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Abstract: Viral infections can give rise to a systemic decrease in the total number of lymphocytes in
the blood, referred to as lymphopenia. Lymphopenia may affect the host adaptive immune responses
and impact the clinical course of acute viral infections. Detailed knowledge on how viruses induce
lymphopenia would provide valuable information into the pathogenesis of viral infections and
potential therapeutic targeting. In this review, the current progress of viruses-induced lymphopenia
is summarized and the potential mechanisms and factors involved are discussed.
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1. Introduction

Lymphocytes are important elements of the immune system. They are categorized
into T lymphocytes (T cells), B lymphocytes (B cells) and natural killer (NK) cells based on
their migration, surface makers and biological functions [1]. Lymphopenia is the condition
in which there is an abnormal reduced number of lymphocytes in the peripheral blood. It is
diagnosed when a total lymphocyte number is lower than normal for a particular age group
(for instance, less than 1000 cells/µL in older children and adults) [2–4]. Such obvious
reduction in blood lymphocytes count occurs due to viral infections [5], chemical and
physical lympho-depleting agents [6], autoimmune-related systemic diseases [7], genetic
factors [8], cancers [9], sepsis [10] and other severe injuries [11]. Generally, most viruses lead
to relative lymphocytosis, while only a few viruses causing severe disease could result in
lymphopenia, such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) [12],
ebola virus (EBOV) [13] and human immunodeficiency virus (HIV) [14]. Although numer-
ous studies were attempted to reveal the causes of lymphopenia during viral infections,
the mechanisms underlying it is still unclear. It is believed that the mechanism underlying
lymphocyte depletion is more complicated as different factors or mechanisms are involved
during the infection caused by different viruses. In this review, the current progress of
the lymphopenia induced by viral infections with emphasis on RNA viruses is summa-
rized and the mechanism and factors involved during various virus infection-mediated
lymphopenia are discussed.

2. Mechanisms of Lymphopenia Associated with Viral Infections

Lymphopenia was observed in patients and animals infected with different viruses
which belong to different viral families and thus exhibit varied morphology, physico-
chemical and physical properties, genome organization and replication and antigenicity.
However, infections by most of these viruses could cause serious illness or even death
and it was found that lymphopenia is associated with disease severity. Despite numerous
studies on causes of lymphopenia during viral infections, the mechanisms underlying still
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remain vague. The proposed mechanisms for the observed lymphopenia are summarized
as follows (Table 1, Figure 1). Unlike the RNA viruses mentioned below, the mechanism of
lymphopenia caused by DNA virus infections is also still unknown. So far, the underlying
factors and molecular mechanisms of lymphopenia caused by most DNA viruses have
rarely been reported which needs to be addressed in the future.

Table 1. Lymphopenia caused by viral infections and the possible mechanisms involved.

Family Species Lymphocyte
Subsets Percentage Cases Possible Mechanisms Reference

RNA

Coronaviridae

SARS-CoV-2
CD8+ T cells,
CD4+ T cells,

B cells, NK cells

85% of the severe
COVID-19

patients

cell death
cytokines

lymphopoiesis
trafficking

co-inhibitory molecules
metabolic disorders

[5,14–22]

Middle east respiratory
syndrome coronavirus

(MERS-CoV)
T cells

34% of the
MERS-CoV

patients

cell death
cytokines

lymphopoiesis
trafficking

[23–26]

Severe acute respiratory
syndrome coronavirus

(SARS-CoV)

CD4+ T cells,
CD8+ T cells,

B cells, NK cells

90–100% patients
in the acute phase
of SARS patients

cell death
cytokines

lymphopoiesis
trafficking

glucocorticoids

[27–32]

Feline infectious
peritonitis virus (FIPV)

CD4+ T cells,
CD8+ T cells,

B cells, NK cells

77% of FIPV
infected-cats

cell death
cytokines [33–36]

Canine coronavirus
(CCoV) Lymphocytes unknown unknown [37]

Equine coronavirus
(ECoV) Lymphocytes 81% of ECoV

infected-horses unknown [38]

Retroviridae

HIV CD4+ T cells 49.17–65.2% of
AIDS patients

cell death
cytokines

lymphopoiesis
trafficking

co-inhibitory molecules

[39–47]

Simian
immunodeficiency virus

(SIV)
CD4+ T cells unknown cell death

trafficking [48–50]

Bovine leukemia virus
(BLV) B cells unknown unknown [51]

Filoviridae

EBOV
CD4+ T cells,
CD8+ T cells,

NK cells
unknown

cell death
cytokines
trafficking

co-inhibitory molecules

[13,52–56]

Marburg virus (MARV) T cells, B cells,
NK cells unknown cytokines

metabolic disorders [57–59]

Bundibugyo virus
(BDBV) Lymphocytes unknown cytokines [60]

Orthomyxoviridae

Influenza A virus (IAV),
IAV H5N1
IAV H7N9
IAV H1N1
IAV H5N6

CD4+ T cells,
CD8+ T cells,

B cells, NK cells
unknown

cell death
cytokines

lymphopoiesis
trafficking

co-inhibitory molecules

[61–66]
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Table 1. Cont.

Family Species Lymphocyte
Subsets Percentage Cases Possible Mechanisms Reference

Paramyxoviridae

Measles virus (MV)
CD4+ T cells,
CD8+ T cells,

B cells
unknown cell death

lymphopoiesis [67,68]

Human parainfluenza
virus type 3 (HPIV3)

CD4+ T cells,
CD8+ T cells,

B cells
unknown unknown [69]

Canine distemper virus
(CDV)

CD4+ T cells,
CD8+ T cells,

B cells
unknown cell death

lymphopoiesis [70–72]

Peste des petits
ruminants virus (PPRV) Lymphocytes unknown unknown [73,74]

Pneumoviridae Respiratory syncytial
virus (RSV)

CD4+ T cells,
CD8+ T cells unknown

cell death
cytokines

co-inhibitory molecules
metabolic disorders

[75–78]

Arteriviridae

Porcine reproductive
and respiratory
syndrome virus

(PRRSV)

T cells, B cells unknown
cell death
cytokines

lymphopoiesis
[79,80]

Picornaviridae

Foot-and-mouth disease
virus (FMDV)

CD4+ T cells,
CD8+ T cells,

B cells
unknown

cell death
cytokines
trafficking

[81–85]

Seneca Valley virus
(SVV) B cells unknown cell death [86]

Flaviviridae

Classical swine fever
virus (CSFV)

CD4+ T cells,
CD8+ T cells,

B cells
unknown

cell death
cytokines

lymphopoiesis
co-inhibitory molecules

[87–90]

Hepatitis C virus (HCV) T cells

6% of
HCV-infected
patients with

acute
exacerbation

cell death
co-inhibitory molecules [91,92]

Border disease virus
(BDV) Lymphocytes unknown unknown [93]

Dengue Virus (DENV) Lymphocytes
91.7% of

DENV-infected
patients

unknown [94]

West Nile virus (WNV) Lymphocytes unknown unknown [95]

Bovine viral diarrhoea
virus (BVDV)

CD4+ T cells,
CD8+ T cells, unknown

cell death
lymphopoiesis

co-inhibitory molecules
[96]

Caliciviridae

Human norovirus
(HNoV) T cells, B cells unknown cytokines

trafficking [97,98]

Rabbit haemorrhagic
disease virus (RHDV) Lymphocytes unknown cell death [99]

Feline calicivirus (FCV) Lymphocytes unknown unknown [100,101]

Arenaviridae
Lymphocytic

choriomeningitis virus
(LCMV)

T cells, NK cells unknown unknown [102]

Togaviridae Chikungunya virus
(CHIKV) Lymphocytes unknown unknown [103]
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Table 1. Cont.

Family Species Lymphocyte
Subsets Percentage Cases Possible Mechanisms Reference

DNA

Asfarviridae African swine fever
virus (ASFV) Lymphocytes unknown cell death [104]

Circoviridae Porcine circovirus type
2 (PCV-2)

CD3+CD4+CD8+
T cells,

CD3+CD4+CD8-
T cells,

CD3+CD4-CD8+
T cells,

CD3+CD4-CD8-
T cells, B cells,

NK cells

unknown unknown [105]

Herpesviridae

Cytomegalovirus
(CMV)

CD4+ T cells,
CD8+ T cells,

NK cells
unknown unknown [106]

Marek’s disease virus
(MDV) B cells unknown unknown [107]

Alphaherpesvirinae Herpes simplex virus
(HSV) Lymphocytes unknown unknown [108]

Parvoviridae

Feline parvovirus (FPV) Lymphocytes unknown unknown [109]

Canine parvovirus
(CPV) Lymphocytes unknown unknown [110]

Figure 1. The underlying mechanisms of lymphopenia caused by viral infections.

2.1. Cell Death

Lymphocyte death plays a critical role in lymphopenia caused by many viral infections
(Table 1). Apoptosis, pyroptosis, autophagy, virus-specific CD8+ cytotoxic T lymphocyte
(CTL) dependent killing and antibody-dependent cell-mediated cytotoxicity (ADCC) were
reported to be involved in lymphopenia. Among them, apoptosis was thought to be a
major pathway involved in lymphopenia [39,62,68].

Apoptosis: Apoptosis is a tightly regulated form of cell death that is vital in both em-
bryo implantation and development and turnover of tissues during maturation. Lympho-
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cyte’s apoptosis has been widely reported during viral infections, such as SARS-CoV-2 [15],
HIV [39] and IAV [62]. Until now, the mechanism responsible for lymphocytes apoptosis
is not fully understood. Although apoptosis of lymphocytes could be induced due to
direct infection of lymphocytes with the viruses, such as MERS-CoV [23,24], HIV [111] and
MV [67], the number of such virus-infected cells was very few to match with the reduced
levels of lymphocytes observed during viral infections. Some studies even suggested
that lymphocytes could not be infected by other viruses, such as SARS-CoV-2 [15] and
FMDV serotype O/A [81,84]. Thus, apoptosis of bystander cells is considered as a major
mechanism for lymphocytes depletion induced by viral infections [39,112,113]. There were
many factors reported to trigger apoptosis in uninfected bystander lymphocytes, including
the activation of apoptosis related-receptors (Fas/FasL) [61], the interaction between viral
protein and host cellular receptors [114] and cytokines (TNF-α) [115,116].

Activation-induced cell death (AICD): The interaction between FasL and Fas is usually
engaged in AICD, which enhances apoptosis in T lymphocytes previously stimulated
to cause contraction of T cells when T lymphocytes are re-activated via T cell receptors
(TCR) [117–119]. AICD in peripheral T cells is often caused by the induction of expression
of the death ligand, Fas ligand (CD95 ligand, FasL). During SARS-CoV-2-, RSV- and CDV-
infection, the Fas expression was negatively correlated to CD4+ T lymphocyte count in
blood, indicating that the increased expression of Fas was involved in lymphopenia through
apoptosis of bystander T cells [70,71,76,119].

Dendritic cell (DC)-dependent killing of lymphocytes: Previous studies showed that a
depletion of CD8+ T cell responses in lethal H2N2 influenza virus infection was mediated
by lymph node resident DCs, especially plasmacytoid dendritic cells (pDCs) that express
FasL and drive FasL–Fas induced T cell apoptosis in a dose-dependent manner [120,121].
Similarly, H5N1 infection in mice enhanced FasL expression on pDCs, resulting in apoptosis
of influenza-specific CD8+ T cells via a Fas–FasL-mediated pathway [61,121]. In addition,
HIV-infected DCs induced CD8+ T cell apoptosis by up-regulating TNF-α in infected DCs
and activation of the caspase 8-dependent pathway in CD8+ T cells [122].

Pyroptosis: Pyroptosis is a programmed cell death with high inflammation. The dying
cell releases its cytoplasmic contents, including inflammatory cytokines [123]. These cy-
tokines in turn induce pyroptosis in other T cells, which also contribute to T cells depletion.
IL-1β, a marker of pyroptosis, was increased during SARS-CoV-2 and HIV infection, indi-
cating that lymphocytes were undergoing pyroptosis. During CSFV infection, pyroptosis
was also determined in peripheral lymphoid organs by TdT-mediated dUTP nick-end
labeling (TUNEL) and detection of pyroptosis related genes (such as p10 subunit, caspase-1
and IL-1β) [87]. It is necessary to further investigate how these viral infections induce
lymphocytes pyroptosis.

Autophagy: Autophagy is an important component of anti-viral defense in host
cells. During autophagy, the viruses are initially pinned down into autophagosomes
and then delivered to lysosomes for degradation [124]. Until now, autophagy was only
reported in patients infected with SARS-CoV-2, HIV and EBOV. In COVID-19 patients,
the upregulated expressions of autophagy-associated genes have been observed in PBMCs,
which indicates that these cells may undergo autophagy and ultimately cell death [15].
In HIV infected patients, autophagy mediated by HIV gp41 protein was reported in the
uninfected CD4+ T cells [41]. In EVD patients, autophagy was induced in T cells through
activating endoplasmic reticulum (ER) stress related signaling pathways [13].

Virus-specific CD8+CTL dependent killing: The CTL remove the virus-infected lym-
phocytes through interaction of FasL with Fas and TNF-related apoptosis-inducing ligand
(TRAIL–TRAILR). CTL induce apoptosis of targeted cells by perforin and granzymes and
by the death ligand, CD95 ligand (CD95L) [125]. Although a small proportion of lym-
phocytes infected with SARS-CoV-2 could be eliminated by CTL-dependent killing [126],
it is believed that CTLs are not likely to be involved in lymphocytes death due to the lack
of infection. Thus, CD8+CTL dependent killing is more likely to occur in lymphocytes
infected with MERS-CoV, HIV, CDV, etc.
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ADCC: Antibodies specific to the viral surface antigens are able to block attachment of
a virus to its target cell. However, virus-infected cells could be also bound by the antibodies
against the virus by recognition of viral antigens presented on the cells. There are a
variety of mechanisms involved in killing the antibody-coated cells infected with the virus,
such as phagocytosis, activation of complements and ADCC [127]. It is noted that more
severe lymphopenia and higher titers of IgG and IgM against the virus were observed in
patients, who had severe COVID-19 in comparison with patients having moderate and
mild severity [16].

2.2. Involvement of Cytokines, Chemokines and Growth Factors

Upregulated expression of cytokines, chemokines and growth factors was commonly
observed in patients and animals with lymphopenia induced by viral infection, including
IL-2, IL-6, IL-12, IL-18, IL-1β, IFN-γ, CCL2/MCP-1, CXCL1, CXCL8/IL-8, CCL3/MIP-1-α,
CCL7/MCP-3, CXCL10/IP-10 and CXCL9/MIG [17,53,128]. It is noted that the kinds of
elevated cytokines, chemokines and growth factors caused by varied viral infections is
different, i.e., the infections of SARS-CoV, MERS-CoV, HIV and FMDV could trigger higher
levels of IFNs. Conversely, the infection of SARS-CoV-2 did not induce any IFN expression
at all assessment time points [129]. Among cytokines, chemokines and growth factors
reported, IL-6 is the most common cytokine which was upregulated during infections with
many viruses including SARS-CoV-2, SARS-CoV, HIV, EBOV, IAV, RSV, CSFV and HNoV.
Different cytokines induced lymphopenia through different mechanisms; it is believed
that the synergic action of cytokines, chemokines and growth factors plays a vital role
in induction of lymphopenia during viral infection, although the molecular mechanism
beyond remains unclear.

IL-6, produced rapidly in response to infection and tissue damage, promotes host
defense by stimulating the acute phase responses or immune response. However, the exces-
sive release of IL-6 plays a pathological role in chronic infection and inflammation [130]. No-
tably, IL-6 could inhibit lymphopoiesis by directly impairing hematopoietic stem cells [131]
and STAT-3 activation [132]. Recent studies found that T cells counts were negatively
correlated to IL-6, IL-10 and TNF-α concentration in serum, which indicated that these
cytokines may be involved in T cells depletion in COVID-19 patients [18,19]. The drugs
blocking IL-6 receptor (IL-6R), such as tocilizumab, sarilumab and siltuximab, have been
considered as a treatment strategy for severe COVID-19 patients with high IL-6 levels [133].
Importantly, lymphocytes count was recovered after treatment with IL-6R [134].

IL-10 as an anti-inflammatory cytokine exhibits a dual role in promoting pathogen
persistence [135] and limiting immune pathology [136]. A previous study found that
IL-10 was able to suppress proliferation of T cells [137]. Study on chronic infection in
animal models showed that blocking IL-10 signaling could successfully prevent T cell
exhaustion [138]. In addition, T cell apoptosis could be induced by IL-10 produced by
CD9+ regulatory B cells.

TNF-α is also a pro-inflammatory cytokine and could induce cell apoptosis through
interacting with its receptor TNFR1 [115]. Previous studies suggested that TNF-α produced
by macrophages infected with ASFV leads to apoptosis in bystander T lymphocytes [116].
Similarly, apoptosis was observed earlier in lymphocytes from FIP cats [34], and apoptosis
was further reported to be caused by TNF-α or other potential cytokines, instead of viral
direct infection [33,35].

Interferons (IFNs) were originally identified as a humoral factor that confer an antiviral
state on cells [139], but now, it has also been found to regulate lymphocyte recirculation
and cause transient blood lymphopenia [140]. During IAV, CSFV and FMDV infection,
the onset of lymphopenia was consistent with the IFN-α responses, and all animals with a
high IFN-α level in serum showed severe depletion of lymphocytes [63,85,88]. IFN-γ has a
critical part in bridging the innate and adaptive immunity, but IFN-γ has been reported
to promote apoptosis. It has been proposed that IFN-γ may promote apoptosis of the
bystander T cell following EBOV infection [141]
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In addition to IL-6, IL-10, TNF-α and IFNs, other cytokines, chemokines and growth
factors were also involved in lymphopenia. For instance, IL-15 has been reported to affect
proliferation and differentiation of lymphocytes [142], MCP-1 and CXCL13 were reported
to be involved in the migration of lymphocytes [42,143,144].

2.3. Inhibition of Lymphopoiesis

There are many ways to inhibit lymphopoiesis during viral infection. First, the dam-
age of lymphoid organs (thymus, lymph nodes, bone marrow, liver and lung) was observed
in severe illness caused by SARS-CoV-2, CDV and CSFV with lymphopenia, which has
negative impacts on the survival, production and function of lymphocytes [87,89,145–147].
The thymus, an important lymphoid organ, is responsible for the generation and mat-
uration of T cells. However, thymic dysfunction and involution have been observed in
patients infected with HIV [148], SARS-CoV-2 [149], MV [150] and H1N1 [151], which were
triggered by direct thymocyte killing. Thymus suppression affects lymphopoiesis and
the survival of lymphocytes. Second, the development of haematopoietic precursor cells
(HPC) was suppressed through viral direct infection and the synergic action of cytokines,
chemokines and growth factors. Previous studies postulated that SARS-CoV-2 and CSFV
may directly infect haematopoietic stem cells (HSC) and thus induce cell death [20,90].
In addition, hyperproinflammatory cytokines are produced by activated immune cells
that affect the process of lymphopoiesis in the bone marrow. Studies have suggested that
the reciprocal dynamics of lymphocyte and neutrophil populations in the bone marrow
are consistent with cellular interaction and competition [152]. However, inflammation
could regulate the balance of granulopoiesis and lymphopoiesis in bone marrow by sup-
pressing common proinflammatory cytokines and growth factors (TNF-α, IL-1β, CXCL12,
IL-6, etc) that affect lymphopoiesis more strongly than granulopoiesis [152,153]. TNF-α
treatment results in a reduction in lymphocyte progenitor populations in the bone marrow,
while IL-1β elicits increased granulocyte precursors [154]. Moreover, CXCR4-CXCL12
interactions facilitate cytokine-mediated regulation of B cell and myeloid cell retention
in the bone marrow [154]. IL-6 has been reported to abort lymphopoiesis and elevate
production of myeloid cells by expression of Id1 transcription factor, which is known to
inhibit lymphopoiesis and elevate myelopoiesis, and its expression was dependent on
MAPK [131]. Although the cellular source of these cytokines was not determined during
many virus infections (e.g., the cellular source of elevated IL-6 in COVID-19 patients [155]),
the synergic action of these proinflammatory cytokines may inhibit lymphopoiesis in the
bone marrow. Lastly, inhibition of the lymphocyte activation and proliferation by the
loss of the antigen-presenting ability would also promote lymphopenia associated with
viral infections. For example, DCs from healthy and convalescent COVID-19 patients
could stimulate T cell proliferation, but none of the DCs derived from acute COVID-19
patients showed similar activity, which indicated that DCs from acute patients showed
functional impairment in both maturation and T cell activation [21]. Similarly, DCs infected
with EBOV and IAV inhibit the ability of antigen presentation and affect the capacity of
activating T cells thereby limiting the ability to pass survival signals to T cells [54,64,156].
Further studies revealed that the activation of T cells was inhibited due to steric shielding,
in which EBOV GP protein expressed on infected antigen presenting cells (APCs) masks its
own epitopes and MHC-I and β1 integrin expressed on the cell surface [55]. Furthermore,
TCR signal transduction could be inhibited via IFN-inhibiting domains located in viral
VP35 and VP24 proteins when EBOV-infected DCs were in contact with T cells [157,158].

2.4. Lymphocyte Trafficking

Accumulation of lymphocytes was often observed in infected tissue sites of patients
and animals, which was believed to be due to migration from peripheral blood [65,97].
The recovering SARS patients had an average increase of 121 CD4+ T cells per microliter
of peripheral blood during the first month of disease onset; it is speculated that the rapid
recovery in lymphocytes blood count is more likely due to the recirculation of lymphocytes
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between organs and peripheral blood, rather than newly produced lymphocytes [28,69].
In addition, various kinds of leucocytes infiltrate the alveoli at various degrees after
SARS-CoV-2- and IAV- infections, including lymphocytes, monocytes, neutrophils and
eosinophils [65,159]. Therefore, lymphocyte sequestration in lungs is considered as a
potential pathway for the depletion of blood lymphocytes [160]. Similarly, the loss of
circulating lymphocytes temporally coincides with the accumulation of lymphocytes in the
lymph nodes and jejunal mucosa following HIV-, SIV- and HNoV-infection, which suggests
that lymphopenia may occur as a result of the redistribution of circulating lymphocytes
to the infected sites [50,97,161]. Although the molecular mechanism for lymphocytes
trafficking remains unclear, it seems that CXCL13, IP10 and IFN-α/β play an important
role in lymphocyte trafficking [42,44,140].

2.5. Role of Co-Inhibitory Molecules

T cell activation requires two signals: TCR stimulation through antigen recognition
in the context of MHC and co-stimulation through interaction of co-signaling receptors
(co-stimulatory and co-inhibitory receptors) on T cells with their ligands on APCs [162].
Co-signaling receptors play a pivotal role in regulating T cell activation, subset differen-
tiation, effector function and survival [162]. Co-inhibitory molecules include cytotoxic
T-lymphocyte-associated protein 4 (CTLA-4), programmed death 1 (PD-1), T cell immunore-
ceptor with Ig and ITIM domains (TIGIT), lymphocyte activation gene-3 (LAG-3), T cell
immunoglobulin mucin 3 (Tim-3) and 2B4. Up-regulated expression of these co-inhibitory
molecules has been reported following viral infection, such as SARS-CoV-2 [22], HIV [45],
EBOV [56], IAV [66] and RSV [77]. It is noted that the expression of PD-1, LAG-3 and TIGIT
in CD4+ T cells showed the strongest inverse associations with the number of CD4+ T
cell from AIDS patients [45]. During high-pathological IAV infection, the expression of
PD-1 on CD8+ T cells specific for IAV was upregulated, and blockade of PD-L1 in vivo
caused reduced titers of virus and increased numbers of CD8+ T cell numbers [66]. PD-1
has been reported to promote T cells exhaustion and apoptosis and to inhibit proliferation,
cytokines production and cytolytic function by regulating signaling of AKT, phospho-
inositide 3-kinase (PI3K), extracellular-signal regulated kinase (ERK) and phosphoinosi-
tide phospholipase C-γ (PLCγ) [163]. A recent study demonstrated that PD-1-mediated
PI3K/Akt/mTOR, caspase9/caspase3 and ERK pathways are involved in regulating the
apoptosis and proliferation of CD4+ and CD8+ T cells during BVDV infection. The molecu-
lar mechanism of other co-inhibitory molecules in lymphopenia caused by viral infection
needs further study.

2.6. Metabolic Disorders

Lactic acid environments in tumors have been confirmed to suppress the proliferation
and cytokines production of human CTLs and lead to a 50% decrease in cytotoxic activity,
and the CTLs function can be restored in a lactic acid-free medium [164]. The level of
lactic acid was significantly upregulated in severe COVID-19 patients compared to mild
patients [165]. It is speculated that the elevated blood lactic acid levels in severe COVID-19
patients might suppress the proliferation of lymphocytes. In addition, the bilirubin levels
(the marker of liver damage), urea nitrogen and creatinine (the markers of renal function)
were significantly increased in severe COVID-19 patients [5,166,167]. The damage of these
organs, especially liver and kidney, may affect the survival, production and function of
lymphocytes. Similarly, RSV infected patients who required ICU showed a higher level
of prolactin and growth hormone, while the leptin and insulin-like growth factor 1 (IGF1)
were obviously decreased [78]. Further analysis revealed that the levels of prolactin and
leptin were related to lymphocyte counts, which were considered as potential factors
related to lymphopenia in severe RSV infection [78]. Overall, metabolic disorders might
shift the normal physiological condition into a pathophysiological situation that may affect
the production, survival and function of lymphocytes.
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2.7. Glucocorticoids

Glucocorticoids not only exhibit anti-inflammatory actions but also trigger lympho-
cytes apoptosis that further contributes to lymphopenia [168,169]. Previous studies sug-
gested that lymphopenia was more prevalent in SARS patients with higher prevailing
cortisol, before any steroid therapy had been used [170]. Similarly, the blood cortisol was
significantly higher during the active phase than during the convalescent phase after RSV-
and EBOV-infection [78,171]. These phenomena revealed that glucocorticoids may be in-
volved in lymphopenia. The role of glucocorticoids in lymphopenia has been reviewed by
Panesar N.S. [31]. A recent review study described that the ordering between lymphopenia
and lymphocytes apoptosis appears different in SARS and COVID-19 patients (apoptosis
is prior to lymphopenia in COVID-19 patients), and the level of glucocorticoids could
determine the ordering between lymphopenia [32]. Therefore, glucocorticoids appear to
play an important role in lymphopenia caused by virus infections, and glucocorticoids as a
drug should be used carefully for treatment in patients with lymphopenia.

3. Clinical Implications of Lymphopenia during Viral Infections
3.1. Association of Lymphopenia with Viral Disease Severity

Several studies have shown that severe and critically ill individuals during viral
infection (such as SARS-CoV-2 or EBOV or AIV), who required intensive care unit (ICU),
had obviously lower lymphocyte counts compared to those in healthy, mild or recovered
individuals [13,172–174]. This phenomenon indicated that the degree of lymphocyte count
has been associated with disease severity [174–176]. T cells play a critical role in virus-
specific, adaptive immune response, thereby suggesting that lymphopenia could severely
impair the body’s ability to fight infection. Likewise, Xu et al. also pointed out that
SARS-CoV-2 leads to lymphocyte depletion and inhibits immune function, which is a
potential immunological mechanism for the occurrence and progression of COVID-19 [177].
Moreover, lymphocyte counts in blood is also a viable and accurate index to classify the
severity (moderate, severe and critical) of COVID-19 patients [12]. Therefore, lymphopenia
could be a clinical indicator for ranking the severity of COVID-19 patients. Similarly,
following infections of FIPV [178] and RHDV [179], lymphopenia is also related to the
severity of disease. A previous study indicated that lymphopenia was related to disease
severity in FIPV infection, and the absolute count of lymphocytes in peripheral blood was
recognized as the predictor of the disease outcome [178]. In addition, severe lymphocytes
depletion was observed in rabbits infected with RHDV, especially at 6 h before death
of the infected rabbits [99]. Although it is not clear whether lymphopenia promotes the
progression of the disease or the severe disease contributes to lymphopenia, it determines
that lymphopenia is associated with the severity of the disease. Lymphopenia also can be
served as an important indicator for dynamic assessment of disease status.

3.2. Increases in Opportunistic Infection

Patients with immunosuppressive conditions are prone to have opportunistic infec-
tion, which could be either severe or more frequent. Opportunistic infection is a significant
feature during the HIV infection, which could result in high morbidity and even mor-
tality [180,181]. Lymphopenia is likely to delay viral clearance, in favor of macrophage
stimulation and the accompanying “cytokine storm”, which results in the dysfunction of
host organs [14,182]. These damages could increase the risk of developing opportunistic
infections. A report described that lymphopenia in COVID-19 patients could increase the
risk of developing opportunistic infections of mucormycosis, while the recovery of lym-
phocytes count could improve the acquired immune response and induce the production
of mucorales-specific T cells [183]. To the best of our knowledge, there are few reports of
opportunistic infections in specific viral diseases accompanied by lymphopenia. There-
fore, further investigations are required to reveal the relationship between opportunistic
infection and lymphopenia.
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4. Conclusions

Lymphocytes, especially specific T cells, have a critical role in viral clearance. Thus,
lymphopenia may affect the host adaptive immune responses and impact the clinical course
of acute viral infections. In this review, we found that lymphopenia was often seen in
patients and animals infected with viruses that could result in serious illness or even death
and it was found that lymphopenia is associated with disease severity. Seven different
mechanisms were involved in lymphopenia caused by viral infections, including cell death,
elevated cytokines, chemokines and growth factors, inhibition of lymphopoiesis, lympho-
cyte trafficking, up-regulated expression of co-inhibitory molecules, metabolic disorders
and elevated glucocorticoids. As it has been discussed in this review, lymphopenia could
be caused by different viral infections through multiple mechanisms mentioned above or
depending on a certain mechanism. Although the potential mechanisms have been widely
reported, the molecular mechanism of these pathways still remains poorly understood,
which needs to be addressed in the future.
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Abbreviations

T cells T lymphocytes
B cells B lymphocytes
NK cells Natural killer cells
SARS-CoV-2 Severe acute respiratory syndrome coronavirus-2
EBOV Ebola virus
HIV Human immunodeficiency virus
MERS-CoV Middle east respiratory syndrome coronavirus
SARS-CoV Severe acute respiratory syndrome coronavirus
FIPV Feline infectious peritonitis virus
CCoV Canine coronavirus
ECoV Equine coronavirus
SIV Simian im-munodeficiency virus
BLV Bovine leukemia virus
MARV Marburg virus
BDBV Bun-dibugyo virus
IAV Influenza A virus
MV Measles virus
HPIV3 Human parainfluenza virus type 3
CDV Canine distemper virus
PPRV Peste des petits ruminants virus
RSV Respiratory syncytial virus
PRRSV Porcine reproductive and respiratory syndrome virus
FMDV Foot-and-mouth disease virus
SVV Seneca Valley virus
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CSFV Classical swine fever virus
HCV Hepatitis C virus
BDV Border disease virus
DENV Dengue Virus
WNV West Nile virus
BVDV Bovine viral diarrhoea virus
HNoV Human no-rovirus
RHDV Rabbit haemorrhagic disease virus
FCV Feline calicivirus
LCMV Lymphocytic choriomeningitis virus
CHIKV Chikungunya virus
ASFV African swine fever virus
PCV-2 Porcine circovirus type 2
CMV Cytomegalovirus
MDV Marek’s disease virus
HSV Herpes simplex virus
FPV Feline parvovirus
CPV Canine parvovirus
CTL Cytotoxic T lymphocyte
ADCC Antibody-dependent cell-mediated cytotoxicity
AICD Activation-induced cell death
TCR T cell receptor
DC Dendritic cell
pDCs Plasmacytoid dendritic cells
TUNEL TdT-mediated dUTP nick-end labeling
TRAIL TNF-related apoptosis-inducing ligand
CD95L CD95 ligand
IFNs Interferons
HPC Haematopoietic precursor cells
APCs Antigen presenting cells
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4
PD-1 Programmed death 1
TIGIT T cell immunoreceptor with Ig and ITIM domains
LAG-3 Lym-phocyte activation gene-3
Tim-3 T cell immunoglobulin mucin 3
PI3K phosphoinositide 3-kinase
ERK Extracellular-signal regulated kinase
PLCγ Phosphoinositide phospholipase C-γ
IGF1 Insulin-like growth factor 1
ICU Intensive care unit.
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