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Simple Summary: The early detection of lung nodules is important for patient treatment and follow-
up. Many researchers are investigating deep-learning-based lung nodule detection to ease the burden
of lung nodule detection by radiologists. The purpose of this paper is to provide guidelines for
collecting lung nodule data to facilitate research. We collected chest computed tomography scans
reviewed by radiologists at three hospitals. In addition, several experiments were conducted using
the large-scale open dataset, LUNA16. As a result of the experiment, it was possible to prove the
value of using the collected data compared to using LUNA16. We also demonstrated the effectiveness
of transfer learning from pre-trained learning weights in LUNA16. Finally, our study provides
information on the amount of lung nodule data that must be collected to stabilize lung nodule
detection performance.

Abstract: Early detection of lung nodules is essential for preventing lung cancer. However, the
number of radiologists who can diagnose lung nodules is limited, and considerable effort and time
are required. To address this problem, researchers are investigating the automation of deep-learning-
based lung nodule detection. However, deep learning requires large amounts of data, which can
be difficult to collect. Therefore, data collection should be optimized to facilitate experiments at
the beginning of lung nodule detection studies. We collected chest computed tomography scans
from 515 patients with lung nodules from three hospitals and high-quality lung nodule annotations
reviewed by radiologists. We conducted several experiments using the collected datasets and publicly
available data from LUNA16. The object detection model, YOLOX was used in the lung nodule
detection experiment. Similar or better performance was obtained when training the model with the
collected data rather than LUNA16 with large amounts of data. We also show that weight transfer
learning from pre-trained open data is very useful when it is difficult to collect large amounts of data.
Good performance can otherwise be expected when reaching more than 100 patients. This study
offers valuable insights for guiding data collection in lung nodules studies in the future.
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1. Introduction

According to the World Health Organization, lung cancer is a life-threatening disease
worldwide [1]. In 2018, lung cancer was the largest new cancer diagnosis (11.6%) and the
largest cause of cancer-related deaths (18.4%) globally [2,3]. One of the main causes of high
mortality in lung cancer is the absence of early overt clinical symptoms. The extent of lung
cancer at the time of diagnosis is closely related to prognosis. Cancer Research UK reported
that the survival rates for stages I and IV were 87% and 19% in patients with lung cancer,
respectively [4]. Therefore, early detection and diagnosis are important for the curative
treatment of lung cancer.

The National Lung Screening Trial showed that low-dose computed tomography
(LDCT) reduces mortality by 20% compared with chest X-rays [5]. Posterior studies have
shown that the early detection of lung nodules can increase the five-year survival rate of
lung cancer patients. The five-year survival rate of lung cancer, which was estimated at 18%
of all cases diagnosed between 2004–2010, is the lowest among several types of cancer [4].
However, manual detection of lung nodules in many CT scans is a very difficult, time-
consuming, and tedious process, even for experienced radiologists [6–8]. Although chest
CT is the latest and most widely used imaging tool to capture lung images [5], the manual
detection of lung nodules by radiologists on CT images can easily lead to misdiagnosis [8].
An object detection system for lung nodules is necessary and several benchmark datasets
have been used [9–13].

Consequently, artificial intelligence (AI)-assisted lung nodule detection systems may
be used to provide a second opinion for radiologists and make final decisions faster and
more accurately. Deep-learning models are highly dependent on datasets; thus, they can
effectively achieve the performance of advanced learning algorithms when high-quality
datasets are used for training [14]. Public databases such as LIDC/IDRI [9], LUNA16 [10],
NSCLC [11], ELCAP [12], and ANODE09 [13] have been used for lung nodule diagnosis
research. Nevertheless, these databases cannot be easily used to develop nodule detection
systems because their format is not standardized. Therefore, it is important to create
high-quality, real-world lung nodule datasets in a standardized format for training.

Recently, deep learning has been actively and successfully developed in various fields,
such as image analysis, natural language processing, and speech recognition [15–18]. A
convolutional neural network (CNN), a type of neural network that uses convolution
operators, has been widely applied with excellent performance in image analysis. This
success has contributed to the adoption of CNN in medical image analysis [19,20]. CNN
performs well in deep learning technologies such as classification, object detection, and
segmentation. In this study, we used CNN-based object detection to detect lung nodules by
analyzing CT scan images. Object detection is a task that allows the drawing of a bounding
box on a lung nodule to determine its exact location. CNN-based object detection tasks
are making a lot of progress. Faster R-CNN [21], RetinaNet [22], EfficientDet [23], and
YOLOX [24], etc., which were state-of-art models at the time, show the development of
object detection. In this study, we experimented with lung nodule detection based on the
YOLOX model. The specific details of the model used are described in Section 2.4.

It is necessary to train with a large amount of data to accurately detect lung nodules.
However, it is difficult for most researchers to collect large amounts of medical data. To
mitigate the difficulty of the lack of medical data, we conducted a study focusing on how
much data should be collected at the beginning of a lung nodule study and what to do if
it is difficult to collect a large amount of data. This study also considers how to leverage
publicly available datasets when difficult to collect large amounts of data. Open datasets
related to lung nodules [9–13] contain large amounts of data. However, open and privately



Cancers 2022, 14, 3174 3 of 19

collected data differ in many ways, for example in the information they offer on patient race
and the way they annotate nodules. Therefore, open data are used; however, training that
is suitable for private data is also required. Transfer learning is used to pre-train models on
open data and transfers that knowledge to private data [25]. In this study, we demonstrated
the usability of open datasets and the importance of building private datasets through
various experiments using both open and private data.

The main contributions of this study are: (1) The construction of a high-quality chest
CT scan dataset reviewed by radiologists from three hospitals for lung nodule detection;
(2) The demonstration of the importance of collecting private data by comparing open data
with collected private data; (3) The demonstration that transfer learning using open data is
highly effective when a large amount of data cannot be collected; (4) Through empirical
experiments, the provision of insights into the necessary amount of data to collect.

2. Materials and Methods
2.1. Datasets
2.1.1. LUNA16

LUNA16 is a publicly available dataset for lung nodule detection and a subset of
the LIDC/IDRI dataset. The LIDC/IDRI dataset contains 1018 CT scans and annotations
confirmed by four experienced radiologists. The radiologists reviewed each CT scan and
marked the lesions in three categories: nodules ≥ 3 mm, nodules < 3 mm, and non-nodules.
The LUNA16 dataset used in this study only considers nodules ≥ 3 mm in diameter.
The LUNA16 dataset also excludes CT scans with a slice thickness greater than 3 mm,
inconsistent slice spacing, and missing slices from the LIDC/IDRI dataset. The LUNA16
dataset contains 888 chest CT scans and annotations consisted of the centroid coordinates
and diameters of lung nodules.

2.1.2. Private Dataset

We retrospectively reviewed the medical records and contrast-enhanced chest CT scans
of patients with solitary pulmonary nodules (SPN) that were followed up at Gangneung
Asan Hospital (GNAH), Kangwon National University Hospital (KNUH), and Hallym
Sacred Heart Hospital (HSHH) between March 2016 and February 2021. The private dataset
was reviewed by radiologists in three hospitals, and chest CT scan data were collected from
515 patients with lung nodules (GNAH, 287; KNUH, 181; HSHH, 47). We used the Digital
Imaging and Communications in Medicine (DICOM) file format.

There were four inclusion criteria: (1) the patient was aged between 18 and 90 years;
(2) the nodule diameter in the chest CT axial image was more than 7 mm and less than
30 mm [26]; (3) the pathological diagnosis was performed using percutaneous needle
aspiration (PCNA) biopsy, surgical operation, bronchoscopic biopsy, or endobronchial
ultrasonography-guided transbronchial needle aspiration (EBUS-TBNA); and (4) in the
absence of a pathological diagnosis, follow-up was performed with contrast-enhanced
chest CT scan for more than two years. Tables A1–A3 in Appendix A showed the clinical
data of the private dataset that explained inclusion criteria. In the NSCLC category in
Tables A2 and A3, the sub-NSCLC category is NSCLC with pathological findings that
do not fall into any category of adenocarcinoma, squamous cell carcinoma, or large cell
endocrine carcinoma.

In this study, we defined an SPN as benign when (1) the pathological diagnosis was
confirmed; and (2) there was no increase in size, or there was disappearance of SPN when
followed up by a chest CT scan for more than two years [27]. An SPN was defined as
malignant only when the pathological diagnosis was confirmed.

The three datasets were formed as follows, using the chest CT protocols outlined
in Table 1:

• GNAH dataset: 287 nodules (102 benign SPNs, and 185 malignant SPNs);
• KNUH dataset: 181 nodules (36 benign SPNs, and 145 malignant SPNs);
• HSHH dataset: 47 nodules (17 benign SPNs, and 30 malignant SPNs).
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Table 1. Chest CT protocols at Gangneung Asan Hospital (GNAH), Kangwon National University
Hospital (KNUH), and Hallym Sacred Heart Hospital (HSHH).

CT Protocols GNAH Dataset KNUH Dataset HSHH Dataset

Name
SIEMENS/SOMATOM

Definition Edge 2
(128 ch)

SIEMENS/SOMATOM
Definition &

Definition Flash

SIEMENS/SOMATOM
Flash (128 ch)

kVp/mAs 120/35 120/110 120/35
kernel B41f medium B41f B40f medium

slice/gap (mm) 5 3 3

2.1.3. Annotation

Using LUNA16 and private data, we created bounding boxes of lung nodules, which
were used as the ground truth of the object detection task. To determine the coordinates of
a bounding box in LUNA16, we used an annotation consisting of the centroid coordinates
and diameters of the 3D nodules. The bounding boxes and annotations of private data
were created with the help of the experts at each hospital. To this end, we first obtained the
nodule centroid coordinates for each slice as identified by an expert. Based on the nodule
centroid coordinates, we constructed a lung nodule bounding box using a computer vision
annotation tool (CVAT). CVAT is an open-source platform that can build and share private
servers. We then shared the lung nodule bounding boxes with experts to review and modify
them. Using the bounding boxes in LUNA16 and our private data, we prepared annotations
in pascal visual object classes challenge (VOC) format, which is a representative object
detection data format [28]. The annotation of the VOC format consists of the filename, size,
object name, and coordinates of the bounding box. Figure 1 shows a set of bounding boxes
in LUNA16 and the private data. Figure 1c,d corresponding to the LUNA16 dataset show
how the bounding box can at times represent the nodule position while having a size larger
than that of the nodule. These cases negatively affect the detection of sophisticated boxes,
an issue that we will further describe in the Results.
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Figure 1. Ground truth sample. (a–d) LUNA16; (e–h) Private data.

2.1.4. Dataset Configuration

The LUNA16 dataset consisted of 10 subsets. We used eight subsets (712 patients) for
the training dataset and two subsets (176 patients) for the validation dataset. The private
dataset included a total of 515 CT scans consisting of 181 data from KNUH, 287 data from
GNAH, and 47 data from HSHH. To learn from historical data and test relatively recent
data, we sorted each hospital’s data by chronological order based on the date of the CT scan.
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The GNAH and KNUH data were accordingly divided into 60% of the data for training,
20% of the data for validation (a dataset used to tune the hyper parameters of a detector),
and 20% of the data for testing (a dataset used only to assess the performance of a fully
specified detector) (Figure 2). The HSHH dataset was used as an external validation set,
which was used only for testing, with no involvement in training and validation.
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2.2. Preprocessing

Unlike normal image data with values of 0–255, CT scan data consist of 10–16 bits of
Hounsfield units (HU). To use CT data for deep learning, we thus need to set their values
within the 0–1 range. Certain tissues and organs, such as the lung, brain, bone, and skin,
generally have a constant range of HU values and adjusting the width center (WC) and the
window width (WW) can emphasize the areas of interest. WC is the HU value of the specific
area to be emphasized and WW is the HU range to be observed. In this study, we used
window-setting values suitable for lung nodule detection (WC = −700; WW = 1500) [29–32].
The range of the CT scan data can be defined as:

XCT ∈
[

Wc −
Ww

2
, WC +

Ww

2

]
(1)

We clipped the CT scan data into (−1450, 50) using the minimum and maximum
values obtained through Equation (1). Then, the range of the CT scan data was linearly
normalized to (0, 1), as follows:

X̃CT =
XCT −min(XCT)

max(XCT)−min(XCT)
(2)

2.3. Data Augmentation

Data augmentation generates artificial data to increase the amount of data [33]. This
technology alleviates the overfitting of deep-learning models. Data augmentation is essen-
tial in the medical field where large amounts of data are difficult to obtain. We applied the
following augmentation techniques to the training model in the following order: (1) flip;
(2) mosaic [34]; (3) random affine transformation; and (4) MixUp [35]. After doing image
flipping with a probability of 0.5, we applied a mosaic, a strong data augmentation tech-
nique that combines up to four images into one. In addition to learning from four images
with one input, because the number of small objects increases in the process of combining
the images, the detection performance of small objects can be expected to improve. After
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mosaic application, random affine transformations such as rotation, translation, and scaling
were applied. Finally, MixUp, in which two images are mixed at a certain ratio, was used
to produce a single image. MixUp helps generalize deep learning models. Figure 3 shows
an example of applying data augmentation in LUNA16.
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2.4. Object Detection and Deep Learning Model

In this study, an object detection algorithm, which is a deep learning technique, was
used to detect lung nodules in lung CT scans. Object detection is the task of classifying
and localizing all the objects present in an image. Localization is a regression operation
that finds a bounding box, whereas classification is an operation that classifies objects in a
bounding box.

We used YOLOX to detect lung nodules [24]. The architecture of YOLOX is depicted
in Figure 4. YOLOX is an object detection model with excellent accuracy and speed that
simultaneously applies various detection techniques. This model is a one-stage detector
and consists of a backbone-neck decoupled head. YOLOX extracts a feature map from the
input image using a darknet-53 backbone. The neck connects the backbone and the head
and consists of spatial pyramid pooling (SPP) and feature pyramid network (FPN) [36,37].
SPP improves performance by playing a role in maintaining spatial structure information.
FPN receives a feature map extracted from the backbone and obtains a multiscale feature
map. FPN adds semantic information preserved by a high-level layer to a low-level layer
to make it robust against scale variations. The feature map obtained from FPN enters the
decoupled head and finds the class and box of the object to derive the detection results. The
decoupled head improves the performance by separating the classification and regression
heads to solve the problem caused by the conflict between classification and regression
work [38]. In addition, YOLOX uses various technologies, such as anchor-free, SimOTA,
and multi-positive, to improve performance.
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2.5. Evaluation Metrics

In general, we computed true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN) by comparing the predicted and the ground truth to measure the
predictive performance of the trained model. In this study, TP refers to instances where
the deep learning model correctly predicted lung nodules. FP refers to cases where the
deep learning model incorrectly predicted non-lung nodules as lung nodules. FN refers to
instances where the deep learning model incorrectly predicted lung nodules as non-lung



Cancers 2022, 14, 3174 7 of 19

nodules. Finally, TN refers to cases where the deep learning model correctly predicted that
non-lung nodules were not lung nodules. In the object detection task, the intersection over
union (IOU) of the predicted bounding box and the actual bounding box were calculated.
If the IOU was above the threshold value, the bounding box was judged to be true, and if
IOU was under the threshold value, the bounding box was judged to be false. Sensitivity
and precision can be calculated using this information. The sensitivity is the ratio of the
lung nodules that were correctly predicted to the actual lung nodules. The precision is
the ratio of the correctly predicted lung nodules to all predicted lung nodules. Finally,
based on this information, lung nodule detection performance was evaluated using the
average precision (AP) and competition performance metric (CPM) [39] utilizing free-
response receiver operating characteristic (FROC). AP and CPM were used as quantitative
evaluation metrics. AP is an evaluation metric that considers both precision and sensitivity
and is widely used to evaluate the performance of object detection algorithms. Lung
nodules are very small objects, and the IOU values are very low, even if the size or position
of the box is slightly different from the ground truth. For this reason, even an actual true box
can be judged false if the IOU threshold is high. Therefore, the performance measurements
were carried out using AP10 (AP at IOU = 0.1) and AP50 (AP at IOU = 0.5). The AP10
metric has the advantage of having a high sensitivity because it is recognized as true, even
if the overlap between the prediction and ground truth is low. The AP50 metric may have a
lower sensitivity performance because the IOU of the prediction and ground truth must be
0.5 or more to be true, but more sophisticated lung nodule bounding box performance can
be measured. FROC analysis is utilized for nodule detection evaluation in the LUNA16
challenge. In the FROC curve, sensitivity is plotted as a function of the average number
of false positives per scan (FPs/scan). The CPM score is the average sensitivity at seven
predefined false-positive rates (1/8, 1/4, 1/2, 1, 2, 4, and 8FPs per scan).

2.6. Dataset Configuration and Experimental Strategy

The dataset configurations used in the experiments are presented in Table 2. We pre-
pared five configurations using both open and private datasets for training and validation,
whereas for testing we used only one configuration using private datasets, GNAH (20%),
KNUH (20%), and HSHH (100%). In configuration (A), we used only the open dataset
LUNA16 and eight subsets for training and two subsets for validation. In configuration (B),
we used LUNA16 for training and two private datasets (GNAH and KNUH) for validation.
In the other configurations (C, D, and E), we used only private datasets for both training
and validation.

Table 2. Dataset configurations used in the experiments.

Dataset Training Validation Test

(A) LUNA16 (subsets 1–8) LUNA16
(subsets 9, 10)

GNAH (20%)
KNUH (20%)
HSHH (100%)

(B) LUNA16 pre-train (100%) GNAH (20%)
KNUH (20%)

(C) GNAH (60%) GNAH (20%)

(D) KNUH (60%) KNUH (20%)

(E) GNAH (60%), KNUH (60%) GNAH (20%)
KNUH (20%)

To analyze the effects of open and private datasets, we then conducted three exper-
iments depending on the settings of the LUNA16 and private datasets (Figure 5). Ex-
periment 1 was conducted to compare the usefulness of the open dataset and private
datasets when used for training. Experiment 2 was conducted to evaluate the effect of pre-
training using LUNA16 before training with private data. In Experiment 3, performance
improvement was measured by gradually increasing private data to analyze the amount



Cancers 2022, 14, 3174 8 of 19

of private data required. All experiments were conducted on an NVIDIA GeForce GTX
1080Ti GPU with 11GB of graphics memory. We trained nodule detection models using the
Pytorch framework. For the detection model, we used YOLOX-S. In the training, we used
a stochastic gradient descent (SGD) optimizer with a momentum of 0.9, a weight decay
of 0.0005, and a learning rate of lr× batch size/64. The initial lr was 0.01 and the batch
size was set to 16. The learning rate scheduler adopts a cosine LR schedule. The input size
was 640 × 640 pixels. The model was then trained for 200 epochs. All experiments were
conducted using a fixed seed = 1.

Cancers 2022, 14, 3174 8 of 20 
 

 

Table 2. Dataset configurations used in the experiments. 

Dataset Training Validation Test 

(A)  LUNA16 (subsets 1–8) 
LUNA16  

(subsets 9, 10) 

GNAH (20%) 

KNUH (20%) 

HSHH (100%) 

(B) LUNA16 pre-train (100%) 
GNAH (20%) 

KNUH (20%) 

(C) GNAH (60%) GNAH (20%) 

(D) KNUH (60%) KNUH (20%) 

(E) GNAH (60%), KNUH (60%) 
GNAH (20%) 

KNUH (20%) 

To analyze the effects of open and private datasets, we then conducted three experi-

ments depending on the settings of the LUNA16 and private datasets (Figure 5). Experi-

ment 1 was conducted to compare the usefulness of the open dataset and private datasets 

when used for training. Experiment 2 was conducted to evaluate the effect of pre-training 

using LUNA16 before training with private data. In Experiment 3, performance improve-

ment was measured by gradually increasing private data to analyze the amount of private 

data required. All experiments were conducted on an NVIDIA GeForce GTX 1080Ti GPU 

with 11GB of graphics memory. We trained nodule detection models using the Pytorch 

framework. For the detection model, we used YOLOX-S. In the training, we used a sto-

chastic gradient descent (SGD) optimizer with a momentum of 0.9, a weight decay of 

0.0005, and a learning rate of 𝑙𝑟 × batch size/64. The initial 𝑙𝑟 was 0.01 and the batch size 

was set to 16. The learning rate scheduler adopts a cosine LR schedule. The input size was 

640 × 640 pixels. The model was then trained for 200 epochs. All experiments were con-

ducted using a fixed seed = 1. 

 

Figure 5. Experimental settings. 

  

Figure 5. Experimental settings.

3. Results
3.1. Experiment 1: Comparing the Performance of Collected Private Data and Open Data

This experiment compared the performance of a model trained on the LUNA16 dataset
with that of a model trained on a private dataset. Table 3 summarizes the performance
obtained in Experiment 1, demonstrating that learning from private data led to a competi-
tive performance of the model compared to that obtained when learning from LUNA16.
In addition, when the same hospital data were used for both training and testing, the
performance was better than that obtained when using LUNA16 for training. Furthermore,
the AP50 performance of the model trained on private data was significantly improved
compared with that of the model trained on LUNA16. Moreover, the performance using the
combined dataset of GNAH and KNUH was higher than that using the individual hospital
datasets. This result suggests that collecting a large amount of private data is important for
performance improvement.

Figure 6 shows an image superimposing the prediction results of the models trained
for the ground truth and LUNA16, as well as the prediction results of the models trained
for private data. As shown in Figure 6b,c, the prediction results of the LUNA16 training
model tended to draw a box larger than the lung nodule, suggesting a difference in the
performance of AP50. Figure 6d shows a case in which the private data training model
predicted the lung nodules unforeseen in the LUNA16 training model.
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Table 3. Performance Comparison of Collected Private Data and Open Data.

Training
Dataset

Test
Dataset AP10 AP50 CPM

LUNA16
GNAH 0.8590 (+0.0) 0.5482 (+0.0) 0.8886 (+0.0)
KNUH 0.9151 (+0.0) 0.4499 (+0.0) 0.9340 (+0.0)
HSHH 0.7262 (+0.0) 0.1111 (+0.0) 0.7628 (+0.0)

GNAH
GNAH 0.8674 (+0.0084) 0.8160 (+0.2678) 0.8967 (+0.0081)
KNUH 0.8548 (−0.0603) 0.8228 (+0.3729) 0.8844 (−0.0496)
HSHH 0.7878 (+0.0616) 0.6270 (+0.5159) 0.8114 (+0.0486)

KNUH
GNAH 0.8455 (−0.0135) 0.7996 (+0.2514) 0.8717 (−0.0169)
KNUH 0.9167 (+0.0016) 0.8817 (+0.4318) 0.9395 (+0.0055)
HSHH 0.8307 (+0.1045) 0.7729 (+0.6618) 0.8561 (+0.0933)

GNAH ∪ KNUH
GNAH 0.8960 (+0.0370) 0.8450 (+0.2968) 0.9290 (+0.0404)
KNUH 0.9525 (+0.0374) 0.9341 (+0.4842) 0.9660 (+0.0320)
HSHH 0.8391 (+0.1129) 0.7935 (+0.6824) 0.8645 (+0.1017)

AP, average precision; CPM, competition performance metric.
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Figure 6. Image sample overlapping the prediction results of the LUNA16 and private data trained
models and the ground truth. (a) Case where the predictions of the model trained on LUNA16 and
the model trained on private data is very similar to the ground truth; (b,c) Case where the predicted
box of the model trained on LUNA16 is significantly larger than the size of the ground truth; (d) Case
in which the LUNA16 trained model did not predict lung nodules. Red (Solid line) = Ground Truth;
Blue (Dashed line) = Private data; Green (Dotted line) = LUNA16.
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3.2. Experiment 2: Is Pre-Training Using Open Data Effective?

We found that although training on LUNA16 only in Experiment 1 was not sophisti-
cated, the model learned the characteristics of lung nodules well enough to predict their
locations. Hence, we can expect pre-training on LUNA16 to have a positive effect on
training with private data. To confirm this, we experimented with a transfer learning
method using pre-training on LUNA16. We compared the cases with and without transfer
learning that adopted weights pre-trained on LUNA16. Figure 7 shows the CPM results
from Experiment 2. Most of the performances were higher when applying transfer learning.
However, when the combined data from GNAH and KNUH were used for training, the
performance was higher when transfer learning was not applied. The resulting graphs for
Experiment 2 in its entirety are shown in Figure A1 in Appendix B.
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3.3. Experiment 3: How Much Data Do I Need to Collect?

Experiment 3 evaluated performance while gradually increasing the amount of pri-
vate data. The data were sorted based on the date of the CT scan, and old data were
extracted first. The combined data of GNAH and KNUH were gradually increased with
10 patients from GNAH and 10 patients from KNUH and the performance was evalu-
ated. We also trained and evaluated the EfficientDet [23] model as well as the YOLOX
model for the generalization of the conclusion (Figure 8). When using a small amount of
data without transfer learning, the performance was very poor. However, when using
approximately 100 patient data points, the performance became similar to the case using
transfer learning. When transferring knowledge from open data, high performance could
be achieved, even with a small amount of data. Additional graphs for Experiment 3 are
shown in Figures A2 and A3 of Appendix B.
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4. Discussion

Public datasets are essential for the better application of deep learning to medical
problems in clinical settings [40]. Identifying issues and biases in commonly used bench-
mark datasets requires the use of private datasets [41,42]. In this study, several experiments
were conducted using publicly available LUNA16 data and private data collected from
three hospitals.

In Experiment 1, we were able to compare the results when training the model on
LUNA16 and on private data. Compared to training the model on LUNA16 with large
numbers of CT scans, private data collected in each hospital led to a similar performance
in lung nodule detection. Using training and testing data from the same hospital led to
higher performance than when training on LUNA16. These results indicate that using
training data from the same hospital can be expected to lead to good performance in the
detection of lung nodules in private hospitals. In Experiment 1, it was confirmed that
even if the model was trained on LUNA16 alone, it was possible to identify and detect
lung nodule features in private test data. However, the annotation of LUNA16 consists
only of the central coordinates and diameters of the 3D nodules, not the bounding box
coordinates for each slice, making it impossible to create a sophisticated box for each slice.
Private data included slice-by-slice boxes reviewed by radiologists as annotations, allowing
sophisticated boxes to be detected. The AP50 results showed that learning on private data
can yield more sophisticated results than learning on LUNA16 only. Finally, training could
be done by combining the training datasets of KNUH and GNAH. These results show
that a good performance can be expected for lung nodule detection if a dataset is built by
collecting a large amount of data.

In Experiment 2, the performance of transfer learning based on the weight pre-trained
on LUNA16 and the performance without transfer learning were compared. When training
on individual hospital data, most of the cases of transfer learning were better than those
that did not. However, the performance was found to be better without transfer learning
when the model was trained using KNUH in the HSHH-Test. This phenomenon appears to
be due to differences in the CT slice thickness between the datasets [43]. The KNUH and
HSHH datasets had the same slice thickness (3 mm). For this reason, even though only
KNUH data were used for training, the performance may be higher than that of transfer
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learning when HSHH data are tested. In this case, it seems that applying transfer learning
in the HSHH-test is a factor reducing the performance. These results show that if the CT
protocol is similar and the slice gap is the same, the performance is good when testing
the CT data under the same conditions. Moreover, AP10 and CPM performance were
higher when applying transfer learning to graphs trained with GNAH in the GNAH-TEST,
but the AP50 performance was lower. In this case, the location of the lung nodule was
better identified when applying transfer learning, but the sophistication of the nodule box
was reduced. In the future, it will be necessary to collect more private data and analyze
these cases in depth. When using the training dataset combining KNUH and GNAH, the
performance improved without transfer learning. These results demonstrate that high
performance can be achieved without applying transfer learning if sufficient data can
be collected.

Experiment 3 tested the amount of data that needed to be collected to detect the lung
nodules. Performance was measured as the amount of private data gradually increased,
starting with the data from 20 patients. When no transfer learning was performed, the
performance was very poor when training was performed with a small amount of data.
However, when close to 100 patient data points were collected, the performance was
similar to or increased more strongly than when the model was trained on LUNA16. When
LUNA16 transfer learning was performed under the same conditions, the performance was
high, even with a small amount of private data training. Transfer learning from LUNA16 is
very effective in situations where it is not possible to collect a large amount of data.

To summarize the results, to evaluate AI algorithms for detecting lung nodules of
chest CT scans in private hospitals, it is better to collect and build a private dataset that can
produce more sophisticated results than using only open data. However, if it is difficult to
collect a large amount of private data, it is effective to utilize pre-trained weights with open
data. If a large amount of private data can be collected, good performance can be expected
without transfer learning. These results provide guidelines for building the private datasets
necessary for the model to learn lung nodules.

To the best of our knowledge, this paper is the first to determine the amount of private
data required to perform object detection for an SPN on an enhanced chest CT scan. Because
it is a multicenter study of three hospitals, it can better represent real-world datasets and
their heterogeneity than public datasets. The size of private datasets was sufficient to
perform an object detection model without using public data. Most recently, Xu et al. [44]
reported a YOLOv3 network for detecting lung nodules on chest CT using 314 private data
points. However, our private dataset of 515 patients was larger than Xu’s private dataset.

Although this study obtained meaningful results through lung nodule detection
experiments using data from various hospitals, it had several limitations. First, we did not
study a technology to improve lung nodule detection performance. For further study, we
will focus on enhancing detection performance itself by adapting state-of-the-art techniques
such as generative adversarial networks-based augmentation. Second, the classification of
benign and malignant nodules was not considered because only the task of detecting the
location of the lung nodules was performed.

This study shows that when detecting lung nodules from private data, training the
model on private data collected from the same hospital can yield more sophisticated
results than training the model on massive open data. Moreover, the performance based
on the amount of private data was confirmed, and it was found that transfer learning
had a significant influence when the amount of data was small. However, the effect of
transfer learning was reduced if a large amount of data was collected and used for training.
Therefore, if a large amount of data is collected, good performance can be expected without
having to transfer the weights pre-trained on the open data.

The final goal of our study is to present guidelines on how many private data should
be collected when conducting a study to detect lung nodules with chest CT images. Most
deep learning researchers who want to analyze medical data use public data because it is
difficult to obtain private data. However, as the reviewer has already mentioned, public
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data does not reflect the characteristics of data based on the real world, such as when a CT
machine is changed, a new protocol is released, or the definition of a pulmonary nodule is
changed. This is because even if a deep learning model is developed with public data, it
cannot be applied to private data for the same reason as above, and training suitable for
private data may need to be renewed again. Additionally, the issues of whether artificial
intelligence can replace radiologists and who should be held responsible for making a
wrong decision are still controversial, and I think that AI researchers’ consensus is needed
to solve these problems. At least for now, it should be considered as one of the diagnostic
aids that reduce the fatigue of medical staff.

5. Conclusions

The experimental results of this study will help researchers study lung nodule detec-
tion for the collection of private data and obtaining results. In future research, we plan to
build larger datasets with continuous data supply and demand. Unlike ordinary images,
medical images must be labeled by specialists. The more data there are, the more labeling
is needed, but the number of specialists is limited. Therefore, it is necessary to increase the
time spent by specialists and the efficiency of the labor force. We plan to study active learn-
ing algorithms to proceed efficiently with data labeling. Active learning allows the selection
of only the data with high uncertainty and requires labeling from a specialist. Consequently,
data can be smoothly built by reducing the amount of data required for labeling. In addi-
tion, we plan to study AI technologies that are suitable for the characteristics of chest CT
scans and to conduct research that can contribute to engineering. First, it will be valuable
to experiment by applying various window settings for chest CT scanning. Depending on
the window setting, the range of HUs can be adjusted to obtain various chest CT images. It
is also possible to consider combining images as inputs into deep learning models using
multiple sets of lung CT images or combining the results of each image. Second, we are
starting to use object detection models using slices, which include box annotation; therefore,
there is a lot of data that remains unused. We also plan to conduct a study using CT slices
that do not include lung nodules to devise anomaly detection technology. Finally, because
there are many slices containing lung tissues among the unused data, research on lung
detection or lung segmentation can also be a good approach.
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Appendix A

Table A1. GNAH clinical data.

Clinical Data Total (n = 287) Malignancy (n = 185) Benign (n = 102)

Age, yr (min-max) 67.5 (21–87) 68.3 (32–87) 66.1 (21–87)
Sex, male (%) 181 (63.1) 110 (59.5) 71 (69.6)
Pathological diagnosis, n (%)
NSCLC 145 (50.5) 145 (78.4) 0
Adenocarcinoma 107 (37.3) 107 (57.8)
Squamous cell carcinoma 33 (11.5) 33 (17.8)
Adenosquamous carcinoma 2 (0.7) 2 (1.1)
NSCLC 3 (1.0) 3 (1.6)
SCLC 9 (3.1) 9 (4.9) 0
Other type of lung malignancy 7 (2.4) 7 (3.8) 0
Malignancy other than in the lung 24 (8.4) 24 (13.0) 0
Negative for malignancy 58 (20.2) 0 58 (56.9)
NA 44 (15.3) 0 44 (43.1)
Methods for pathological diagnosis
PCNA 105 (36.6) 57 (30.8) 48 (47.1)
Surgical operation 77 (26.8) 71 (38.4) 6 (5.9)
Bronchoscopy 4 (1.4) 4 (2.2) 0
EBUS-TBNA 2 (0.7) 2 (1.1) 0
Contrast-enhanced Chest CT (≥2 years)
No growth 35 (12.2) 0 35 (34.3)
Disappearance 9 (3.1) 0 9 (8.8)

NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer; NA, not applicable; PCNA, percutaneous needle
aspiration; EBUS-TBNA, endobronchial ultrasound-guided transbronchial needle aspiration.

Table A2. KNUH clinical data.

Clinical Data Total (n = 181) Malignancy (n = 145) Benign (n = 36)

Age, yr (min-max) 67.2 (31–88) 69.0 (46–88) 60.3 (31–85)
Sex, male (%) 116 (64.1) 90 (62.1) 26 (72.2)
Pathologic diagnosis, n (%)
NSCLC 118 (65.2) 118 (81.4) 0
Adenocarcinoma 87 (48.1) 87 (73.3)
Squamous cell carcinoma 25 (13.8) 25 (21.1)
Large cell endocrine carcinoma 3 (1.7) 3 (2.5)
NSCLC 3 (1.7) 3 (2.5)
SCLC 5 (2.8) 5 (3.4) 0
Other type of lung malignancy 6 (3.3) 6 (4.1) 0
Malignancy other than lung 16 (8.8) 16 (11.0) 0
Negative for malignancy 33 (18.2) 0 33 (91.7)
NA 3 (1.7) 0 3 (8.3)
Methods for pathologic diagnosis
PCNA 92 (50.8) 70 (48.3) 22 (61.1)
Surgical operation 86 (47.5) 75 (51.7) 11 (30.6)
Contrast-enhanced Chest CT (≥2 years)
No growth 3 (1.7) 3 (8.3)
Disappearance 0 0
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Table A3. HSHH clinical data.

Clinical Data Total (n = 47) Malignancy (n = 30) Benign (n = 17)

Age, yr (min-max) 68.0 (35–88) 70.4 (50–88) 63.6 (35–87)
Sex, male (%) 28 (63.1) 18 (60.0) 10 (58.8)
Pathologic diagnosis, n (%)
NSCLC 24 (51.1) 24 (80.0) 0
Adenocarcinoma 17 (36.2) 17 (56.7)
Squamous cell carcinoma 7 (14.9) 7 (23.3)
SCLC 2 (4.3) 2 (6.7) 0
Other type of lung malignancy 3 (6.4) 3 (10.0) 0
Malignancy 1 (2.1) 1 (3.3) 0
Negative for malignancy 17 (36.2) 0 17 (100.0)
Methods for pathologic diagnosis
PCNA 19 (40.4) 13 (43.3) 6 (35.3)
Bronchoscopy 16 (34.0) 9 (30.0) 7 (41.2)
Transbronchial lung biopsy 5 (10.6) 1 (3.3) 4 (23.5)
Surgical operation 3 (6.4) 3 (10.0) 0
EBUS-TBNA 1 (2.1) 1 (3.3) 0
Unknown 3 (6.4) 2 (1.1) 0
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