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Dynamical nonlinear memory capacitance in
biomimetic membranes
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Two-terminal memory elements, or memelements, capable of co-locating signal processing

and memory via history-dependent reconfigurability at the nanoscale are vital for next-

generation computing materials striving to match the brain’s efficiency and flexible cognitive

capabilities. While memory resistors, or memristors, have been widely reported, other types

of memelements remain underexplored or undiscovered. Here we report the first example of

a volatile, voltage-controlled memcapacitor in which capacitive memory arises from rever-

sible and hysteretic geometrical changes in a lipid bilayer that mimics the composition and

structure of biomembranes. We demonstrate that the nonlinear dynamics and memory are

governed by two implicitly-coupled, voltage-dependent state variables—membrane radius

and thickness. Further, our system is capable of tuneable signal processing and learning via

synapse-like, short-term capacitive plasticity. These findings will accelerate the development

of low-energy, biomolecular neuromorphic memelements, which, in turn, could also serve as

models to study capacitive memory and signal processing in neuronal membranes.
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Neuromorphic computing systems striving to match the
density, interconnectivity, and efficiency of the brain
require highly parallelized networks of dynamic elements

and materials that co-locate signal processing and memory—just
like biological synapses1–4. Although three-terminal transistors
are being used5–8 for this purpose, they require complex circuits
to emulate synapses, are power hungry9, and their scaling is
limited by the imminent end of Moore’s Law3,10. Two-terminal
memory elements, i.e., memelements1,11–14, that are able to store
and process information through history-dependent material
reconfigurations at the nanoscale, offer an alternative path to
greater functional density and reduced energy consumption. By
definition, memelements are devices with resistance, capacitance,
or inductance that depend on their past electrical activity14.
While many types of memory resistors, i.e., memristors, have
been introduced15–18, to date, only a sparse collection of physi-
cally realized memory capacitors19–30 and one pseudo-
memcapacitor31 have been reported, despite their promise to
further lower static power dissipation. Of these, most did not
provide evidence of pinched hysteresis in the charge-voltage plane
as proof of memory capacitance, as first defined by Chua14,32, or
develop realistic, physics-based models to describe and predict
the state variables driving capacitive reconfigurations. Devices for
which ideal, analogue memcapacitance that originates from
geometrical changes in materials at the molecular scale remain
unrealized to date.

We recently demonstrated that a synthetic biomembrane (i.e.,
lipid bilayer) doped with voltage-activated ion channels exhibits
volatile memory resistance governed by two voltage-dependent
state variables: the areal density of ion channels and the increase
in membrane area due to electrowetting16. We have also shown
that the spike-rate-dependent plasticity (SRDP) exhibited by
these two-terminal memristors enable them to function as resis-
tive synapses for online learning in spike recurrent neural net-
works built from solid-state neurons33,34. Based on these findings
we hypothesized that an insulating lipid bilayer, without con-
ductive ion channels, may exhibit capacitive memory governed
solely by voltage-dependent changes to the dimensions of the
dielectric dominated by the hydrophobic core of the bilayer.

Here we report that adhering, lipid-encased, aqueous droplets
in oil yields an interfacial biomimetic membrane (3–5 nm thick)
that exhibits volatile, analogue memcapacitance via voltage-
controlled geometric reconfigurability. Pinched hysteresis in both
the charge-voltage and capacitance-voltage planes result from
dynamic changes in interfacial area and hydrophobic thickness,
each of which are nonlinearly dependent on voltage. Through
experimentation and modelling, we demonstrate this assembly is
a volatile, second-order, generic memcapacitor32 capable of
synapse-like temporal filtering and learning through short-term
plasticity. Our results forecast new classes of biomimetic, low-
power memelements based on soft, organic materials and bio-
molecules, which, in turn, will aid in exploring capacitive memory
and susceptibility in neuronal membranes.

Results
A two-terminal biomolecular memcapacitor. Inspired by
plasma membranes (Supplementary Note 1)35, we have devel-
oped a two-terminal, biomimetic assembly with dynamical,
nonlinear memory capacitance via voltage-controlled geometric
reconfigurability. The system consists of an elliptical, planar lipid
bilayer that forms at an interface between two lipid-coated aqu-
eous droplets (~200 nL each) in oil (Fig. 1a and Supplementary
Figs. 1–3). With this structure, the hydrophobic lipid acyl chains
and any residual oil (each with a dielectric constant of ~2–3) form
a low-leakage (membrane resistance > 100MΩ cm2)16,36, parallel-

plate capacitor (0.1–1 µF cm−2)37 that inhibits diffusive transport
between droplets. As is well established, the series capacitance
formed by the electric double layer (~75 μF cm−2)38 of ions on
each face of the membrane can be ignored since it is much larger
in value than that of the hydrophobic region of the membrane
(~0.4–0.65 μF cm−2; Supplementary Note 2). The assembly pro-
cess, interface geometry, and physical properties are detailed in
Supplementary Note 3 and elsewhere16,37. We use synthetic 1,2-
diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) lipids,
known for their chemical stability and low ion permeability39, to
construct capacitive bilayer interfaces, though other lipid
types40,41 or polymers42 may also be used. Membranes are
assembled in decane (C10H22) and hexadecane (C16H34) oils to
study the effect of alkane length and viscosity (0.86 and 3.04 mN
sm−2, respectively)43 on voltage-dependent bilayer geometry. At
zero membrane potential, the specific capacitance of a DPhPC
bilayer in decane is 0.46 μF cm−2 (equivalent hydrophobic
thickness, W0 ~ 3.8 nm), versus 0.68 μF cm−2 (W0 ~ 2.6 nm) in
hexadecane (Supplementary Fig. 4). A thicker bilayer with decane
results from more residual oil in the membrane (~43% by
volume) due to the shorter chain length of decane44 (versus ~10%
for hexadecane45). By comparison, the specific capacitance of a
neural membrane46 is ~0.90 μF cm−2. Further, the zero-volt
minor axis radii (R0) of elliptical interfaces formed in decane and
hexadecane are ~100 μm and ~250 μm, respectively (see Supple-
mentary Movies 1–3), due to oil-dependent differences in
monolayer tensions37 (see Supplementary Notes 3–5 and Sup-
plementary Fig. 3).

Subjected to a nonzero bias, v(t), ions rapidly accumulate on
both sides of the membrane where they exert parallel and
perpendicular forces that can affect the geometry of the interface.
For a typical bilayer with nominal capacitance of ~500–1000 pF
and aqueous droplets with solution resistance of ~10 kΩ, the time
constant for charging or discharging the membrane is ~10 µs.
Therefore, at frequencies well below ~15 kHz, ion movements
within the electric double layer are quasi-static with respect to AC
voltage. Voltage-driven geometrical changes can include: (1) the
formation of new bilayer area at constant thickness37 due to
charge-induced reductions in bilayer tension—electrowetting
(EW)37—described by the Young-Lippmann equation47 (Supple-
mentary Movies 4 and 5); and (2) a decrease in thickness—
electrocompression (EC)16—that may or may not affect bilayer
area. In oil-free membranes, EC of the hydrophobic acyl chains is
explicitly coupled to increased area at constant volume, due to the
Poisson effect48. However, EC of bilayers containing residual oil
trapped between lipid leaflets (e.g., DPhPC bilayers in decane or
hexadecane) expels the oil rather than deforming the acyl chains.
Thus, changes in thickness do not affect membrane area (i.e., no
stretching)45 (see Supplementary Note 5 and Supplementary
Fig. 4).

Because radius, R(t), and hydrophobic thickness, W(t) are
affected via EW and EC in our system, we expect the relationship
between charge, Q, and applied voltage, v, to be described by

Q ¼ C R;Wð Þv ð1Þ
where R and W are voltage-controlled state variables, and the
memcapacitance, C, for a parallel-plate capacitor with planar
ellipticity, a, and equivalent dielectric constant, ε, is given by

C R;Wð Þ ¼ εε0 aπR tð Þ2� �
WðtÞ : ð2Þ

Because the dielectric constants of decane, hexadecane, and the
hydrophobic core of the bilayer (2, 2.09, and 2.1 respectively) are
very similar, we do not anticipate significant changes in the
effective dielectric constant upon EC-induced thinning that
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depletes the amount of oil between lipid leaflets. Based on the full
derivation in Supplementary Notes 6 and 7, the dynamical state
equation for R is given by

dRðtÞ
dt

¼ 1
ξew

aεε0
2W tð Þ v tð Þ2�kew R tð Þ � R0ð Þ
� �

ð3Þ

where ξew and kew are the effective damping (N s m−2) and
stiffness (Nm−2) coefficients, respectively, in the tangential
direction. Similarly, the state equation for W is given by

dWðtÞ
dt

¼ 1
ξec

� εε0aπR tð Þ2
2W tð Þ2 v tð Þ2þkec W0 �W tð Þð Þ

 !
ð4Þ

where ξec, and kec are the effective damping (N s m−1) and
stiffness (Nm−1) coefficients, respectively, in the normal
direction. These nonlinear, implicitly-coupled state equations
stem from electrical forces exerted on the membrane that are
themselves functions of R and W (see Supplementary Note 7 and
Supplementary Fig. 5).

Dynamical response and pinched hysteresis. We first measure
the dynamical capacitance of DPhPC lipid membranes in
response to a bipolar alternating bias, v(t), at room temperature
(RT ~ 22 °C) (Fig. 2). These data reveal basic information about
the dynamical responses of our biomimetic system: First, bilayer
capacitance exhibits a positive DC offset at steady state, following
an exponential transient period of 2–20 s, induced by the root
mean square of the voltage. Second, dynamical capacitance shows
a doubling of the excitation frequency due to the squaring of

membrane voltage in Eqs. 3, 4, indicating the process is pro-
portional to the power and independent of the sign of the applied
AC voltage. Third, for symmetric membranes at steady state, the
capacitance is minimum at zero applied potential (Fig. 3a, b) and
the amplitude of capacitance oscillations decreases with increas-
ing excitation frequency, consistent with Chua’s explanation that
memristor pinched hysteresis collapses to a simple curve (Fig. 3)
at high frequency because the system cannot follow the driving
excitation14. Finally, these measurements highlight the fact that
the capacitance of a bilayer formed in decane is more responsive
to voltage compared to one in hexadecane, especially at 1.7 Hz
(Fig. 2d), due to the reduced viscosity of decane and the fact that
greater increases in area and decreases in thickness are possible
due to higher zero-volt thickness and zero-voltage monolayer
tension of DPhPC membranes in decane that make them more
susceptible to EC and EW.

To investigate the memcapacitance, we plot both the steady-
state dynamic capacitance versus voltage (C-v) and charge versus
voltage (Q-v) relationships (Fig. 3, see “Methods”). For both oils,
we observe: (1) symmetric, nonlinear, nonhysteretic relationships
at lower frequencies (<0.005 Hz) (Supplementary Fig. 6); (2)
symmetric, nonlinear, pinched hysteresis Q-v loops at inter-
mediate frequencies (Fig. 3c, d); and (3) symmetric, linear,
nonhysteretic relationships implying fixed capacitance, C, at
higher frequencies (>5 Hz and >2 Hz for decane and hexadecane,
respectively) (Figs. 2, 3).

The nonlinear changes and pinched hysteresis in Q-v responses
at low and intermediate frequencies arise from reversible, hysteretic
changes in C (Fig. 3a, b and upper insets of Fig. 3c, d), caused by
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Fig. 1 Biomimetic membrane assembly and electromechanical behaviours. a A capacitive planar lipid bilayer that mimics the structure of a biological
membrane forms spontaneously upon contact between lipid-coated droplets and exclusion of excess oil. The elliptical interface represents an equilibrium in
adhesive forces governed by: (1) a balance of monolayer, γm, and bilayer, γb; tensions prescribed by Young’s equation (Supplementary Note 2, Eq. S.2); and
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described by the zero-volt minor axis radius, R0 (~100–300 µm, determined by analysis of bottom-view, bright-field images (Supplementary Fig. 2), and the
hydrophobic thickness, W0 (~2–4 nm). Wire-type (~125 µm diameter) silver/silver chloride (Ag/AgCl) electrodes inserted into the droplets were used to
apply a transmembrane voltage and measure the induced ion current. Aqueous droplets (pH 7) contained 500mM potassium chloride and 10mM MOPS
(3-(N-morpholino)propanesulfonic acid). We define the membrane voltage, vm, as the summation of the applied voltage, v(t), and the intrinsic membrane
potential, vint (equal to zero for symmetrical membranes). b A schematic describing the geometrical changes caused by a net membrane voltage, v(t).
Changes are manifested by EW-driven creation of new bilayer area between opposing lipid monolayers (at constant thickness) and an independent
decrease in hydrophobic thickness due to EC-driven removal of residual oil in the membrane. Since the volumes of both droplets remain constant, the
external contact angle, θb′, and bilayer radius, R(t), increase as EW reduces bilayer tension, γ′b. Monolayer tension, γm, is independent of transmembrane
voltage (Supplementary Fig. 3)
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EW and EC as described in Fig. 1b and Eqs. 2–4. These bipolar
sweeps also show that a DPhPC bilayer in decane displays larger
relative changes in C-v, and both stronger nonlinearity and more
pronounced hysteresis in Q-v compared to hexadecane. Mem-
branes in decane also exhibit a wider range of intermediate
frequencies where pinched hysteresis in Q-v occurs. The former
makes sense because oil-rich membranes display higher tensions
and thicknesses, conditions where EW and EC can create larger
geometrical changes (Supplementary Fig. 7)44 compared to oil-
poor bilayers with weaker voltage dependencies (Supplementary
Fig. 8). The latter is consistent with the fact that lower oil viscosity
allows changes to occur more quickly (Supplementary Fig. 4). We
also obtain Q-v measurements for a bilayer in hexadecane at
50 °C (Supplementary Fig. 9) to demonstrate that oil viscosity
impacts hysteresis separately from alkane tail length. As expected,
the heated system exhibits more pronounced Q-v hysteresis
compared to room temperature. The lower insets in Fig. 3c, d
display the memory-associated energy (Methods) dissipated in
response to a sinusoidal v(t) at 0.017 Hz. These energy results
demonstrate that a lipid bilayer memcapacitor is a passive device
that dissipates energy to drive geometrical changes at the interface
and dynamically reconfigure C. And because changes in geometry
and C are not stored (i.e., R and W return to R0 and W0,
respectively, when the voltage is removed), this system exhibits
volatile memcapacitance.

We also measure C induced by stepwise changes in voltage
from 0 to 150 mV (0.025 Hz, 50% duty cycle) to estimate time
constants for increases and decreases in C (Supplementary
Figure 7). For both oils, increases in C are slower (τrise � 2.2 s
and 3.7 s for decane and hexadecane, respectively) than decreases
in C (τdecay � 0.46 s and 1.59 s, respectively). Faster decreases in C
are helpful in creating pinched hysteresis during decreasing
voltage portions of a sweep. Not only are τrise and τdecay for
decane smaller than for hexadecane, but the ratio τrise=τdecay is
higher. Furthermore, we found that the percentage increase in C
in hexadecane matches that of the membrane area (~25%),
indicating that only EW causes the change in C, and EC is
negligible. Conversely, a bilayer in decane exhibited an increase in
C of 150%, even though the bilayer area only increased by 80%.
This discrepancy suggests W had to have decreased by ~28% to
create the additional 70% rise in net capacitance. Comparing the
dynamic changes in C to membrane area (Supplementary Fig. 7)
also reveals that EW τ1 � 2:2 sð Þ results in faster increases in C
than EC τ2 � 16 sð Þ. Coincidentally these time constants for
geometric reconfiguration are quite similar to the time constants
(~1 s) attributed to hysteretic ion rearrangement on the surfaces
of charged, glass nanopores49,50, despite the differences in
physical origins for hysteretic charging versus ac voltage. Note
that if ion channels were present in the lipid membrane, the Q-v
relationship would resemble that of a leaky capacitor (i.e.,
hysteretic, but not pinched due to additional ohmic current). Still,
the capacitive memory will be present as both EW and EC
phenomena remain.

Unlike many memelements, our system is highly modular and
uniquely bio-inspired. By changing the composition of one leaflet
of the bilayer from DPhPC to DOPhPC (1,2-di-O-phytanoyl-sn-
glycero-phosphocholine) lipids (Fig. 4), we create an asymmetric
bilayer with a constant intrinsic bias, analogous to the resting
potential of a cell (~−70 mV)51, produced by the difference of
lipid dipole potentials52. This means when v= 0, the net
membrane potential, vm= v+ vint, equals vint (~−137 mV),
which results in a thinner membrane (W ~3.5 nm) with larger
interfacial area (R ~170 μm), due to EC and EW, compared to
symmetric leaflets for which vm= vint= 0. The value of v for
which the effects of EW and EC on C are minimized is equal to

+ 137 mV, not zero (Fig. 4a, b and Supplementary Fig. 10).
Plotting the Q-v relationships for the asymmetric devices (Fig. 4c,
d) displays asymmetric pinched-hysteresis loops, where the
largest hysteresis lobes occur in the third quadrant where the
magnitudes of v and vint add.

Signal processing via short-term plasticity. Storing and pro-
cessing information in the brain depends on continuously
changing the strength of synaptic communication between neu-
rons, a process known as synaptic plasticity. Ubiquitous in the
brain, short-term synaptic plasticity (STP) is thought to play a
significant role in information transfer and neural processing,
including spatiotemporal filtering that enables selective trans-
mission of specific patterns of neural activity53. Presynaptic STP
can last from milliseconds to minutes and is often divided into
three categories: depression, facilitation, and augmentation.
Facilitating and augmenting synapses act as high-pass filters by
increasing their conductances during subsequent bursts of
incoming signals, which strengthen communication between
connected neurons53. On the other hand, depressing synapses
function as low-pass filters by reducing their conductances during
bursts of activity, resulting in lower transmission rates and con-
nection strengths between neurons.

To investigate short-term plasticity in purely capacitive, lipid-
only interfaces, we stimulate them with trains of voltage pulses
and record their dynamic current responses (Fig. 5). We discover
that for a fixed ON-time (2 ms), and a range of OFF-times
(1–50 ms), bilayers accumulate changes in capacitance, causing
sequential increases in peak capacitive current
ðIpeak ¼ C � dv=dtÞ, which emulate high-pass filtering via short-
term facilitation in synapses53. Figure 5b–e shows responses of
DPhPC bilayers to 150mV, 2 ms ON pulses separated by 0 mV, 1
ms OFF periods. For all cases, peak capacitive currents increased
monotonically across successive pulses until reaching steady state
(Supplementary Fig. 11 provides total current responses).
Consistent with Supplementary Figure 7, bilayers in decane
exhibited an initial faster adaptation to the stimulus (τ1 ~ 2 s)
caused by EW, followed by a slower adaptation (τ2 ~ 16 s) linked
to EC. In contrast, bilayers in hexadecane exhibited only one time
constant (τ ~ 3.7 s), attributed to EW.

As discussed earlier, asymmetric devices can exhibit minimum
capacitance at a nonzero applied potential. The consequence of
this shift is that an asymmetric DPhPC:DOPhPC membrane
exhibits a depression-like cumulative decrease in peak current
(Fig. 5e) in response to a pulse stimulation of v=+ 150 mV
(vm= v+ vint=+ 13mV)—emulating another vital type of
STP54. Moreover, short-term learning responses also become
asymmetric with respect to polarity: applying −150mV causes
faciliatory behaviour, as the magnitudes of both v and vint sum (vm
~−287mV) to increase C (Fig. 5e). Facilitating responses are also
possible for positive v by sufficiently raising the pulse amplitude;
however, dielectric breakdown is common for |vm| > 300mV.

Figure 5f compares facilitation-like responses versus stimulus
interval from symmetric membranes in decane and hexadecane.
These signal processing features suggest this type of device could
be tuned for use as a high-pass or low-pass filter, or as a
memcapacitive synapse with online short-term learning
capabilities31,54. We are currently combining multiple symmetric
and asymmetric leaflet membranes to achieve facilitation followed
by depression, and vice versa.

Simulations of memory capacitance. After confirming volatile
memcapacitance, we applied a simultaneous, nonlinear least
squares fitting routine (Supplementary Methods) to independent,
representative measurements of both C and R induced by sine
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wave voltages to estimate values (Table 1) for the equivalent
damping and stiffness terms in Eqs. 3, 4 and, for decane, assess
the relative contributions of EW and EC on Q-v shape. Estimates
of kew (units of tension/length) for bilayers in hexadecane are
significantly higher than those in decane, confirming that bilayers
in decane are more compliant to EW forces. The lower mean
values of EW time constants, τew ¼ ξew=kew, for decane also
confirm that EW is faster for the smaller, less viscous alkane. The
values of the EC-fitted parameters in Table 1 highlight the fact
that EC results in slower dynamics and greater resistance to
changes in membrane geometry (thickness versus area) compared
to EW. Moreover, we found that the damping and stiffness
parameters for EW and EC varied with frequency. From this, we
surmise this variation in measured materials properties stems
from the interfacial membrane not being a closed system with
constant volume, since the amount of oil trapped within the

hydrophobic core of the membrane at steady state changes with
the driving frequency. This variation is expected to yield differ-
ences in the measured material properties. Similar phenomena
have been observed for squeeze-film damping systems, where
both damping and stiffness parameters are functions of the spa-
cing between the plates55.

With these values, we simulated responses of the membrane to
sinusoidal applied voltages (Fig. 6–8 and Supplementary Figs. 12–
19) and computed the percent contributions of EW (changes in
R) and EC (changes in W) to dynamic capacitance at steady state
as functions of excitation frequency for decane (Fig. 5a). These
comparisons reveal that: (1) EW contributes more than 80% of
the change in C at all frequencies; and (2) the contributions of EC,
which has a larger time constant, diminish with increasing
frequency. As a result, we conclude that EW is the dominant
mechanism for changing capacitance (and thus hysteresis) for
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DPhPC bilayers, and that bilayers in decane exhibit greater
changes in capacitance, more pronounced nonlinearity (Supple-
mentary Fig. 13), and greater Q-v hysteresis than hexadecane due
to greater compliance of bilayers in decane to EW and the
reduction of bilayer thickness due to EC, which is negligible for
hexadecane.

Figures 6 and 8b show simulated R(t), W(t), and Q-v
relationships (at steady state), respectively, induced by sinusoidal
voltages for DPhPC bilayers in hexadecane and decane, proving
the model captures the frequency dependence of this system.
Further, the model can predict the dynamic responses to
rectangular voltage pulses, such as those measured experimentally
for Fig. 5. Figure 8c shows that the minor axis radius of a bilayer in
decane grows quickly by ~35%, accompanied by a slower, smaller
(~20%) decrease in thickness. Based on these geometrical
reconfigurations of the capacitance, the model also predicts
facilitation and depression, respectively, of the peak currents for
both symmetric and asymmetric membranes, with the latter
simulated by replacing v(t) with v(t)−137mV in Eqs. 3, 4 (Fig. 8d).

Discussion
Using a soft, modular, and biomimetic membrane that mimics
the composition and structure of cellular membranes, we
demonstrate volatile memcapacitance via geometrical reconfi-
gurability. Memcapacitive and nonlinear dynamical behaviours,
including capacitive short-term facilitation and depression, are
found to be governed by two implicitly-coupled, voltage-
dependent state variables: membrane radius, R, and hydro-
phobic thickness, W. When the bilayer contained less residual oil
(e.g., hexadecane), electrowetting is the sole mechanism for
variable capacitance (i.e., resulting in a first-order memcapacitor).
But when more oil was retained between leaflets (decane) and
when this oil had a lower viscosity, both EW and EC contribute to
the total change in capacitance, causing Q-v to exhibit stronger
nonlinearity and reconfigure more quickly to changes in voltage
(the decane system is considered a second-order memcapacitor).

In addition to their possible implementation as capacitive
synaptic mimics56 in spike recurrent neural networks for online
learning and computation, we envision this system to have impact
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Table 1 Damping and stiffness parameters for decane (C10) and hexadecane (C16)

Oil Freq. (Hz) ζew (N s m−2) kew (N m−2) ζec (N s m−1) kec (N m−1) τew ðsÞ τec ðsÞ MAPEa (%) R2a

C10 0.017 0.40 ± .01 1.95 ± .02 6.45 ± .05 × 106 2.89 ± .004 × 105 0.21 22.34 3.13 0.95
0.17 0.70 ± .01 1.99 ± .01 3.54 ± .13 × 106 3.18 ± .03 × 105 0.35 11.15 2.60 0.96
0.417 0.66 ± .04 1.40 ± .01 1.99 ± .08 × 106 3.79 ± .05 × 105 0.47 5.27 1.70 0.97

C16 0.017 8.14 ± .03 4.42 ± .02 − − 1.84 − 1.20 0.91
0.17 4.98 ± .02 6.32 ± .01 − − 0.79 − 0.33 0.98
0.417 6.33 ± .12 11.07 ± .06 − − 0.57 − 0.26 0.98

aSee Supplementary Methods for full description of MAPE and R2
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in two major areas: (1) modular, low-power materials that could
interface with cells and tissues for biosensing and processing of
biological signals due to their soft and biocompatible nature57;
and (2) as a model system to study capacitive excitability in
neuronal membranes. The current system differs from biological
membranes by having residual oil in the hydrophobic core of the
membrane. However, choosing a higher molecular weight oil and
naturally-derived lipids could yield more biologically-relevant
interfaces with specific capacitances closer to those of biological
neurons. We have previously found that membranes from natural

sources such as porcine brain total lipid extract, which contains
hundreds of distinct lipid types and large amounts of cholesterol,
undergo entropic, higher-order phase transitions detectable with
capacitance40. Higher-order transitions such as these are believed
to be important in cell signalling and dynamic lipid domain (i.e.,
raft) formation, based on high-amplitude yet nanoscopic and
fleeting stochastic fluctuations located near critical points, instead
of abrupt changes in molecular composition or density inherent
to first-order enthalpic transitions, which tend to be more dis-
ruptive to membranes. In the presence of electric fields, charges
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exert forces on the membrane that can change its molecular
ordering via electrostriction (EW and EC). This results in a
capacitive susceptibility that replaces the common assumption of
constant capacitance, which, up to now, has dominated electro-
physiological descriptions and characterizations of biomem-
branes. Such experiments could bring completely new insights
regarding the capacitive susceptibility of neuronal membranes,
and therefore, may impact the Hodgkin-Huxley model for
excitability, which assumes capacitance to be a constant.

Methods
Preparation of lipid solutions and membrane assembly. The aqueous droplets
consist of deionized water (18.2 MΩ.cm) containing 2 mgml−1 of either DPhPC or
DOPhPC liposomes, 500 mM potassium chloride (KCl, Sigma), and 10 mM 3-(N-
morpholino)propanesulfonic acid (MOPS, Sigma), with a pH of 7.0. Both DPhPC
and DOPhPC liposomes vesicles are prepared and stored as described elsewhere37.
To help the droplets anchor to the silver/silver chloride (Ag/AgCl) wires (Good-
fellow), we coat their ball-ended tips with a 1% agarose gel solution. The oil
surrounding the droplets consists of either decane (≥95%, Sigma) or hexadecane
(≥99%, Sigma). Lipid membranes are formed between two aqueous droplets
anchored to wire-type electrodes in a transparent reservoir filled with oil, as
described elsewhere16,37,41.

Electrical measurements. To record the lipid membrane formation, which is
reflected as an increase in membrane capacitance, we supply a 10 Hz, 10 mV
triangular wave to the electrodes using a function generator. Due to the capacitive
nature of the membrane, the resulting current response is square-like (Supple-
mentary Fig. 2). As the area of the thinned lipid membrane grows, the peak-to-peak
current amplitude increases until reaching a steady state (Supplementary Fig. 2).
To obtain the C-v and Q-v plots, we use a custom LabView code to apply a low-
frequency, high-amplitude sinusoidal voltage waveform (amplitude and fre-
quencies are mentioned in the main text) overlaid with a 10 mV, 100 Hz triangular
voltage waveform output from an Agilent 33210A waveform generator. While the
low-frequency, sinusoidal waveform drives geometrical changes at the lipid inter-
face (i.e., EW and EC), the capacitance measurements are based on the lipid
membrane’s current response to the higher frequency triangular waveform. The
capacitance of the lipid interface is then extracted from sections of the square-wave
current response using a custom MATLAB script (available upon request). In

parallel, to monitor the changes in the membrane’s minor axis radius, R, we acquire
images of the droplets as viewed from below through a 4x objective lens on an
Olympus IX51 inverted microscope using a QI Click CCD. We then post-process
the images using custom scripts in MATLAB to extract values of R. For the signal
pulse experiments, we use a custom LabView code to generate pulses with specific
amplitudes and ON and OFF times. All current recordings are made using an
Axopatch 200B patch clamp amplifier and Digidata 1440 data acquisition system
(Molecular Devices). For all measurements, droplets and measurement probes are
placed under a lab-made Faraday cage to minimize noise from the environment.
To obtain the energy dissipation displayed in Fig. 3, we integrate with respect to
time the product of applied voltage bias, v(t), and capacitive current, Ic, given by

Ic ¼ C
dvðtÞ
dt

þ v tð Þ dC
dt

; ð5Þ

where C the memcapacitance of the lipid membrane and v(t) is the voltage bias.

Data availability
All relevant data that support the findings of this study are available from the
corresponding authors on reasonable request.
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