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Background. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binding receptor ACE2 and the spike protein 
priming protease TMPRSS2 are coexpressed in human placentae. It is unknown whether their expression is altered in the context of 
HIV infection and antiretroviral therapy (ART).

Methods. We compared mRNA levels of SARS-CoV-2 cell-entry mediators ACE2, TMPRSS2, and L-SIGN by quantitative poly-
merase chain reaction in 105 placentae: 45 from pregnant women with HIV (WHIV) on protease inhibitor (PI)-based ART, 17 from 
WHIV on non-PI–based ART, and 43 from HIV-uninfected women.

Results. ACE2 levels were lower, while L-SIGN levels were higher, in placentae from WHIV on PI-based ART compared to those 
on non-PI–based ART and to HIV-uninfected women. TMPRSS2 levels were similar between groups. Black race was significantly 
associated with lower expression of ACE2 and higher expression of L-SIGN. ACE2 levels were significantly higher in placentae of 
female fetuses.

Conclusions. We identified pregnant women of black race and WHIV on PI-based ART to have relatively lower expression of 
placental ACE2 than those of white race and HIV-uninfected women. This may potentially contribute to altered susceptibility to 
COVID-19 in these women, favorably by reduced viral entry or detrimentally by loss of ACE2 protection against hyperinflammation.

Keywords.  COVID-19; placenta; renin-angiotensin system; HIV protease inhibitors; race; infant sex; receptor; neonate; AIDS; 
detrimental.

Infection by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-
19), which has posed a serious threat globally [1, 2]. Data are 
emerging on the clinical manifestations of COVID-19 in preg-
nant women. SARS-CoV-2 infection during pregnancy is asso-
ciated with increased risk of preterm labor, and babies born to 
infected mothers have a higher risk of admission to the neonatal 
unit [3–6]. There are sporadic reports of miscarriage, stillbirth, 
fetal demise, and neonates testing positive for the virus [7–9]. 
The risk of SARS-CoV-2 placental infection seems to be low 
[10–13], although reports of electron microscopy observations 
of virions invading the syncytial layer [14–16] and presence of 
strong staining of SARS-CoV-2 nucleocapsid/spike glycopro-
tein in the syncytial layer [16–19] have contributed to growing 
evidence that SARS-CoV-2 can infect the placenta.

The placenta also seems to be susceptible to the effects of 
maternal COVID-19 disease, even in the absence of detect-
able or very low levels of SARS-CoV-2 mRNA or protein in 
the placenta [8, 20–23]. This is evident from histopathological 
abnormalities such as villous fibrin deposition, maternal vas-
cular malperfusion, fetal vascular malperfusion, and villitis/
intervillositis observed in placentae from women with even 
mild COVID-19 disease [8, 20–24]. Based on current evidence, 
the rate of SARS-CoV-2 placental infection is considered low 
[10–13], although it appears that there is considerable potential 
for SARS-CoV-2 to affect placental function and fetal develop-
ment [25].

SARS-CoV-2 invades host cells by binding to the 
angiotensin-converting enzyme 2 (ACE2) receptor [26–28], 
a component of the renin-angiotensin system (RAS), which 
is a critical regulator of blood pressure, electrolyte balance, 
and fluid homeostasis [29–31]. Many components of RAS, 
including ACE2, are upregulated in normal pregnancy [32, 
33]. Upregulation of ACE2 mediates conversion of angio-
tensin II, a vasoconstrictor, to angiotensin-(1–7), a vaso-
dilator, and contributes to relatively low blood pressures in 
pregnancy [34]. Upon binding ACE2, SARS-CoV-2 causes its 
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downregulation, enhancing RAS imbalance with increased 
angiotensin II relative to decreased angiotensin-(1–7), which 
can cause vasoconstriction, inflammation, and coagulopathy 
[35, 36].

Much of the literature on how ACE2 levels regulate the path-
ogenesis of COVID-19 is conflicting. While many authors argue 
that ACE2 is the underlying reason behind many of the risk 
factors for severe COVID-19 [37–40], there is a growing body 
of literature which argues that ACE2 upregulation is a protec-
tive factor for SARS-CoV-2 outcomes due to its role in limiting 
the potent vasoconstrictive effect of angiotensin II [36, 41–46]. 
Therefore, ACE2 expression may have paradoxical effects, 
aiding SARS-CoV-2 infection, yet conversely limiting viral 
pathogenicity. Further studies are needed to elucidate the pre-
cise effects that altered ACE2 expression has on the acquisition 
of SARS-CoV-2 infection and associated severity in COVID-19.

Upon ACE2 binding, SARS-CoV-2 employs the host serine 
protease TMPRSS2 for spike protein priming, facilitating 
viral fusion and cellular infection [26]. In humans, ACE2 and 
TMPRSS2 genes are expressed in the placenta throughout the 
3 trimesters of pregnancy [47–49], with the highest mRNA ex-
pression in the first trimester and decreasing expression with 
advancing gestation [50, 51]. In 2 recently published reports 
investigating localization of ACE2 and TMPRSS2 in COVID-
19–exposed term placentae, the ACE2 receptor was consistently 
localized within the outer syncytiotrophoblast layer of chori-
onic villi, whereas TMPRSS2 was reported to be absent or only 
present weakly in the villous endothelium and rarely in the 
syncytiotrophoblast layer [19, 52]. In spite of the relative ab-
sence of TMPRSS2, all 15 placentae in a study tested positive 
for SARS-CoV-2 infection, and there were 5 cases of fetal trans-
mission [19]. This suggests that the SARS-CoV-2 virus may be 
using alternative cellular entry pathway molecules to enter the 
placenta. It has been identified previously that SARS-CoV, the 
closely related coronavirus responsible for the SARS outbreak, 
uses C-type lectins DC-SIGN (encoded by the gene CD209) 
and/or L-SIGN (also known as CLEC4M) as independent re-
ceptors or as enhancer factors that facilitate ACE2 mediated 
virus infection [53–56]. A study demonstrated that L-SIGN is 
endogenously expressed in human endothelial cells and me-
diates SARS-CoV-2 entry and infection [57, 58]. Recently, a 
preprint article has established that the N-terminal domain 
(NTD) of the spike protein mediates SARS-CoV-2 infection by 
associating with L-SIGN and DC-SIGN. Serum samples from 
SARS-CoV-2–infected patients were found to contain anti-
bodies against NTD and a patient-derived monoclonal anti-
body against NTD inhibited SARS-CoV-2 infection of L-SIGN 
or DC-SIGN–expressing cells [59]. L-SIGN also serves as an 
attachment receptor for other viruses such as human immuno-
deficiency virus (HIV) [60].

Emerging data indicate that HIV infection may be asso-
ciated with increased risk of COVID-19 diagnosis [61] and 

people with HIV may be at a slightly higher risk of death from 
COVID-19 [62–66]. The presence of comorbidities, a low 
CD4 cell count, and lack of an effective antiretroviral therapy 
contribute to the risk of severe COVID-19 outcomes among 
people living with HIV [67]. Currently there are no data on the 
pathogenesis of SARS-CoV-2 in pregnant women with HIV 
(WHIV), as well as the risk of vertical transmission in this pop-
ulation. Furthermore, it is not known whether the expression 
of SARS-CoV-2 cell-entry mediators is altered in placentae of 
WHIV exposed to antiretroviral therapy (ART). We previously 
reported that pregnant WHIV who received protease inhib-
itor (PI)-based ART had higher levels of estradiol in the ma-
ternal and umbilical cord plasma [68]. As estradiol is known to 
downregulate the expression of ACE2 [69, 70], we hypothesized 
that WHIV exposed to PI-based ART have lower placental ex-
pression of ACE2. Here, we compared the gene expression pat-
tern of SARS-CoV-2 cell-entry mediators: ACE2, TMPRSS2 
and L-SIGN/CLEC4M, in term placentae of WHIV exposed 
to PI-ART, non-PI-ART, and HIV-uninfected women. Because 
COVID-19 has disproportionally affected racial and ethnic 
communities [71], we further explored associations between 
placental expression of SARS-CoV-2 cell-entry mediators and 
race. Finally, as the placenta is an organ shared by mother and 
fetus, we also explored the influence of fetal sex on placental 
SARS-CoV-2 cell-entry mediator expression.

METHODS

Study Population

Placentae included in this study were collected from women re-
cruited to the Angiogenesis and Adverse Pregnancy Outcomes 
in Women with HIV (AAPH) cohort (recruited in Toronto, 
Canada). Details on the AAPH cohort have been published 
previously [72]. Briefly, participants were aged >18 years, with 
singleton pregnancy. Exclusion criteria included preexisting 
hypertension, diabetes, renal, autoimmune, or collagen vas-
cular disease, active opportunistic infection for the WHIV, 
body mass index (BMI) > 40, and current illicit or recreational 
drug use. None of the women were current tobacco smokers 
or had alcohol use disorder. All available placentae (n = 105) 
were included in this study; 62 from WHIV on ART (45 on 
PI-based ART, 9 on non-nucleoside reverse transcriptase inhib-
itor (NNRTI)-based ART, 8 on integrase strand transfer inhib-
itor (INSTI)-based ART), and 43 women without HIV (control 
group). Participants were recruited between May 2010 and 
April 2019.

Ethical Considerations

This study was approved by the Institutional Research Ethics 
Board at University Health Network (REB No. 20–5526) 
and was performed in accordance with the Tri-Council 
Policy Statement on Ethical Conduct for Research Involving 
Humans. All participants gave written informed consent 
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for the AAPH study and for inclusion of their samples and 
data into a biobank program to support studies in HIV and 
pregnancy.

Sample Collection

Placenta samples were collected immediately after delivery. 
Placental core sections were sampled from 3 sites on the ma-
ternal surface, rinsed in phosphate buffered saline, further 
dissected into smaller pieces, and immersed in Allprotect 
tissue reagent (Qiagen). Samples were stored at −80°C until 
processing.

RNA Isolation and Quantitative Polymerase Chain Reaction

Total RNA was isolated from the placental tissue using the 
mirVana miRNA Isolation Kit (Thermo Fisher Scientific) per 
the manufacturer’s protocol. RNA quality and concentration 
were determined using the Nano-Drop1000 Spectrophotometer 
(Thermo Fisher Scientific). Total RNA, 10 µg, was treated with 
DNase I, RNase-free (Thermo Fisher Scientific), followed by ad-
dition of 5 mM EDTA and reverse transcribed into cDNA using 
the iScript cDNA Synthesis Kit (Bio-Rad Laboratories). ACE2, 
TMPRSS2, and L-SIGN mRNA levels were assessed by quanti-
tative polymerase chain reaction (qPCR) using LightCycler 480 
SYBR Green I Master reaction mix (Roche) and the LightCycler 
480 detection instrument (Roche). The cycling conditions were 
as follows: initial denaturation at 95°C (5 minutes), followed 
by 40 cycles of denaturation at 95°C (10 seconds), annealing at 
60°C (15 seconds), and extension at 72°C (15 seconds). Gene 
expression was normalized to YWHAZ gene, which presented 
stable expression among all groups. The primer sequences of all 
evaluated genes are shown in Supplementary Table 1. Relative 

expression of target genes was obtained using the 2∆∆CT 
method [73].

Statistical Analysis

For demographic and clinical data, medians with interquartile 
ranges (continuous variables) or frequencies (categorical vari-
ables) were calculated and compared using Mann-Whitney U 
test or Fisher exact test, respectively. ACE2, TMPRSS2, and 
L-SIGN mRNA levels were log-transformed and differences 
between groups were assessed using Kruskal-Wallis test with 
Dunn multiple comparison posttest, or Mann-Whitney U test, 
as appropriate. Correlations were assessed using Pearson r test. 
Regression analysis was used to examine relationships between 
loge-transformed ACE2, TMPRSS2, or L-SIGN and ART-
exposure status (categorized as none, PI-ART, non-PI-ART), 
race (categorized as black, white, or other), and fetal sex (female 
or male). Statistical analyses were performed using GraphPad 
Prism version 5.0 and Stata version 13.0.

RESULTS

Study Populations

We included 105 placentae from the AAPH cohort (re-
cruited in Toronto, Canada), 43 (41%) from women without 
HIV (control group), and 62 (59%) from WHIV on ART. Of 
WHIV, 45 (72%) were taking a PI-based regimen, 9 (15%) an 
NNRTI-based regimen, and 8 (13%) an INSTI-based regimen. 
For all analyses, placentae exposed to NNRTI or INSTI regi-
mens were grouped together in the non-PI–based ART group. 
Demographic information is shown in Table 1. Maternal age, 
maternal prepregnancy BMI, race, mode of delivery, and fetal 
sex were similar between groups. All placentae from the HIV-
uninfected group were delivered at term, while 56 (90%) of the 

Table 1. Demographics

Characteristics HIV– (n = 43) HIV+ (n = 62) HIV+ on PI (n = 45) HIV+ on non-PI (n = 17)

Maternal age, y, median (IQR) 33 (30–36) 33 (30–37) 33 (30–36) 35 (31–38)

Maternal prepregnancy BMI, median (IQR) 24 (21–29) 24 (21–29) 25 (22–30) 24 (20–29)

Race

 Black 26 (61) 45 (73) 35 (78) 10 (59)

 White 14 (33) 12 (19) 7 (16) 5 (29)

 Other 3 (7) 5 (8) 3 (7) 2 (12)

Delivery mode

 Vaginal 28 (65) 33 (53) 25 (56) 8 (47)

 Scheduled cesarean delivery 11 (26) 18 (29) 11 (24) 7 (41)

 Emergency cesarean delivery 4 (9) 11 (18) 9 (20) 2 (12)

Term birth 43 (100) 56 (90) 40 (89) 16 (94)

Preterm birth 0 (0) 6 (10) 5 (11) 1 (6)

Fetal sex

 Female 26 (60) 28 (45) 21 (47) 7 (41)

 Male 17 (40) 34 (55) 24 (53) 10 (59)

Data are No. (%) except where indicated. 

No significant differences were noted for the HIV-positive group (HIV+) compared to HIV-uninfected (HIV–), or between HIV+ on PI-based ART vs HIV+ on non-PI–based ART, using Mann-
Whitney U test or Fisher exact test as appropriate.

Abbreviations: BMI, body mass index; HIV, human immunodeficiency virus; IQR, interquartile range; PI, protease inhibitor. 
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HIV-positive group were delivered at term and 6 (10%) were 
delivered preterm. The median gestational week at birth was 
40 for the HIV-uninfected group and 39 for the HIV-positive 
group. HIV plasma viral load was below detectable limits for 
52 (84%) of WHIV and unavailable for 2 (3%) women. Median 
CD4+ T-cell count at time of recruitment for the WHIV was 565 
cells/mm3. CD4+ T-cell count was below 250 cells/mm3 for 4 
(6.4%) women and unavailable for 1 (2%) woman.

PI-Based ART Exposure and Black Race Are Associated With Lower ACE2 

and Higher L-SIGN Placental Expression Levels

We have previously shown that estradiol levels are elevated in 
pregnancies exposed to PI-based ART but not in those exposed 
to NNRTIs or INSTIs [68, 74, 75]. Given that ACE2 expres-
sion levels have been shown to be influenced by estradiol levels 
[69, 70], we hypothesized that placentae from women exposed 
to PI-based ART will have lower levels of ACE2. Compared 
to the control group, ACE2 mRNA levels were significantly 
lower in placentae exposed to PI-based ART: median of loge-
transformed values in arbitrary units was −0.56 (interquartile 
range [IQR], −1.03 to 0.11) for PI-based ART versus 0.12 (IQR, 
−0.28 to 0.50) for control (P < .01; Figure 1). ACE2 mRNA 
levels were similar between the control group and the group 
exposed to non-PI–based ART. We next explored if maternal 
estradiol levels measured between gestational week 33 and 37 
correlated with placental ACE2 expression levels. Estradiol 
levels were only available for 30 WHIV, all of whom were taking 
a PI-based regimen, and 31 women in the HIV-uninfected 
group. We observed a significant negative correlation between 
estradiol levels and placental ACE2 mRNA levels in the HIV-
positive group on PI-based ART (r = −0.43, P = .019; Figure 2). 
No correlation was observed in the HIV-uninfected group.

In contrast to ACE2, mRNA levels of L-SIGN were signifi-
cantly higher in placentae exposed to PI-based ART compared 
to those exposed to non-PI–based ART and compared to con-
trols: median of loge-transformed values in arbitrary units was 
0.78 (IQR, 0.08 to 1.37) for PI-based ART versus −0.30 (IQR, 
−1.22 to 0.78) for non-PI–based ART (P < .01) and versus 0.0 
(IQR, −0.68 to 0.78) for control (P < .01). The expression of 
TMPRSS2 was similar between the groups.

We next examined if race influenced expression levels of the 
SARS-CoV-2 receptors (Figure 3). We found that lower mRNA of 
ACE2 and higher mRNA expression of L-SIGN in placentae from 
women who identified as black compared to those who identified 
as white: median of loge-transformed values in arbitrary units for 
ACE2 was −0.26 (IQR, −0.90 to 0.19) for black versus 0.24 (IQR, 
−0.17 to 0.56) for white race (P < .05); and for L-SIGN it was 0.61 
(IQR, −0.14 to 1.22) for black versus −0.13 (IQR, −1.24 to 0.50) 
for white race (P < .01). TMPRSS2 mRNA levels did not vary by 
race. Demographics and clinical information were similar between 
the different races (Supplementary Table 2) with the exception of 
prepregnancy BMI, which was significantly lower in white women 
compared to black women. Differences in ACE2 and L-SIGN 
mRNA levels between black and white women remained signifi-
cant when we adjusted for maternal BMI.

We also examined if fetal sex was associated with receptor ex-
pression levels (Figure 4). L-SIGN and TMPRSS2 mRNA levels 
did not differ by sex. However, ACE2 mRNA levels were signifi-
cantly higher in placentae associated with a female fetus compared 
to those associated with a male fetus: median of loge-transformed 
values in arbitrary units was 0.09 (IQR, −0.45 to 0.57) for female 
versus −0.41 (IQR, −0.97 to 0.17) for male (P = .0036).

We did not observe significant associations between ACE2, 
L-SIGN, or TMPRSS2 mRNA levels and maternal age or 
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Figure 1. Protease inhibitor exposure in pregnancy is associated with lower ACE2 and higher L-SIGN expression levels in the placenta. Loge transformed mRNA levels of 
ACE2 (A), L-SIGN/CLEC4M (B), and TMPRSS2 (C) in placentae of HIV-uninfected women (HIV–, grey), women with HIV (HIV+) on PI-based ART (red), and women with HIV on 
non-PI–based ART (blue). Statistical comparison using Kruskal-Wallis test with Dunn posttest. P values for the Kruskal-Wallis test are shown below each graph. Asterisks 
indicate P values for the Dunn posttest: **, P < .01. n = 43 HIV−, n = 45 HIV+ PI-based ART, and n = 17 HIV+ non-PI–based ART. Abbreviations: ART, antiretroviral therapy; HIV, 
human immunodeficiency virus; PI, protease inhibitor.
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maternal BMI. In WHIV we did not observe significant asso-
ciations between ACE2, L-SIGN, or TMPRSS2 mRNA levels 
and viral load, CD4 count, or preterm birth. In multivariable 
regression analysis, exposure to PI-based ART, race, and fetal 
sex, all remained significantly associated with ACE2 mRNA 
levels (Supplementary Table 2). Similarly, both exposure to PIs 
and race remained significantly associated with L-SIGN mRNA 
levels (Supplementary Table 3).

DISCUSSION

Emerging evidence points to HIV as a potential risk-factor for 
death from COVID-19 [62–66], yet the impact of HIV infection 
and ART on the clinical presentation, birth outcomes, and pla-
cental pathology of pregnancies complicated by COVID-19 re-
mains to be investigated [76, 77]. To better understand the risk 
of SARS-CoV-2 placental infection in WHIV treated with ART, 
we performed an integrated analysis of the gene expression of 
SARS-CoV-2 cell-entry mediators in term placentae of WHIV 

who received ART compared to the expression in placentae from 
HIV-uninfected women. We found lower expression of ACE2 and 
higher expression of L-SIGN/CLEC4M in placentae from WHIV 
on PI-based ART compared to those from HIV-uninfected 
women, while ACE2 and L-SIGN mRNA levels were similar in 
placentae from WHIV on non-PI–based ART compared to HIV-
uninfected women. TMPRSS2 mRNA levels were similar across 
all groups. In agreement with previous reports that ACE2 expres-
sion levels are influenced by estradiol levels [69, 70], we observed 
a negative correlation between late third trimester maternal estra-
diol levels and placental ACE2 mRNA levels in WHIV on PI-based 
ART. This correlation was not observed in the HIV-uninfected 
group. We also observed differential expression profiles for ACE2 
and L-SIGN based on race, with black race significantly associ-
ated with lower placental mRNA expression of ACE2 and higher 
expression of L-SIGN compared to white race. TMPRSS2 mRNA 
levels did not vary by race.

Our data may help stratify the risk of SARS-CoV-2 pla-
cental infection in pregnant WHIV taking ART. We identified 
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pregnant WHIV taking PI-based ART and pregnant women of 
black race to have lower baseline ACE2 mRNA levels compared 
to HIV-uninfected women and women of white race, which 
may reduce their risk of placental infection, although the higher 
expression of L-SIGN mRNA in the same group of women 
may mitigate this protection. SIGN receptors are well known 
for their ability to potentiate viral infection of permissive cell 
types in trans, for example, DC-SIGN–positive dendritic cells 
incubated with HIV are able to infect T lymphocytes very effi-
ciently, even after very thorough washing [60, 78]. Therefore, 
potentiation of viral infection in trans could be the mechanism 
by which L-SIGN/DC-SIGN may mediate SARS-CoV-2 infec-
tion of ACE2-low cells. Hence, we speculate that due to the in-
creased mRNA levels of L-SIGN in pregnant women of black 
race and WHIV on PI-based ART, the probability of placental 
infection might still exist, in spite of the reduced ACE2 levels.

In the event of placental infection due to severe maternal 
COVID-19, we would speculate that the baseline lower ACE2 
levels may emerge as unfavorable for the pregnancy due to fur-
ther downregulation of ACE2 by SARS-CoV-2 binding and loss 
of the ACE2 vasodilatory function in the local placental RAS 
system. This RAS imbalance may result in placental inflamma-
tion and vasoconstriction, which over the course of pregnancy 
may adversely affect the developing fetus, as reported previ-
ously, outside the context of COVID-19 [79–83]. However, 
these mechanistic pathways, and their relationship to outcomes 
in maternal SARS-CoV-2 infection, remain to be examined.

In healthy term placentae, ACE2 has been detected 
by immunohistochemistry in syncytiotrophoblasts, 
cytotrophoblasts, and fetal capillary endothelium [84, 85]. 
Placental expression of L-SIGN is also localized to the fetal 
capillary endothelium [60]. Therefore, colocalization of these 2 
SARS-CoV-2 receptors in the fetal endothelium may potentiate 

vertical transmission. It is possible that the significantly higher 
expression of L-SIGN in pregnant women of black race and 
WHIV who are on PI-based ART may increase their suscep-
tibility to vertical transmission of SARS-CoV-2. However, it 
may manifest only in sporadic cases of placental infection in 
which the syncytial barrier might be breached, perhaps due to 
placental inflammation. These hypotheses need to be evaluated 
in research studies.

Mortality from COVID-19 has been particularly high in 
African American communities [71, 86–89]. Higher mor-
tality among black people could be due to higher prevalence 
of the known risk factors for COVID-19 complications, such 
as hypertension, diabetes, obesity, and cardiovascular disease 
among the black ethnic group, as well as socioeconomic fac-
tors [90–93]. Furthermore, a study found that black people with 
HIV were more likely to die from COVID-19 than other people 
with HIV [63]. A  recent report states that there is a genetic 
predisposition for lower expression levels of ACE2 in African 
populations [94], which is consistent with our data reporting 
lower placental expression of ACE2 in black pregnant women. 
An ACE2 polymorphism found to be associated with cardiovas-
cular and pulmonary conditions was reported in the African/
African American population [95]. Hence, ACE2 and its ge-
nomic variants might influence interindividual variability in 
disease susceptibility and severity of COVID-19.

We also detected significantly higher ACE2 mRNA levels in 
placentae of female fetuses compared to those of male fetuses. 
This finding is consistent with a study reporting higher ACE2 
expression in different tissues in Asian females as compared to 
males [96], although the association between sex and ACE2 ex-
pression is still debatable.

One strength of our study is the simultaneous measurement 
of the expression levels of all major SARS-CoV-2 cell-entry 
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mediators—ACE2, TMPRSS2, and L-SIGN—in a large 
number of term placentae from WHIV compared to placentae 
from HIV-uninfected women with similar demographics. 
Further, the original cohort excluded women with hyper-
tension, diabetes, or obesity and did not include recreational 
or illicit drug users or current tobacco smokers. While these 
characteristics limit the influence of potential confounding 
factors in our findings, they also limit the external validity of 
our data. A limitation of our study is that we could not assess 
the placental expression of ACE2, TMPRSS2, and L-SIGN in 
the first and second trimesters of pregnancy in WHIV treated 
with ART. Another limitation is that we were not able to eval-
uate the placental protein levels and localization of these fac-
tors, nor definitively separate the effects of HIV from those of 
ART. In our race analyses we are limited to the comparison of 
only white and black race, based on participant self-identifi-
cation. Future studies should evaluate the impact of Hispanic 
or Asian race. Finally, we only had estradiol levels on 61 of the 
105 participants so our correlation analyses between estradiol 
and ACE2 levels should be viewed with caution.

Overall, our data show that pregnant women of black race 
and WHIV who are on PI-based ART have lower mRNA levels 
of ACE2 but higher levels of L-SIGN, which can alter their sus-
ceptibility to SARS-CoV-2 placental infection. Once infection is 
acquired, clinical manifestations might be worse in these women 
as they may be at a higher risk of placental abnormalities due 
to RAS dysregulation, leading to pregnancy complications, and 
possibly transplacental transmission. These data may better in-
form clinical considerations surrounding risk stratification and 
prevention approaches for SARS-CoV-2–affected pregnancies 
exposed to HIV and ART. However, our data should be inter-
preted cautiously because there may be other undefined path-
ways regulating SARS-CoV-2 placental infection.
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