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Ageing is a risk factor for many degenerative diseases. Cardiovascular diseases

(CVDs) are usually big burdens for elderly, caregivers and the health system.

During the aging process, normal functions of vascular cells and tissue

progressively lost and eventually develop vascular diseases. Endothelial

dysfunction, reduced bioavailability of endothelium-derived nitric oxide are

usual phenomena observed in patients with cardiovascular diseases. Myriad of

studies have been done to investigate to delay the vascular dysfunction or

improve the vascular function to prolong the aging process. Tumor suppressor

gene p53, also a transcription factor, act as a gatekeeper to regulate a number of

genes to maintain normal cell function including but not limited to cell

proliferation, cell apoptosis. p53 also crosstalk with other key transcription

factors like hypoxia-inducible factor 1 alpha that contribute to the progression

of cardiovascular diseases. Therefore, in recent three decades, p53 has drawn

scientists’ attention on its effects in vascular function. Though the role of tumor

suppressor gene p53 is still not clear in vascular function, it is found to play

regulatory roles and may involve in vascular remodeling, atherosclerosis or

pulmonary hypertension. p53 may have a divergent role in endothelial and

vascular muscle cells in those conditions. In this review, we describe the

different effects of p53 in cardiovascular physiology. Further studies on the

effects of endothelial cell-specific p53 deficiency on atherosclerotic plaque

formation in common animal models are required before the therapeutic

potential can be realized.
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Introduction

With an estimated 17.9 million of people died of

cardiovascular diseases (CVDs) in 2019, CVDs are the leading

causes of death. The diseases contributed to 32% of the total

global deaths. (World Health Organization, 2021). CVDs are

group of diseases affecting the cardiovascular system. The

cardiovascular system consists of the blood, heart and blood

vessels. Blood is in liquid form and constantly being transported

inside the body. The heart is a pump that beats about 72 times per

minute in human adult and keeps the blood moving throughout

the body. The blood vessels are composed of different sizes of

arteries, veins and capillaries as conducting duct to transport

blood and body fluid. Blood vessels are essential for the transport

of molecules such gases, nutrients, wastes, hormones, bioactive

substances and also involve in distribution of immune cells and

heat in the body. Blood pressure is the determined by the heart

pumping and the blood exerted upon the walls of the blood

vessels. Normal blood pressure should be less than 120 mmHg

for systolic blood pressure and 80 mmg Hg for diastolic blood

pressure. Blood pressure higher than 120/80 mmHg is

considered to be hypertensive (or a pre-hypertensive state)

and it is an indicator for vascular changes. Such vascular

changes usually accompanied with altered endothelial cells,

vascular smooth muscle cells migration, arterial stiffness,

vascular calcification. With such alternations in the arterial

walls, blood pressure usually increases (Boron and Boulpaep,

2017; Brown et al., 2018). An elevation in blood pressure lowers

cardiac output by increasing afterload, the pressure that opposes

the ejection of blood during ventricular systole (Klabunde, 2022).

Hypertension is also an important risk factor for various kinds of

cardiovascular-associated diseases like heart failure, atrial

fibrillation, chronic kidney disease, heart valve diseases, aortic

syndromes, and dementia (Fuchs and Whelton, 2020).

Transcription factor p53 is heavily involved in activating or

suppressing various genes in response to various stress stimuli,

FIGURE 1
Overview on posttranslational modifications of p53 under stress stimulus. In normal condition, MDM2 and MDM4 promotes p53 ubiquitination
leading to p53 degradation in proteasome. Under stress stimulus, sirtuin 1 is activated and deacetylate p53 at K382, 379, 320 or 373 for promoting
p53 transcription, PACF and p300/CBP is also activated to promote p53 transcription via acetylation at k305, 370, 372, 373, 381, 282, 386 or 164.
Ubiquitin proteasome of p53 degradation is inhibited via repression MDM2 and MDM4 binding to p53 by stress stimulated phosphorylation of
p53 at ser 15, 20, and thr18 (Created with BioRender.com).
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including DNA damage, hypoxia and oxidative stress, and its

activation promotes DNA repair, apoptosis, cell cycle arrest,

metabolic shifts and autophagy (Vousden and Prives, 2009;

Beckerman and Prives, 2010). Moreover, a recent review by

Men et al. (2021) also highlighted the regulatory roles of

p53 in cardiac function and dysfunction. The regulation of

p53 protein is controlled by posttranslational modifications

including phosphorylation, acetylation/deacetylation,

glycosylation, ubiquitination, SUMOylation and more (Meek

and Anderson, 2009) (Figure 1). In unstressed situation,

p53 is rapidly turned over by actions of MDM2 and MDM4,

which promote poly-ubiquitination, nuclear export and

proteasomal degradation of p53. When stimulated by stress,

phosphorylation of the amino terminus of p53 prevents the

binding of MDM2, leading to stabilization of p53 protein

(Meek and Anderson, 2009). Subsequently, lysine residues in

the carboxyl terminal the DNA-binding domain of p53 is subject

to acetylation by p300/CBP and PCAF, and this acetylation is

essential for the stabilization and activation of p53 (Tang et al.,

2008; Meek and Anderson, 2009). On the other hand, sirtuin 1, a

histone deacetylase, is another inhibitor of p53 activity, causes

deacetylation of p53 protein (Vaziri et al., 2001; Kim et al., 2007).

SUMOylation also plays a complex role in regulating the

turnover and transcriptional activity of p53 (Takabe et al.,

2011; Santiago et al., 2013; Dehnavi et al., 2019; Celen and

Sahin, 2020).

In this review, we discuss the role of p53 in vascular function,

and its potential as a therapeutic target for vascular dysfunction.

p53 and vascular function

Blood vessels consist of three layers: tunica externa

(outermost later), tunica media (middle layer) and tunica

intima (innermost later). Tunica externa is mainly made of

connective tissues providing support and protection for the

vessel. Tunica media comprises mainly of vascular smooth

muscle cells and connective tissues. Vascular smooth muscle

cells are arranged in helical or circular layers in the intima in

larger vessels and as a single circular in small vessels. The

contractile state of smooth muscle cells determines the

diameter of blood vessels. In healthy blood vessels, when there

is change in extravascular environment, local growth factors,

vascular active substances, and hemodynamic stimuli initiate

structural and functional adaptations of smooth muscles to

maintain a normal and stable blood pressure (Renna et al., 2013).

The tunica intima consists of a single-cell layer of endothelial

cells. Upon stimulation by acetylcholine, ATP, bradykinin and

laminar shear stress, endothelial cells generate physiological

amount of nitric oxide (NO) with an enzyme called

endothelial nitric oxide synthase (eNOS), and NO stimulates

the relaxation of smooth muscle (Furchgott and Vanhoutte,

1989; Fleming and Busse, 2003; Sessa, 2004). The endothelium

also produces other vasorelaxant factors including prostaglandin

I2 (Toda et al., 2007; Bauer and Sotníková, 2010) and

endothelium-derived hyperpolarizing factor (EDHF) (Félétou

and Vanhoutte, 1996) as well as vasoconstricting substances

such as endothelin (Barton and Yanagisawa, 2019) and

thromboxane A2 (Chen, 2018). Endothelial cells also function

to keep the inner surface of blood vessel non-adhesive and non-

thrombogenic, which is essential to maintain steady blood flow

(O’Reilly et al., 2003).

The number of cells within tissue depends on their turnover

by apoptosis and cell proliferation, which are highly regulated

processes. In normal arteries, the turnover of smoothmuscle cells

and endothelial cells are low. eNOS inhibits the apoptosis of

endothelial cells (Dimmeler et al., 1997; Polte et al., 1997), as well

as the proliferation of endothelial cells and vascular smooth

muscle cells (Tsihlis et al., 2011). Moreover, laminar shear

stress can increase cellular level of p53 within endothelial

cells. p53 is stabilized upon phosphorylation by c-Jun

N-terminal kinase (JNK). This increase in p53 level leads to

cell cycle arrest and the suppression of apoptosis of endothelial

cells (Lin et al., 2000). Events such as healing of injuries, skeletal

muscle adaptation after exercise or female reproductive cycles

trigger angiogenesis (Otrock et al., 2007). Vascular endothelial

growth factor (VEGF) promotes angiogenesis through

promoting endothelial cell survival, proliferation and

migration (Olsson et al., 2006). p53 also play a complex role

in regulating VEGF expression. In the presence of an intact p21-

Rb pathway, p53 represses VEGF expression. However, in the

absence of p21-Rb pathway, which occurs in malignant cells,

p53 promotes VEGF expression (Farhang Ghahremani et al.,

2013a; Farhang Ghahremani, et al., 2013b).

p53 and endothelial dysfunction

Endothelial dysfunction is a broad term that refers to the

impairment of the normal physiological functioning of the

endothelium. It involves, but is not limited to, impaired

endothelium-dependent vasodilatation, increased leukocyte

recruitment into tunica intima, increased endothelial

permeability to lipoproteins, and increased thrombotic

property. A key cause of endothelial dysfunction is the

reduced bioavailability of eNOS (Thomas et al., 2008).

Apart from reduction of eNOS, DNA damage, mitochondrial

dysfunction, oxidative stress, telomere dysfunction and other

stressors induce several tumor suppressor genes including

p53 and lead to cellular senescence, the permanent state of

cell arrest. (Jerafi-Vider et al., 2021; Sun and Feinberg, 2021).

Cellular senescence is originally a physiological protective

mechanism to prevent the development of tumor, however,

when such senescent cells accumulate in number it leads to

aging of cells (López-Otín et al., 2013). Senescence of vascular

endothelial cells plays an important role in initiation and
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progression of CVDs (Hohensinner et al., 2016; Jia et al., 2019).

Cellular oxidative stress, circulating IGF-1 deficiency, altered

calcium signaling, may impair cell functions and contribute to

endothelial damage that lead to cerebrovascular diseases and loss

of cognitive functions (Tarantini et al., 2017). The senescent cells

can remain alive, though accompanied by phenotypical changes,

altered metabolism and gene expression. The senescent EC

usually are flatter and enlarged with more polypoid nucleus

and at the same time with changed structure in cytoskeleton

that may lead to angiogenesis, proliferation and migration of the

cells (Sun and Feinberg, 2021). Thus, endothelial senescence is an

important biomarker for CVDs.

A number of biochemical pathways involving sirtuin 1,

Klotho and fibroblast growth factor 21 (Figure 2) have been

found to be associated with cellular senescence (Jia et al., 2019).

Cellular senescence is also regulated by p53 pathway with

increased inflammatory signaling in arteries from older adults

(Donato et al., 2015). p53 is found to impair endothelium-

dependent vasodilatation, which is important for maintaining

healthy blood flow. A study found that p53 mediates angiotensin

II-induced impairment of vasodilatation (Kim et al., 2008).

Another study by Kumar et al. (2011) found that ex vivo

adenoviral overexpression of p53 of rat aortic rings impaired

endothelium-dependent vasodilatation. In vitro studies in the

same paper showed that overexpression of p53 in human

umbilical vein endothelial cells suppressed Kruppel-like Factor

2 (KLF2), which was known to induce eNOS expression (Kumar

et al., 2011). Diabetes was also found to induce a marked increase

in endothelial p53 level as well as an impairment of endothelium-

dependent vasodilatation. This impairment resulted in

significantly reduction of endothelial cell-specific p53 gene

deletion (Yokoyama et al., 2019). In vitro studies in the same

paper argued that p53 inactivates eNOS through inhibiting the

phosphorylation of eNOS at its Ser1177 residue, one of the

important regulatory sites for eNOS activity (Yokoyama et al.,

2019; Thai et al., 2021).

The roles of p53 in mediating vascular oxidative stress and

pro-inflammatory responses in diabetes were studied. Exposure

to high glucose promoted the expression of p53 in endothelial

cells, and treatment with pifithrin-α (small molecule inhibitor of

p53) or p53 siRNA attenuated oxidative stress and mRNA

expression of adhesion molecules (VCAM-1, ICAM-1,

E-selectin) and MCP-1 in high glucose-treated endothelial

cells. Administration of pifithrin-α to diabetic mice in vivo

significantly improved endothelium-dependent vasodilatation

response of aorta (Wu et al., 2019). Interestingly, treatment

with SRT2104, a sirtuin 1 activator, protects against high

glucose-induced endothelial dysfunction by inhibiting

p53 activity (Wu et al., 2018). In addition, SUMOylation of

p53 was found to mediate disturbed flow-induced endothelial cell

apoptosis (Heo et al., 2011). Disturbed flow activates PKCζ and
upregulates p53 SUMOylation. SUMOylated p53 translocates

from nucleus to cytoplasm, and this upregulates apoptosis (Heo

et al., 2011). Subsequent studies found that increased

SUMOylation of p53 promotes endothelial dysfunction and

inflammation (Heo et al., 2013). The regulation and role of

p53 in endothelial cell under different physiological events are

summarized in Table 1.

p53 and atherosclerosis

Atherosclerosis is a chronic inflammatory disorder occurring

in mid-sized and large arteries. It is characterized by the excessive

infiltration of lipid and inflammatory cells and resultant

formation of fibrous and fatty lesions within the tunica intima

(Ross, 1999; Insull, 2009; Hansson and Hermansson, 2011). The

progressive growth of atherosclerotic lesions leads to the

FIGURE 2
The development of normal endothelial cell (EC) to senescent EC. In normal situation, sirt 1, Klotho and fibroblast growth factor 21, etc., give
protective effects on normal endothelial cells, preventing senescence. In senescent EC, expression of p53 was upregulated with a reduction of
endothelial nitric oxide production.
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impediment of blood flow. With a rupture or erosion of an

unstable plaque, the contact between the blood and materials

within the plaques can quickly trigger thrombosis, leading to

ischemic injury or death of the tissue to which the affected artery

supplies blood. The most debilitating or fatal clinical

manifestations of atherosclerosis are myocardial infarction and

stroke (Insull, 2009; Hansson and Hermansson, 2011).

At the initial stages of atherosclerosis, endothelial

dysfunction favors the recruitment of neutrophils and

monocytes into the subendothelial space of tunica media

(Bevilacqua et al., 1994; Blankenberg et al., 2003). Once

recruited into the subendothelial space, monocytes mature

into macrophages (Negre-Salvayre et al., 2020). The

endothelium then becomes more permeable to low-density

lipoprotein (LDL), leading to increased accumulation of LDL

within the subendothelial space (Schwenke and Carew, 1989; von

Eckardstein and Rohrer, 2009). LDL is oxidized by the reactive

oxygen species (ROS) produced by the activated leukocytes

within the subendothelial space, and macrophages internalize

oxidized LDL (oxLDL) to become cholesterol-laden foam cells

(Stocker and Keaney, 2004). oxLDL also promotes inflammation

of the blood vessel (Khan et al., 1995; Sawamura et al., 1997;

Miller et al., 2003). Foam cells reside within the tunica media and

generate various pro-inflammatory factors including cytokines,

chemokines, ROS and matrix-degrading proteases (Tabas and

Bornfeldt, 2016). Moreover, pro-inflammatory cytokines can

stimulate the expression inducible nitric oxide synthase

(iNOS) in vascular smooth muscle cells (Chan and Fiscus,

TABLE 1 Summary of regulation of p53 in endothelial cell under different physiological or pathophysiological conditions.

Physiological or
pathophysiological
conditions

Model Regulation of p53 Role of p53 References

Vascular function Bovine aortic endothelial cells with
laminar shear stress

Laminar shear stress → JNK ↑
→ p53↑

cycle arrest ↓ and apoptosis ↓ Lin et al. (2000)

Endothelial dysfunction Angiotensin II (Ang II) treatment in
p66shcRNAi transgenic B6SJL mice
transfected human umbilical vein and
human aortic endothelial cells with p53

Ang II → p53 ↑ p66shc ↑ → endothelium-
dependent vasodilatation ↓

Kim et al.
(2008)

Endothelial dysfunction Adenoviral overexpression of p53 in rat
aortic rings overexpression of
p53 human umbilical vein endothelial
cells (HUVECs)

p53 ↑ → KLF2 ↓ → eNOS ↓ Endothelium-dependent
vasodilatation ↓

Kumar et al.
(2011)

Endothelial dysfunction Streptozotocin (STZ)-induced diabetes
in C57BL/6 mice hyperglycemia in
HUVECs

High glucose (HG)→ p53 ↑→ PTEN
↑ → peNOS (ser 1117) ↓

endothelium-dependent
vasodilatation ↓

Yokoyama et al.
(2019)

Endothelial dysfunction High glucose treated primary endothelial
cells isolated from C57BL/6 mice

HG → miR-34a ↑ → sirtuin 1 ↓ →
p53 ↑

inflammation and oxidative stress ↑ Wu et al. (2019)

Endothelial dysfunction STZ-induced diabetes in C57BL/6 mice
and its isolated primary endothelial cells
with SRT2104 treatment

HG→ sirtuin ↓→ p53 ↑ →VCAM-1,
ICAM-1,E-selectin and MCP-1 ↑

p53 deacetylation mediates
SRT2104’s protection against
diabetes-induced aortic endothelial
dysfunction

Wu et al. (2018)

HUVECs with disturbed flow
stimulation

PKCζ ↑ → PKCζ- PIASy binding ↑ →
SUMOylation of p53 ↑ → bcl-2 ↑

Apoptosis ↑ Heo et al.
(2011)

Endothelial dysfunction Primary endothelial cells isolated from
SENP2 deficiency C57BL/6J mice
stimulated with disturbed flow

SENP2 ↓ → SUMOylation of
ERK5 and p53 ↑ → Bcl-2 ↑, eNOS ↓,
KLF2 ↓, VCAM-1, ICAM-1 and
E-selectin ↑

Apoptosis ↑ inflammation ↑ Heo et al.
(2013)

Vascular remodeling in
pulmonary hypertension

Pulmonary arterial endothelial cells
isolated from mice with hypoxia-
induced pulmonary hypertension (PH)
and rats with monocrotaline (MCT)-
induced PH

Hypoxia→HIF-2α ↑→ p53↑→ Bax/
Bcl-2 ↑

Apoptosis↑ → pulmonary
hypertension ↑

Wang et al.
(2018)

Vascular remodeling in
pulmonary hypertension

Pulmonary arterial and lung
microvascular endothelial cells with
DNA damage and oxidant stress

genotoxic stress (doxorubicin) →
p53-PPARγ complex ↑ → PGC1A
and APLN ↑ Oxidative stress →
BMPR2 ↑ → p53-PPARγ complex ↑
→ EPHA2 (ephrin type-A receptor
2), FHL2 (four and a half LIM
domains protein 2), JAG1 (jagged 1),
SULF2 (extracellular sulfatase Sulf-2),
and TIGAR (TP53-inducible
glycolysis and apoptosis regulator) ↑

DNA repairing, angiogenesis ↑ and
apoptosis ↓ → pulmonary
hypertension ↓

Hennigs et al.
(2021)
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2004) and macrophages (Depre et al., 1999). Unlike eNOS, iNOS

produces a large amount of NO for a prolonged period (Cho

et al., 1992). Coinciding with an increased production of ROS,

iNOS-drived NO is chemically converted into other reactive

nitrogen species (e.g., peroxynitrite) which is a stronger

oxidant, contributing to cell damage (Martínez and

Andriantsitohaina, 2009; Förstermann et al., 2017).

The number of macrophages/foam cells continues to increase

and lead to growth in lesion size. In more advanced lesions, this

increase in lesion size is also contributed by scavenger receptor-

initiated proliferation of macrophages (Robbins et al., 2013). The

overall size of lesion is determined also by the ability of

macrophages to migrate away from the lesion, the rate of

macrophage/foam cell death (Shi et al., 2018), and the ability

of lesion macrophages to clear apoptotic or necrotic materials by

efferocytosis (Tabas and Bornfeldt, 2016; Brophy et al., 2017).

These processes are likely impaired in advanced lesions because

macrophage/foam cell migration is impaired by increased

expression of iNOS and exaggerated generation of reactive

nitrogen species (Huang et al., 2014), and the efferocytosis of

lesion macrophages is also known to be impaired by ROS and

matrix-degrading proteases (Thorp et al., 2011). Impairment of

macrophage efferocytosis allows the formation of an acellular

necrotic core enriched with lipid and crystalline cholesterol

released by necrotic foam cells, which is a key

histopathological feature of advanced atherosclerotic lesions

(Tabas and Bornfeldt, 2016). Apart from the formation of

necrotic core, advanced atherosclerotic lesions also feature a

fibrous cap underneath the endothelium. Upon stimulation by

pro-migratory signals including growth factors (e.g., PDGF,

FGF), cytokines, thrombin, extracellular matrix components

or high glucose level, smooth muscle cells in tunica media

acquire a synthetic phenotype, resulting in their proliferation

and migration to the subendothelial space. Vascular smooth

muscle cells deposit collagen causing the expansion of

extracellular matrix at the subendothelial space, which appears

as a fibrous cap (Gerthoffer, 2007; Brophy et al., 2017). As such,

advanced lesions with necrotic core and fibrous cap are called

fibro-fatty atheroma (Stary et al., 1994).

In advanced atherosclerotic plaques of human, the

expression and phosphorylation of p53 was found to be

elevated (Iacopetta et al., 1995; Gorgoulis et al., 2005). In vivo

study showed that global p53 deficiency accelerated

atherosclerotic plaque formation in atherosclerosis-prone

apoE−/− mice (Guevara et al., 1999; Mercer et al., 2005).

Subsequently, two studies showed that LDL receptor-deficient

mice and APOE*3-Leiden mice transplanted with bone marrow

of p53-deficient mice also had accelerated atherosclerotic plaque

formation (van Vlijmen et al., 2001; Merched et al., 2003). Based

on histological evidence, two of these studies found that

p53 deficiency reduced cell proliferation within atherosclerotic

lesions, but did not affect apoptosis there (Guevara et al., 1999;

Merched et al., 2003), while one of them found that

p53 deficiency reduced apoptosis but did not affect cell

proliferation (van Vlijmen et al., 2001). One of these studies

also demonstrated that transplant of p53-positive bone marrow

to p53−/−/apoE−/− mice reduced atherosclerotic lesion

formation and cell proliferation and apoptosis within

atherosclerotic lesions (Mercer et al., 2005). In vitro

experiments showed that p53 differentially regulate the

proliferation and apoptosis of macrophages and smooth

muscle cells. For macrophages, p53 promotes their apoptosis.

However, for vascular smooth muscle cells, p53 inhibits their

proliferation and limits their apoptosis in vitro (Mercer et al.,

2005). The regulation of p53 in vascular smooth muscle cells and

macrophages are summarized in Table 2 and Table 3

respectively.

A more recent study showed that apoE−/− mice with

smooth muscle-specific p53 gene knockout had no

significant difference in overall size of atherosclerotic

lesions, compared to apoE−/− mice with p53 in their

smooth muscle. Interestingly, this study also found that

apoE−/− mice with smooth muscle-specific p53 deficiency

had a significantly higher number of smooth muscle cells

within the fibrous caps of atherosclerotic plaques, and the

in vitro experiments of the same study showed that

p53 deficiency enhanced vascular smooth muscle cell

migration and invasion (Cao et al., 2017). An in vitro study

showed that p53 negatively regulates the expression of

IGF1 receptor, which is a key mechanism for vascular

smooth muscle cell survival and proliferation (Kavurma

et al., 2007). IGF1 receptor activation is also important for

smooth muscle cell migration (Beneit et al., 2016). Therefore,

it is plausible that p53 limited vascular smooth muscle cell

migration through downregulating IGF1 receptor expression.

One study looked at the effect of p53 on the stability of

advanced atherosclerotic lesion through collar-induced

carotid atherogenesis in apoE−/− mice, overexpression of

p53 reduced plaque stability and promoted the rate of

plaque rupture were observed (von der Thüsen et al.,

2002). Depending on the culprit vessel, plaque rupture can

lead to myocardial ischemia or cerebral ischemia. For instant,

cerebral vasospasm secondary to cerebral aneurysm and

hemorrhage stroke can lead to hypoperfusion resulting in

delayed cerebral ischemic deficits (Sun and Feinberg, 2021),

cerebral-vasospasm]. An in vivo study suggested that

p53 plays an important role in the etiology of vasospasm

which contributed directly to the alteration of the blood brain

barrier (BBB) integrity and cerebral oedema development

during the first 72 h of subarachnoid hemorrhage (SAH)

(Cahill et al., 2006). Furthermore, recent study showed that

angiopoietin-1 (Ang-1) inhibited the p53-mediated

endoplasmic reticulum stress and apoptosis in the vascular

endothelial cells in rats with SAH (Wei et al., 2022). These

studies highlighted the roles of p53 in cerebral vasculature and

its potential as a treatment target for SAH.
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p53 and vascular remodeling in
pulmonary hypertension

Pulmonary hypertension is a disease with high morbidity

and mortality. After the sixth World Symposium on

Pulmonary Hypertension in 2018, the diagnostic criteria of

pulmonary hypertension was defined as mean pulmonary

arterial pressure (mPAP) > 20 mmHg and pulmonary

vascular resistance ≥3 Wood Units (Simonneau et al.,

2019). Pulmonary hypertension is primarily associated with

hemodynamic alterations resulting from remodeling of

pulmonary arteries and veins, such as increased media/

lumen ratio or increased media cross-sectional area.

Pulmonary arterial smooth muscle cells and endothelial

cells are the major players involved in vascular remodeling.

Vascular remodeling is driven by four cellular processes: cell

TABLE 2 Summary of regulation of p53 in smooth muscle cell under different physiological or pathophysiological conditions.

Physiological or
pathophysiological
conditions

Model Regulation of p53 Role of p53 References

Atherosclerosis Human atheromatous arterial wall
collected from patients with occlusive
and aneurysmal disease

p53 ↑ Atherosclerotic plaques ↑ Iacopetta et al.
(1995)

Atherosclerosis Senescent human vascular smooth
muscle cell line HVTs-SM1

p53 ↑ → ICAM-1 ↑ Atherosclerotic lesions ↑ Gorgoulis et al.
(2005)

Atherosclerosis p53 knockout in apoE−/− C57BL/6J mice ↓ p53 → smooth muscle cells and
macrophages proliferation ↑

Atherosclerotic lesion ↑ Guevara et al.
(1999)

Atherosclerosis Vascular smooth muscle cell isolated
from p53 knockout and ApoE knockout
C57Bl6/J mice

↓ p53→ proliferation ↓ DNA damage
→ p53↑ → ATM/ATR substrates and
P-Chk-1 ↓

Apoptosis and proliferation ↓
→ aortic plaque formation ↓

Mercer et al.
(2005)

Atherosclerosis Human aortic smooth muscle cell from
patients with abdominal aortic aneurysm

miR-504 → p53↓ → p21 ↓ → Bax,
caspase-3, 9 and bcl-2 ↓

Proliferation and apoptosis ↓ Cao et al. (2017)

Atherosclerosis Vascular smooth muscle cell isolated
from rat/transgenic rat

Oxidative stress ↑ → p53 ↑ → p21 ↑→
IGF1R ↓

Apoptosis↑ → atherosclerotic
plaques ↑

Kavurma et al.
(2007)

Atherosclerosis ApoE knockout mice with
overexpressed p53

Not reported p53↑ → plaque stability ↓ and
rate of plaque rupture ↑

von der Thüsen
et al. (2002)

Vascular remodeling in
pulmonary hypertension

p53 global knockout mice with hypoxia
stimulation

p53 ↓ → ↓ p21 and ↑ HIF-1α Vascular remodeling ↑ →
pulmonary hypertension ↑

Mizuno et al.
(2011)

Vascular remodeling in
pulmonary hypertension

p53 or p21 knockout C57Bl/6j with
Nutlin-3a treatment and exposed to
chronic hypoxia

Hypoxia + nutlin-3a → MDM2 →
p53 ↑ → p21 ↑ → Bcl2, Bax ↑ and
PUMA ↓ (in lung)

apoptosis ↓ and proliferation
↓ → pulmonary
hypertension ↓

Mouraret et al.
(2013)

Vascular remodeling in
pulmonary hypertension

Pulmonary artery smooth muscle cells
isolated from p53 condition knockout
C57BL/6NCr

No effect No effect Wakasugi et al.
(2019)

Vascular remodeling in
pulmonary hypertension

Pulmonary artery (PA)-smooth muscle
cells isolated from MCT-induced
pulmonary hypertension rats

Baicalein and p53 → Bax, caspase-3
and bcl-2 ↑

Apoptosis ↑ → pulmonary
artery remodeling ↓

Teng et al.(2022)

Vascular remodeling in
pulmonary hypertension

Pulmonary arterial smooth muscle cells
isolated from mice with PH and rats with
MCT-induced PH

Hypoxia → HIF-1α → p53 ↓ →
transient receptor potential channels
1 and 6 ↓

Proliferation ↑ → pulmonary
hypertension ↑

Wang et al. (2018)

TABLE 3 Summary of regulation of p53 in macrophage during atherosclerosis.

Physiological
effect

Model Regulation
of p53

Role of p53 References

Atherosclerosis Macrophages isolated from p53 knockout and
ApoE knockout C57Bl6/J mice

Not reported p53 ↑ → apoptosis ↑ Mercer et al. (2005)

Atherosclerosis APOE*3-Leiden transgenic C57BL/kh mice with
p53 knockout

Not reported p53 ↓ → apoptosis ↓ → atherosclerotic lesion
area ↑

van Vlijmen et al.
(2001)

Atherosclerosis LDL receptor- C57BL/6J deficient mice Not reported p53 ↓ in macrophage proliferation ↑ →
Atherosclerotic lesion area ↑

Merched et al.
(2003)
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proliferation, cell apoptosis, cell migration, and synthesis or

degradation of extracellular matrix that can be triggered by

various growth factors, vasoactive substances and stimuli such

as chronic hypoxia and DNA damage (Tuder, 2017).

Pulmonary arterial smooth muscle cells and endothelial

cells are the major players involved in vascular remodeling.

Vascular remodeling is driven by four cellular processes: cell

proliferation, cell apoptosis, cell migration, and synthesis or

degradation of extracellular matrix that can be triggered by

various growth factors, vasoactive substances and stimuli such

as chronic hypoxia and DNA damage (Tuder, 2017).

In the pathogenesis of pulmonary hypertension,

conditions such as chronic hypoxia, activation of voltage-

gated calcium channels, and extracellular calcium-sensing

receptors contributed to vascular remodeling by promoting

pulmonary arterial smooth muscle cell proliferation and

retarding apoptosis of endothelial cells (Smith et al., 2016;

Xiao et al., 2017; Shimoda, 2020). p53, a master regulator of

cell cycle arrest, apoptosis, cell proliferation and DNA repair

etc., was found to crosstalk with hypoxia-inducible

transcription factors. Therefore, it is of interest to

investigate whether p53 plays a role in cellular processes

that drive vascular remodeling, particularly for pulmonary

arterial smooth muscle cells and endothelial cells.

With the murine model of chronic hypoxia-induced

pulmonary hypertension, it was found that pulmonary

hypertension was promoted in p53 global knockout mice,

with increased vascular remodeling, upregulated hypoxia-

inducible factor 1 alpha (HIF-1α) expression and

downregulated p21 expression in the pulmonary arterial

smooth muscle cell (PASMC) (Mizuno et al., 2011). Mouraret

et al. (2013) demonstrated the administration of Nutlin-3a to

chronically hypoxic mice markedly increased p53 expression in

lungs and partially reversed pulmonary hypertension and

attenuated vascular remodeling. The partial reversal of

pulmonary hypertension was not apparent in chronically

hypoxic p53 global knockout mice and p21 global knockout

mice, suggesting that p53 an p21 are required in Nutlin-3a-

induced partial reversal of pulmonary hypertension (Mouraret

et al., 2013). PASMC-specific gain or loss of p53 function does

not affect hypoxia-induced pulmonary hypertension in mice,

suggesting that the modulation of p53 signaling in other cells is

required to bring about phenotypic change in the murine

hypoxia-induced pulmonary hypertension (Wakasugi et al.,

2019). A recent study by Teng et al. (2022) found that

PASMC-targeted co-delivery of baicalein and p53 reversed

pulmonary artery remodeling in monocrotaline-treated rats

and promoted PASMC apoptosis via Bax/BCl2/Caspase

3 signaling pathway. However, PASMC-targeted delivery of

p53 alone has no significant impact on vascular remodeling.

Recent studies provided experimental evidence delineating

the complex functional role and regulation of p53 in pulmonary

vessels exposed to hypoxia. Wang et al. (2018) observed that

p53 expression is decreased in PASMC under hypoxia, while the

opposite occurs for pulmonary arterial endothelial cells (PAEC).

The proposed mechanism for this divergent regulation of p53 is

that hypoxia increases the expression of HIF-1α in PASMC,

while it increases the expression of hypoxia-inducible factor

2 alpha (HIF-2α) instead for PAEC. These two hypoxia-

inducible factors affect p53 expression in opposite manners.

While an increased expression of HIF-1α in PASMC

downregulates p53 expression, an increased HIF-2α in PAEC

instead upregulates p53 expression (Wang et al., 2018).

Functionally, hypoxia-induced downregulation of p53 in

PASMC enhanced PASMC proliferation by inactivating

transient receptor potential channels 1 and 6; while the

upregulation of p53 in PAEC under hypoxia promoted PAEC

apoptosis. Interestingly, a more recent study found that

upregulation of p53 together with Peroxisome Proliferator-

Activated Receptor-gamma (PPAR-γ) in pulmonary arterial

and microvascular endothelial cells can promote angiogenesis

and regeneration of pulmonary microvessels (Hennigs et al.,

2021).

Conclusion

Abundant evidence supports the involvement of p53 in

regulating vascular function and pathogenesis of

cardiovascular diseases, suggesting that p53 is of great

potential as a drug target for cardiovascular diseases.

However, in vivo studies with global or cell type-specific

targeting of p53 produced differential effects on the

pathogenesis of atherosclerosis and pulmonary

hypertension in experimental models. Further in vitro

studies also demonstrated diverse functional roles and

regulatory mechanism of p53 in different vascular cells

and macrophages. Therefore, further studies on cell-type

specific function and regulation of p53 in various disease

models are warranted, so that optimal p53-targetting therapy

can be designed.
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