranked module M77 is a daughter module of M10. M77 potentially functions

for the regulation of cell adhesion. Like its parent module M10, M777 is enriched for DEGs, ACE2oe, and bulk lung tissue signatures. (C)

M9 is the parent of M66 and ranked number 5, and is enriched for DEGs and ACE2oe signatures. Similar to M66, it is enriched for macro-

phages/neutrophils tissue signature. (D) Ranked fourth and second-ranked module with less than 100 genes is M66, which is enriched for

DEGs and ACE2oe signatures. M66 is enriched for macrophages/neutrophils ARCHS4 signature. (E) M27 is the parent of M276 and is

ranked sixth. It is enriched for DEGs, ACE2oe, and blood PBMC signatures. (F) The top-ranked module with less than 1000 genes, M276, is

highly enriched for upregulated DEGs. M276 is among the smallest top-ranked modules with 81 genes. – Node colors refer to the direction

of regulation. Upregulated genes are red, and downregulated genes are blue. Diamond-shaped nodes denote key regulators. The size of the

nodes refers to the connectivity in the network. (A, C, E) The subnetworks with orange edges refer to the corresponding daughter modules

shown in (B, D, F).
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transmembrane glycoprotein and is present on the cell

surface of epithelial cells. It is significantly upregulated

in lung samples, A549, and Calu3 cells. EGFR is a

host factor for hepatitis C virus entry [41]. Respiratory

viruses induce EGFR activation, suppressing IFN reg-

ulatory factor (IRF) 1–induced IFN-λ, and antiviral

defense in airway epithelium [42]. Via EGFR signaling,

EGF induces ACE2 expression and pro-inflammatory

changes in lung cells during COVID-19 [43]. Thus,

EGFR may not be required for SARS-CoV-2 entry,

but it may be a potential host factor for the viral life

cycle.

We validated our findings with results derived from

the NYU COVID-19 cohort. Fig. S4A shows a heat-

map of the 20 best-ranked modules enriched for DEG

signatures identified in this manuscript and deduced

from the NYU COVID-19 cohort. Although the

majority of modules are enriched for the combined

lung and BALF dataset, we can identify significant

enrichment for best-ranked modules, in particular, for

NYU COVID-19 DL and HL signatures. We further

evaluated the similarity in gene content between mod-

ules from this study and modules derived from the

NYU COVID-19 cohort (Fig. S4B). In particular, the

best-ranked modules show significant overlap, validat-

ing the findings.

We have further investigated other cell surface pro-

teins, in particular cell surface receptors. For this pur-

pose, we use data on experimentally verified high-

confidence cell surface receptors from the cell surface

protein atlas [44] and data from the in silico human

surfaceome [45]—an extension from the protein atlas

by using the measured protein data as a learning set

for in silico prediction. From 2800 surface proteins,

1199 are classified as receptors by Surfaceome [45],

capable of transducing signals triggered by binding

ligands or, hypothetically, surface proteins of the

SARS-CoV-2 virion. However, the prediction of such

binding events or, further, the prediction that such

binding events are required for viral entry is beyond

our predictive methods and not intended here. But,

similar to the behavior of ACE2, we hypothesize that

the expression of genes coding for such surface pro-

teins can be triggered by the infection. We further

hypothesize that such surface proteins mediate the

transcriptomic response of downstream genes. Thus,

we expect upregulation of the surface protein-coding

genes and enrichment of DEGs in such receptors’ net-

work neighborhood. Out of the 1199 receptors from

the Surfaceome, 413 are in the MEGENA network.

We identified further candidates in addition to the

above-discussed surface receptors and key regulators

CD81, CD300E, and EGFR. We expanded our criteria

and included surface proteins that are significantly

expressed across all datasets (employing ACAT, an

aggregated Cauchy association test [46]). Surface pro-

teins with the lowest aggregated P-value that are upre-

gulated in most datasets were chosen. The highest-

ranked candidate is lysosome-associated membrane

glycoprotein 3 (LAMP3), followed by EGFR, as dis-

cussed above. LAMPs family plays a critical role in

the autolysosome fusion process. LAMP3 is expressed

explicitly in lung tissues and is involved in influenza A

virus replication in A549 cells [47]. It activates the

phosphatidylinositol 3-kinase (PI3K)/AKT serine/thre-

onine kinase pathway required for the influenza life

cycle and is necessary for SARS-CoV to establish

infection, as demonstrated in African green monkey

kidney (Vero E6) cells [48]. Third-best-ranked surface

protein is CEA cell adhesion molecule 1 (CEACAM1).

Multiple cellular activities have been attributed to the

encoded protein, including roles in the differentiation

and arrangement of three-dimensional tissue structure,

angiogenesis, apoptosis, tumor suppression, metastasis,

and the modulation of innate and adaptive immune

responses. Both CEACAM1 and LAMP3 are members

of the M4-M27 branch.

We were further interested whether and how cell–
surface proteins show co-expression patterns, indicat-

ing a possible (indirect) interactive relationship

between members. For this purpose, we constructed a

co-expression network of the 411 cell surface receptors

yielding 33 modules. In particular, we have identified a

receptor module (RM6, Fig. 4A) that includes both

known (NRP1 and TMPRSS2) receptors and receptors

predicted in this paper (CD300e and CD81). Key regu-

lator of RM6 is downregulated integrin subunit beta 2

(ITGB2 or CD18, LFA-1), which plays an important

role in immune response, for example, T-cell migration

[49] and tuning of the T-cell program [50]. ACE2 is a

member of a second module, RM13 (Fig. 4B). The co-

expression of these receptors provides further evidence

of their potential role during COVID-19.

We also explored complementary approaches using

knowledge-based interaction data of protein–protein
interactions (PPI), as co-expression networks not nec-

essarily reflect physical interactions between molecules.

For this purpose, we used information from the

STRING database [51]. Figure S5 shows a protein–
protein interaction network, including the targets

ACE2, CD300e, CD81, CTSZ, and EGFR, based on

experimentally determined and database-annotated

interactions. The hubs of this PPI network are growth

factor receptor-bound protein 2 (GRB2) and

phosphoinositide-3-kinase regulatory subunit 1

(PIK3R1).
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SARS-CoV-2-triggered surface protein receptor

expression shows clear tissue-specific age

dependency

We were also interested in the age dependency of the

molecular processes and receptors involved in SARS-

CoV-2 infection (see also the Appendix S1). A signifi-

cant age disparity for severe cases, often causing death,

has been widely reported for COVID-19. Being highly

disproportional, more elderly patients experience

severe symptoms and die due to this particular disease.

A recent study by Muus et al. [52] discovered that the

expression of the entry factors ACE2, TMPRSS2, and

CTSL increased with age and in males, including in

airway secretory cells and alveolar type 2 cells. We

hypothesize that not only these three targets but also

many host factors required for the virus life cycle have

an age-dependent expression. By filtering in the genes

upregulated in at least two of the SARS-CoV-2

studies, we obtained 216 genes encoding cell surface

proteins. These surface proteins are involved in trans-

membrane transport of small molecules (MSigDB

c2.cp enrichment: P = 3.38e-08, 4.3-fold), erb-b2

receptor tyrosine kinase 4 (ERBB4) pathway (P =
7.46e-08, 5.5-fold), neuroactive ligand–receptor interac-
tion (P = 8.51e-05, 4.7-fold) or cytokine–cytokine
receptor interaction (P = 1.22e-04, 4.2-fold). The

tissue-specific age dependency of these genes’ baseline

expression was calculated by a linear model using data

from GTEx (see Materials and methods). We exam-

ined correlations between the expression of these

SARS-CoV-2 triggered surface protein receptors

(STSPRs) with chronological age using GTEx v8 data

covering 46 tissues (Table S5). A large number of these

surface protein receptors have their gene expression

levels associated with age in many tissues, especially in

the tibial artery, tibial nerve, and visceral fat. More

than 70 receptors were significantly correlated with

age. In contrast, very few receptors were associated

with age in the liver, coronary artery, and brain sub-

stantia nigra (< 5 receptors). Moreover, in most cases,

the gene expression levels of these receptors increased

with age (Table S6).

We further examined the overall correlation between

STSPRs expression and age in a tissue-specific manner.

Specifically, we first computed a composite receptor

score (CRS) for each tissue of each sample in GTEx

by summarizing the normalized expression values of

the STSPRs and then assessed the correlation between

CRS and age (see Materials and methods for details;

Fig. 5). The CRS is a discretized, aggregated expres-

sion value across all samples for each receptor and tis-

sue. Three tissues, including the tibial artery, skeletal

muscle, and subcutaneous fat, show the strongest posi-

tive correlations between their respective CRS and age.

On the contrary, the whole blood, the frontal cortex

(BA9), the ovary, and the cerebellum have the stron-

gest negative correlations. Interestingly, the lung is

ranked 31 out of 46 tissues, indicating that COVID-19

may impact far more tissues in different age popula-

tions than what we observed. As expected, the top-

ranked tissues have a large number of significantly

age-correlated receptors, consistent with the direction

of the overall correlation. For example, in the tibial

artery, which has a significant positive CRS-age corre-

lation, 94 STSPRs are significantly positive, and nine

STSPRs are significantly negatively correlated with

age. Whereas in the frontal cortex, 56 STSPRs are sig-

nificantly negative, and two STSPRs are significantly

positively correlated with age, respectively (Fig. 5A).

The age effect on various disease pathologies is known

for some of these tissues, with significant correlations

Fig. 4. Receptor-only MEGENA modules. Two MEGENA modules

inferred from genes coding for cell receptors are shown. (A)

Receptor module RM6 includes known (NRP1, TMPRSS1) recep-

tors as well as novel, predicted targets (CD81, CD300e). (B) RM6

is a separate module that includes ACE2. These five genes are

highlighted by red circles. The node color indicates a directional

response. Red nodes are upregulated hub genes.
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between CRS and age. For example, age is a known

risk factor for adverse outcomes in peripheral artery

disease. The risk of severe limb ischemia, the sudden

loss of blood flow to a limb caused by embolism or

thrombosis, significantly increases with age [53].

Thrombosis and microvascular injury have been identi-

fied as an implication of severe COVID-19 infection

[54]. Another example is skeletal muscles with well-

studied age-related wasting and weakness. Cellular and

molecular mechanisms contributing to a decline in

muscular function involve neuromuscular factors, hor-

mones, testosterone or growth hormone, insulin, myo-

genic regulatory factors (MRFs), the Notch signaling

pathway, as well as cytokines and inflammatory

pathways [55]. A cytokine storm and robust produc-

tion of cytokines [6] are known to contribute to the

severity of COVID-19 infections [56], potentially

inducing systemic effects across many tissues and

organs.

Age dependency of a systemic SARS-CoV-2

response

Network neighborhoods of several STSPRs such as

ENTPD3, γ-aminobutyric acid type A receptor subunit

π (GABRP), and EPH receptor A6 (EPHA6) are

enriched for the SARS-CoV-2 induced DEG signatures

from human patient lung samples. The GABRP

Fig. 5. Number of receptors significantly correlated with age in the GTEx data. (A) The range of significant individual receptor/age correlation

ρ is shown for each tissue. Numbers next to the bars denote the number of receptors that are significantly positively (red bars) or

negatively (green bars) associated with age, respectively. Missing bars indicate the absence of a significant correlation. (B) The age

dependency of gene expression between tissues and composite receptor score (CRS) based on the genes coding for cell surface proteins

(rows) are shown. Tissues are ranked based on correlation significance with parameter τ = 0.25. Colors refer to the positive (red) and the

negative (blue) correlation between age and CRS. The size denotes the FDR in −log10(adj. P-value).
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mRNA level is positively correlated with age in three

tissues (subcutaneous fat, lung, and minor salivary

gland) and negatively correlated with age in three

other tissues (tibial nerve, not sun-exposed skin, and

small intestine terminal ileum). EPHA6, a member of

the M2-M9 branch (Figs 1A and 3C), promotes angio-

genesis [57] and regulates neuronal and spine morphol-

ogy [58]. The network neighborhood of EPHA6 is

enriched for pentose and glucuronate interconversion,

glucuronidation, and systemic lupus erythematosus

(FET P-values < 7.5e-03). EPHA6 mRNA level

increases with age in six tissues (artery aorta, cerebel-

lar brain hemisphere, brain cerebellum, esophagus gas-

troesophageal junction, esophagus mucosa, and

ovary). It decreases in four tissues (brain amygdala,

brain cortex, brain hippocampus, and brain hypothala-

mus). Interestingly, ACE2 mRNA level increases with

age in five tissues (adrenal gland, lung, ovary, stom-

ach, and uterus tissue) and decreases in three tissues

(aorta artery, minor salivary gland, and tibial nerve;

Table S5).

We further investigated the potential age dependen-

cies of STSPRs in biological processes realized by

MEGENA co-expression modules. For this purpose,

we have identified network modules enriched for

tissue-specific age-correlated STSPR. The 3227-strong

generic transcription module M4 is enriched for both

positive and negative correlated STSPRs. M4 is

enriched for positive age-correlated STSPR in the

prostate (FET P-value = 0.015, 1.85 FE) and for nega-

tive age-correlated STSPR in the liver (FET P-

value = 0.0015, 2.77 FE). We have identified the M4-

M27 branch with signaling functions underlying

COVID-19 (Fig. 1A shows the M4-M27-M276

branch). Using blood cell-type signatures, we found

that M4 is enriched for neutrophils (FET P-

value = 0.037, 3.0 FE; average module expression

(avMx) = 1.37 and expressed in 96.4% neutrophils

according to the Liao et al. [20] BALF single-cell data,

see Fig. S2 and Table S2). Neutrophil-mediated innate

immune responses against pathogens in the lungs

determine the outcome of infection; insufficient neutro-

phil recruitment can lead to life-threatening infection,

although an extreme accumulation of neutrophils can

result in excessive lung injury associated with inflam-

mation [59]. Such a massive intra-alveolar neutrophilic

infiltration has been observed in COVID-19 patients

with a longer clinical course, likely due to superim-

posed bacterial pneumonia [60]. M4 genes are also

expressed in M2 macrophages (avMx = 1.76, 97.2%

cells) and NK cells (avMx = 0.9, 91.8% cells).

Other enriched modules involve number 66 ranked

M26 (positive age-correlated STSPRs in adrenal gland:

FET P-value = 1.32e-04, 6.88 FE), and number 35

ranked M10 (negative age-correlated STSPRs in mam-

mary breast tissue: FET P-value = 0.069, 6.10 FE).

M26 is another child of M4 with cell cycle (M/G1

transition) function.

We also analyzed the dependence of the STSPRs on

age in each tissue in the GTEx by computing correla-

tions between differential expression of the STSPRs in

COVID-19 and correlations between the STSPRs and

age in each tissue in the GTEx (termed STSPR differ-

ential expression and age dependence (STSPR-DEAD)

score; see details in Materials and methods and

Table S7). The subcutaneous fat, tibial artery, substan-

tia nigra, esophagus gastroesophageal junction, and

liver show the strongest STSPR-DEAD score. A heat-

map of STSPR-DEAD scores between 46 tissues and

seven sample types is shown in Fig. 6A. Many tissues

have negative STSPR-DEAD scores. Examples are tib-

ial artery (ρ = 0.32, P = 0.029; Fig. 6B), liver

(ρ = 0.38, P = 4.4e-05; Fig. 6C) and esophagus gastro-

esophageal junction (ρ = −0.39, P = 1.4e-03; Fig. 6D).

The substantia nigra has the strongest positive

STSPR-DEAD score and possesses the highest correla-

tion coefficient in absolute terms with DEGs (DEGs

from combined BALF and lung biopsies, ρ = −0.32,
not shown). Our STSPR-AD signature genes

(Table S5) are enriched for the signatures of 19 differ-

ent cell types identified from the single-cell lung tissue

data [61] (B-cells, monocytes, CD16+ monocytes, mac-

rophages, NK cells, plasma cells, CD4+ and CD8+ T-

cells, Treg cells, epithelial AT1 and AT2 cells, ciliated

cells, club cells, goblet cells, mast cells, pericytes,

smooth muscle cells, lymphatic and vascular endothe-

lial cells; Table S8). Noteworthy is the significant

enrichment of STSPR-AD signatures in the monocyte

and macrophage signatures, indicating monocytes

mediated inflammatory processes in the age-related

pathology of COVID-19. For example, Pence [62] con-

cluded that pathological monocyte response in

COVID-19 showed a similar pattern to those in aging,

suggesting that monocytes may contribute to the dis-

proportionate severity of COVID-19 in older adults.

Tizazu et al. [63] seconded this finding of pro-

inflammatory monocytes both in aging and in severe

COVID-19 cases. The lack of enrichment of STSPR-

AD tissues for the heart and kidney signatures in the

study by Delorey et al. [61] emphasizes the role of

monocytes in the age-related pathology of COVID-19.

With the COVID-19 pathology data from the tissues

studied by Delorey et al. [61], we can further identify

the COVID-19 vulnerable tissues in old patients. Com-

paring the results of the STSPR-DEAD scores (Fig. 6

and Table S7) with the STSPR-AD tissues with
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COVID-19 pathology identified by Delorey et al. [61]

(Table S8) highlights tibial artery and subcutaneous

fat as tissues with the most severe effect of age-related

COVID-19 pathology. However, investigation of the

results shown in Table S8 shows that some brain tis-

sues, such as the amygdala, hippocampus, anterior cin-

gulate cortex, frontal cortex, and cortex, are also

significantly enriched for monocyte signatures. Pro-

inflammatory monocytes and their inflammatory signa-

tures were found to be correlated with the develop-

ment of postacute sequelae of COVID-19 (PASC) and

the neurological manifestation [64].

We have further validated the dependence of the

STSPRs on age in GTEx tissues with data from the

NYU COVID-19 cohort. Figure S6A shows the heat-

map between 46 tissues, three sample types, and one

combined dataset (Xsq), corresponding to Fig. 6A.

Figure S6B depicts a plot between STSPR-DEAD and

DEGs of esophagus gastroesophageal junction against

HL (ρ = −0.49, P = 3.2e-05) corresponding to

Fig. 6D. The findings from the NYU COVID-19

cohort are in accordance with the corresponding

STSPRs results reported above.

To explore the gene expression changes of STSPRs

with age, we have separated GTEx donors into two

cohorts: a young (≤ 45 years) cohort and an old

cohort (≥ 60 years). Gene expression was then

adjusted to compare the difference between these two

Fig. 6. Correlation between the surface receptors’ differential expression in SARS-CoV-2 infection and their tissue-specific age dependence.

(A) A heatmap of correlation coefficients after tissue age effect (STSPR-DEAD, see text) and DEGs correlation is shown. Only the correlation

coefficients with nominal P ≤ 0.05 are shown. The top color bar indicates the direction of the STSPR-DEADs, with red denoting positive

STSPR-DEADs and blue referring to negative STSPR-DEADs. Tiles with cyan boundaries indicate select tissue/DEG pairs. (B–D) Dot plots

between STSPR-DEAD and DEGs of select tissues with the best correlation coefficients are shown: (B) artery tibia against combined BALF/

lung biopsy DEGs, (C) liver against BALF, and (D) esophagus gastroesophageal junction against BALF.
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cohorts (see Materials and methods). In subcutaneous

fat and tibial artery, the young cohort showed a lower

gene expression level, while a higher level of gene

expression was observed in the elder cohort. This pat-

tern can also be seen in the esophagus gastroesopha-

geal junction and skeletal muscle (Fig. S7).

Overall, we found a clear age effect of genes coding

for cell surface proteins and receptors that are poten-

tially utilized by SARS-CoV-2. In particular, we have

identified that STSPRs showed stronger age depen-

dency in the tibial artery, skeletal muscle, adipose, and

brain tissues. Such an age-dependent effect could

potentially contribute to the elevated severity of

COVID-19 in the elderly.

Discussion

In the present study, we focus on the biological pro-

cesses and key regulators modulating the host response

to SARS-CoV-2 infections. Our multiscale network

analysis of the gene expression data from both patient

samples and cell lines has revealed network structures

and key regulators underlying the host response to

SARS-CoV-2 infection.

Essential aspects of COVID-19 pathology are the

biological processes hijacked by the virus for its

advantage. Expression of the ACE2 receptor on the

host cell and binding of the viral Spike protein for cell

entry are among the first steps. Other processes benefi-

cial for the virus may be staged by ACE2 expression

and triggered by the binding process. CD300e and its

interacting partner TYROBP trigger pro-inflammatory

cytokines and prevent apoptosis, an essential process

controlled by many viruses. On the contrary, severe

inflammation significantly contributes to the pathology

of COVID-19 disease. Other potential surface protein

host factors are CD81 and EGFR. Additional surface

proteins are CEACAM1 and LAMP3. Multiple cellu-

lar activities have been attributed to CEACAM1,

including differentiation and arrangement of three-

dimensional tissue structure, angiogenesis, apoptosis,

tumor suppression, metastasis, and the modulation of

innate and adaptive immune responses. LAMP3, how-

ever, plays a critical role in the autolysosome fusion

process. It activates the PI3K/AKT pathway, which is

necessary for SARS-CoV to establish infection.

We have further investigated the age dependence of

receptors’ expression as clinicians have observed a severe

disparity in survival between old and young COVID-19

patients. We have identified a strong correlation between

tissue age dependency and SARS-CoV-2 infection-

induced receptor expression in subcutaneous fat,

tibial artery, brain substantia nigra, esophagus

gastroesophageal junction, and liver. In particular, we

found significant enrichment for macrophages and

monocytes using COVID-19 pathology data from the

tissues studied by Delorey et al. This finding concurs

with the conclusion of Pence and Tizazu et al. that

monocytes may contribute to the disproportionate sever-

ity of COVID-19 in older adults. Comparing our results

with the tissue-specific COVID-19 pathology data by

Delorey et al. highlights the tibial artery and subcutane-

ous fat as tissues with the most severe effect of age-

related COVID-19 pathology. We may further hypothe-

size that the significant enrichment of some brain tissues

for monocyte signatures may contribute to the develop-

ment and the neurological manifestation of postacute

sequelae of COVID-19 (PASC). However, the exact con-

tribution of specific receptors’ age dependency on the

disease’s pathology requires additional investigation.

In conclusion, our analyses presented here suggest

that SARS-CoV-2 utilizes multiple novel receptors to

facilitate its life cycle and spawns a unique response in

the host system. Novel hypotheses involving the utili-

zation of cell surface receptors and their age-

dependent expression offer new insights into the

molecular mechanisms of SARS-CoV-2 infection and

pave the way for developing new therapeutic interven-

tions against COVID-19.
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Astigarraga I, Eguizabal C, Santos S, Simhadri VR and

Borrego F (2016) The expression and function of

human CD300 receptors on blood circulating

mononuclear cells are distinct in neonates and adults.

Sci Rep 6, 32693.

35 Zhu R, Yan T, Feng Y, Liu Y, Cao H, Peng G, Yang

Y, Xu Z, Liu J, Hou W et al. (2021) Mesenchymal stem

cell treatment improves outcome of COVID-19 patients

via multiple immunomodulatory mechanisms. Cell Res

31, 1244–1262.
36 Luo RF, Zhao S, Tibshirani R, Myklebust JH, Sanyal

M, Fernandez R, Gratzinger D, Marinelli RJ, Lu ZS,

Wong A et al. (2010) CD81 protein is expressed at high

levels in normal germinal center B cells and in subtypes

of human lymphomas. Hum Pathol 41, 271–280.
37 Cormier EG, Tsamis F, Kajumo F, Durso RJ, Gardner

JP and Dragic T (2004) CD81 is an entry coreceptor

for hepatitis C virus. Proc Natl Acad Sci USA 101,

7270–7274.

38 Lasswitz L, Zapatero-Belinchón FJ, Moeller R,

Hülskötter K, Laurent T, Carlson LA, Goffinet C,
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