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Purpose: Osteonecrosis of the femoral head is a common disease of the hip that leads to 
severe pain or joint disability. We aimed to identify potential differentially expressed 
miRNAs and mRNAs in osteonecrosis of the femoral head.
Methods: The data of miRNA and mRNA were firstly downloaded from the database. 
Secondly, the regulatory network of miRNAs–mRNAs was constructed, followed by func-
tion annotation of mRNAs. Thirdly, an in vitro experiment was applied to validate the 
expression of miRNAs and targeted mRNAs. Finally, GSE123568 dataset was used for 
electronic validation and diagnostic analysis of targeted mRNAs.
Results: Several regulatory interaction pairs between miRNA and mRNAs were identified, 
such as hsa-miR-378c-WNT3A/DACT1/CSF1, hsa-let-7a-5p-RCAN2/IL9R, hsa-miR-28-5p- 
RELA, hsa-miR-3200-5p-RELN, and hsa-miR-532-5p-CLDN18/CLDN10. Interestingly, 
CLDN10, CLDN18, CSF1, DACT1, IL9R, RCAN2, RELN, and WNT3A had the diagnostic 
value for osteonecrosis of the femoral head. Wnt signaling pathway (involved WNT3A), 
chemokine signaling pathway (involved RELA), focal adhesion and ECM-receptor interac-
tion (involved RELN), cell adhesion molecules (CAMs) (involved CLDN18 and CLDN10), 
cytokine–cytokine receptor interaction, and hematopoietic cell lineage (involved CSF1 and 
IL9R) were identified.
Conclusion: The identified differentially expressed miRNAs and mRNAs may be involved 
in the pathology of osteonecrosis of the femoral head.
Keywords: osteonecrosis of the femoral head, miRNAs, mRNAs, signaling pathway

Introduction
Osteonecrosis of the femoral head is a disabling and progressive chronic disease, 
which leads to femoral head collapse and further total hip arthroplasty.1,2 It is 
estimated that the age range of about 75% of patients is from 30–60 years old.3 Pain 
is one of the common clinical symptoms of osteonecrosis of the femoral head.4 

However, most patients with a lesion less than 30% of the femoral head are initially 
asymptomatic.5 Malizos6,7 and Zalavras and Lieberman found that osteocytes death 
and bone marrow cells was the main characteristic of the early stages of osteone-
crosis of the femoral head. In the next moment, the repair reaction of necrotic bone 
is initiated. During this process, the imbalance between bone resorption and bone 
reformation leads to structural damage of the femoral head, among which there is 
a significant degeneration and cracking of the hip articular cartilage, which accel-
erates the development of osteonecrosis of the femoral head.8,9
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The pathogenic mechanism of osteonecrosis of the 
femoral head is complex. Kerachian et al10 found that 
local microvascular thrombosis resulted in decreasing 
blood flow in the femoral head. It was pointed out that 
fibroblast growth factor 2 (FGF2), insulin-like growth 
factor 1 (IGF1), SRY-box transcription factor 9 (SoX9), 
and collagen type ii α1 affected the pathogenesis of osteo-
necrosis of the femoral head.11 In addition, several risks, 
such as the trauma, steroids, smoking, alcoholism, irradia-
tion/chemotherapy, clotting disturbances, hyperlipidemia, 
hyperviscosity, autoimmune diseases, Legg-Calve-Perthes 
diseases, and genetic factors are possible causes of osteo-
necrosis of the femoral head.12–22

The incidence of osteonecrosis of the femoral head is on 
the rise, in spite of various research efforts and trials. 
Therefore, understanding the pathophysiology of the disease 
and its progression is urgently needed. Interestingly, miRNAs 
play roles in targeting mRNAs, and regulate diverse biologi-
cal processes in bones, such as osteoblasts, osteoclasts differ-
entiation, and bone programming.23–26 In this study, we 
performed the differentially expression analysis of miRNA 
and mRNA in osteonecrosis of the femoral head, which may 
provide a novel field in understanding the pathological 
mechanism of osteonecrosis of the femoral head.

Materials and Methods
Datasets
The miRNA and mRNA expression profile was down-
loaded from the Gene Expression Omnibus database 
(GEO) dataset. The keywords of ((“femur head” [MeSH 
Terms] OR femoral head [All Fields]) AND (“necrosis” 
[MeSH Terms] OR necrosis [All Fields])) AND “gse” 
[Filter] was used to retrieve related datasets. According 
to above screening criteria, one miRNA dataset 
(GSE89587, involving ten cases and seven normal con-
trols) and one mRNA dataset (GSE74089, involving four 
cases and four normal controls) were finally selected.

Identification of Differentially Expressed 
miRNAs and mRNAs
Firstly, the raw data of miRNAs and mRNAs was prepro-
cessed as follows: the probes corresponding to multiple 
miRNAs/mRNAs were removed; and the miRNAs/ 
mRNAs corresponding to multiple probes were left with 
only the one with the highest average expression. In this 
study, the identification method of differentially expressed 
miRNAs and mRNAs was referred to previous 

studies.27,28 The screening criteria of differentially 
expressed miRNAs and mRNAs was, respectively, 
FDR<0.05, |log2FC|>3, and FDR<0.05, |log2FC|>1.

Correlation Analysis Between miRNAs 
and mRNAs
In this study, miRWalk (http://mirwalk.umm.uni- 
heidelberg.de/) was used to predict targeted mRNAs of 
miRNAs. The establishment of a miRNA-target regulatory 
network was visualized using Cytoscape software.

Functional Enrichment of mRNAs
In order to understand the biological function of the tar-
geted differentially expressed mRNAs of differentially 
expressed miRNAs, we performed functional analysis via 
GeneCodis3 software. FDR<0.05 was set as the criterion 
for selecting significantly enriched functional terms.

In vitro Validation of miRNAs and 
Targeted mRNAs
In total, six patients with osteonecrosis of the femoral head 
and seven normal controls were enrolled. All patients had 
not taken corticosteroids or medications for nearly 
a month. In addition, patients older than 80 years or with-
out incomplete clinical information were excluded. 
Normal controls were matched by gender and age of the 
case group. Healthy individuals with a history of osteone-
crosis of the femoral head and suffering from bone meta-
bolic disorders (such as osteoporosis) were excluded. 
Ethical approval was obtained from the ethics committee 
of Honghui Hospital Xian Jiao Tong University Health 
Science Center (No.201904006). Those included provided 
informed written consent. This study was carried out in 
accordance with the Declaration of Helsinki.

Total RNA of the blood samples was extracted and 
synthesized cDNA by FastQuant Reverse Transcriptase 
(TIANGEN). Then real-time PCR was performed in an 
ABI 7300 Real-time PCR system with SYBR® Green PCR 
Master Mix (Applied Biosystems). Has-U6 was used for 
the internal reference of miRNA. ACTB and GAPDH 
were used for the internal reference of mRNA.

Electronic Validation and Diagnostic 
Analysis of Targeted mRNAs in 
GSE123568 Dataset
The GSE123568 dataset (peripheral blood sample) involved 
30 patients with osteonecrosis of the femoral head and 10 

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                     

Clinical Interventions in Aging 2021:16 188

Hao et al                                                                                                                                                              Dovepress

http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
http://www.dovepress.com
http://www.dovepress.com


normal controls, and was used for electronic validation and 
ROC analysis of targeted mRNAs. The expression result of 
these mRNAs was shown by box plots.

Results
Expression Pattern of miRNA and mRNA
There were 24 differentially expressed miRNAs 
(supplementary Table 1), and 901 differentially 
expressed mRNAs (supplementary Table 2) were identi-
fied. All differentially expressed miRNAs and the top 20 
differentially expressed mRNAs are shown in Tables 1 
and 2, respectively. The volcano plot and heat map of 
all miRNAs and top 100 mRNAs are shown in Figures 1 
and 2, respectively.

Network of miRNAs–mRNAs
Depending on the targeted analysis, 2,137 miRNA–mRNA 
pairs (involving 24 miRNA and 457 mRNA) were identi-
fied (supplementary Table 3). The established regulatory 
network of miRNA–targeted mRNA is illustrated in 
Figure 3. In the network, there were 481 nodes and 

1,205 edges. The top 10 differentially expressed miRNAs 
that targeted the most differentially expressed mRNAs 
were hsa-miR-378c, hsa-miR-3191-5p, hsa-let-7a-5p, hsa- 
miR-28-5p, hsa-miR-3200-5p, hsa-miR-532-5p, hsa-miR 
-106b-3p, hsa-miR-339-3p, hsa-miR-5195-5p, and hsa- 
miR-3200-3p. In addition, the sub-network of miRNA- 
target mRNAs between hsa-miR-378c, hsa-let-7a-5p, hsa- 
miR-28-5p, hsa-miR-3200-5p, hsa-miR-532-5p, and their 
targeted mRNAs are shown in Figure 4. In addition, we 
used the TargetScan (http://www.targetscan.org/vert_72/) 
software to further validate the targeted relationship 
between miRNA and mRNA, such as hsa-miR-378c- 
DACT1 and hsa-miR-28-5p-RELA (supplementary 
Figure 1).

Functional Analysis of Targeted mRNAs
GO and KEGG analysis of targeted mRNAs is shown in 
supplementary Table 4. The top five significant enrichment 
GO terms and all KEGG terms are presented in Figures 5 
and 6, respectively. Total KEGG terms involving targeted 
differentially expressed mRNAs are shown in Table 3. In 
the KEGG terms, we found seven valuable signaling path-
ways including the Wnt signaling pathway (involved 
WNT3A), chemokine signaling pathway (involved 
RELA), focal adhesion and ECM-receptor interaction 

Table 1 All Differentially Expressed miRNAs in Osteonecrosis 
of the Femoral Head

Symbol LogFC P-value FDR Up/Down

hsa-miR-3191-5p −3.15065 3.62E-07 0.000358 Down

hsa-miR-4511 −4.24635 5.12E-06 0.000514 Down

hsa-miR-5195-5p −3.1202 5.88E-06 0.000514 Down
hsa-miR-128-3p 3.473807 7.27E-06 0.000514 Up

hsa-miR-374c-5p 3.70425 1.30E-05 0.000722 Up
hsa-miR-532-5p 3.811221 2.07E-05 0.000764 Up

hsa-miR-140-5p 3.711132 2.09E-05 0.000764 Up

hsa-miR-3200-3p 3.396543 2.39E-05 0.000764 Up
hsa-miR-181a-5p 3.934233 2.62E-05 0.000786 Up

hsa-miR-28-5p 3.249402 4.52E-05 0.001064 Up

hsa-miR-3200-5p 3.499118 6.03E-05 0.001152 Up
hsa-miR-106b-3p 3.17598 7.23E-05 0.001167 Up

hsa-miR-130a-3p 3.227388 7.73E-05 0.001184 Up

hsa-miR-126-5p 3.329919 7.94E-05 0.00119 Up
hsa-miR-4762-5p −3.29506 0.000158 0.001839 Down

hsa-miR-378c 3.525841 0.000171 0.00185 Up

hsa-miR-374a-5p 3.48526 0.000189 0.001889 Up
hsa-miR-29c-5p 3.161635 0.000221 0.002036 Up

hsa-miR-126-3p 3.196734 0.000246 0.002164 Up

hsa-let-7a-5p 3.626154 0.000248 0.002164 Up
hsa-miR-339-3p 3.235942 0.000261 0.002187 Up

hsa-miR-301a-3p 3.358697 0.000278 0.002292 Up

hsa-miR-4711-3p −3.28102 0.001108 0.005396 Down
hsa-miR-141-3p 3.03568 0.016527 0.03819 Up

Abbreviations: FC, fold change; FDR, false discovery rate.

Table 2 Top 20 Differentially Expressed mRNAs in 
Osteonecrosis of the Femoral Head

Symbol LogFC P-value FDR Up/Down

C10orf105 3.03737 9.90E-12 2.15E-07 Up

ARL4C 2.533696 2.73E-11 2.55E-07 Up

EGR2 2.551482 3.52E-11 2.55E-07 Up
LRRC15 2.360616 5.31E-11 2.68E-07 Up

AMTN 3.203584 6.15E-11 2.68E-07 Up

IL11 2.257176 7.78E-11 2.82E-07 Up
FAP 2.516977 2.84E-10 8.71E-07 Up

VEGFC 1.98741 3.44E-10 8.71E-07 Up
FZD10 2.128076 3.60E-10 8.71E-07 Up

MMP13 2.670397 5.32E-10 1.16E-06 Up

MSMP −3.01757 1.28E-09 1.74E-06 Down
VIT −1.35337 3.11E-09 3.06E-06 Down

HLA-DRB4 −1.49327 3.17E-09 3.06E-06 Down

RNASE1 −1.55781 3.23E-09 3.06E-06 Down
RCAN2 −1.70034 4.41E-09 3.75E-06 Down

DACT1 −1.65655 5.18E-09 3.75E-06 Down

APOD −1.67708 5.18E-09 3.75E-06 Down
TYROBP −1.27919 8.36E-09 4.92E-06 Down

CTSH −1.55528 1.03E-08 5.16E-06 Down

HLA-DRA −1.92425 1.35E-08 5.44E-06 Down

Abbreviations: FC, fold change; FDR, false discovery rate.
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Figure 1 The volcano plot and heat map of all differentially expressed miRNAs in osteonecrosis of the femoral head. (A) The volcano plot of all differentially expressed 
miRNAs. The X and Y axis represents Log2 Fold Change and –log10 FDR, respectively. Blue and red represents up-regulated and down-regulated miRNAs, respectively. (B) 
The heat map of all differentially expressed miRNAs. 
Abbreviation: ONFH, osteonecrosis of the femoral head.
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Figure 2 The volcano plot and heat map of the top 100 differentially expressed mRNAs in osteonecrosis of the femoral head. (A) The volcano plot of the top 100 
differentially expressed mRNAs. The X- and Y-axes represent Log2 Fold Change and –log10 FDR, respectively. Blue and red represent up-regulated and down-regulated 
mRNAs, respectively. (B) The heat map of the top 100 differentially expressed mRNAs. 
Abbreviation: ONFH, osteonecrosis of the femoral head.
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(involved RELN), cell adhesion molecules (CAMs) 
(involved CLDN18 and CLDN10), cytokine–cytokine 
receptor interaction, and hematopoietic cell lineage (invol-
ving CSF1 and IL9R).

In vitro Validation
Six patients with osteonecrosis of the femoral head and 
seven normal controls were incorporated in our study. 
Clinical information of these individuals is shown in 
Table 4. As mentioned above, hsa-miR-28-5p was one of 
the top 10 differentially expressed miRNAs that targeted 
the most differentially expressed mRNAs. WNT3A, 
RELA, and RELN were involved in KEGG pathways. 
RCAN2 was in the top 20 down-regulated mRNAs. We 
selected hsa-miR-28-5p, WNT3A, RCAN2, RELA, and 
RELN for validation (Figure 7). The relative expression 
of hsa-miR-28-5p was significantly up-regulated, the 

relative expression of WNT3A, RCAN2, RELA, and 
RELN was down-regulated in patients with osteonecrosis 
of the femoral head. The validated result was in line with 
the bioinformatics analysis.

Expression Validation and Diagnostic 
Analysis of Targeted mRNAs
The GSE123568 dataset was firstly utilized to validate the 
expression of CLDN10, CLDN18, CSF1, DACT1, IL9R, 
RCAN2, RELN, and WNT3A (Figure 8). The expression 
of these mRNAs was all significantly down-regulated, 
which is in line with the bioinformatics analysis. In addi-
tion, the ROC curve analysis was performed to assess the 
diagnosis ability of these mRNAs in the GSE123568 data-
set (Figure 9). The AUC of these mRNAs was more than 
0.7, which suggested that they had a diagnostic value for 
osteonecrosis of the femoral head.

Figure 3 The network of miRNA-target mRNAs between 24 miRNAs and 457 mRNAs in osteonecrosis of the femoral head. The triangle and circule represent the 
differentially expressed miRNAs and targeted differentially expressed mRNAs, respectively. The red and green color represent up-regulation and down-regulation, 
respectively.
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Discussion
Hsa-miR-378c, a hypoxia-regulated miRNA, is reported to be 
down-regulated in rheumatoid arthritis and 
osteosarcomas.29,30 The level of hsa-miR-378c was increased 
in osteonecrosis of the femoral head in this study. Moreover, 
three down-regulated mRNAs including Wnt family member 
3A (WNT3A), dishevelled binding antagonist of beta catenin 
1 (DACT1), and colony stimulating factor 1 (CSF1) were all 
regulated by hsa-miR-378c. Significantly, WNT3A, DACT1, 

and CSF1 had a diagnostic value for osteonecrosis of the 
femoral head. WNT3A can induce chondrocytes proliferation 
and alter the extracellular matrix synthesis function of the 
chondrocytes.31 In addition, WNT3A and hypoxia could act 
together to promote angiogenesis by regulating cell death.32 It 
is noted that liposome-reconstituted recombinant human 
WNT3A protein has been used to treat osteonecrosis 
defect.33 The expression of DACT1 is found in primary chon-
drocytes and vascular endothelial cells.34,35 Käkönen and 

Figure 4 The sub-network of miRNA-target mRNAs between hsa-miR-378c, hsa-let-7a-5p, hsa-miR-28-5p, hsa-miR-3200-5p, hsa-miR-532-5p, and their targeted mRNAs in 
osteonecrosis of the femoral head. The triangle and circule represent the differentially expressed miRNAs and targeted differentially expressed mRNAs, respectively. The 
red and green color represent up-regulation and down-regulation, respectively.
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Mundy36 found that CSF-1 could interact with osteoblast to 
regulate the RANK–RANKL pathway to stimulate osteoclast 
precursors, ultimately leading to osteolysis. Additionally, 
CSF1, combined with VEGF-A, induces angiogenesis and 
recruitment of pericyte to neovessels.37 Our result suggested 
that WNT3A, DACT1, and CSF1 may play roles in bone 
remodeling and angiogenesis under the regulation of hsa- 
miR-378c in the process of osteonecrosis of the femoral head.

Hsa-let-7a-5p is down-regulated in osteogenic differ-
entiation, while up-regulated during osteoclastogenesis, 
which indicates the role of hsa-let-7a-5p in the bone 
imbalance.38–40 Under mechanical tension, hsa-let-7a-5p 
is remarkably increased in cartilage endplate 
chondrocytes.41 In this study, we found that hsa-let-7a-5p 
was up-regulated in osteonecrosis of the femoral head. 
Furthermore, a regulator of calcineurin 2 (RCAN2) and 
interleukin 9 receptor (IL9R) were down-regulated and 
targeted by hsa-let-7a-5p. It is worth mentioning that 
RCAN2 and IL9R could be considered as diagnostic bio-
markers for osteonecrosis of the femoral head. RCAN2, an 
angiogenesis related gene, is transcribed activation by 
vascular endothelial growth factor (VEGF).42–45 The 
expression of RCAN2 is negatively correlated with carti-
lage proliferation and differentiation.46 It is reported that 
disruption of RCAN2 could lead to reducing bone mass, 

which is related to increased osteoclast function and 
reduced osteoblast function.47 IL9R is associated with 
hematopoietic cell lineage.48 Our result indicated that hsa- 
let-7a-5p and its target (RCAN2 and IL9R) could be 
involved in osteonecrosis of the femoral head.

Deregulation of hsa-miR-28-5p is related to rheumatic 
diseases, such as axial spondyloarthritis and rheumatoid 
arthritis.49,50 Herein, we first found that hsa-miR-28-5p 
was up-regulated in osteonecrosis of the femoral head. In 
addition, the down-regulated RELA proto-oncogene, NF- 
kB subunit (RELA, also called p65) was one of the targets 
of hsa-miR-28-5p. It is reported that RELA is the most 
potent transcriptional factor of hypoxic induction factor 2 
(HIF2) that regulates chondrocyte differentiation and car-
tilage degradation.51 Lacking or deletion of RELA inhibits 
the expression of cartilage catabolic factors such as matrix 
metalloproteinases 9 (MMP9), SRY-box transcription fac-
tor 9 (SOX9), nitric oxide synthase 2 (NOS2), and 
cyclooxygenase 2 (COX2) in chondrocytes, which results 
in reduced bone loss and accelerated cartilage 
degeneration.52–57 In addition, RELA is regarded as an 
angiogenesis modulating agent.58 It is suggested that 
RELA may be involved in cartilage degeneration of osteo-
necrosis of the femoral head under that regulation of hsa- 
miR-28-5p.
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Figure 5 Top five significantly enriched GO terms of targeted differentially expressed mRNAs in osteonecrosis of the femoral head. The z-score clustering in the GO terms 
of targeted differentially expressed mRNA is shown below. The red and blue color represent up-regulated and down-regulated mRNA, respectively. 
Abbreviations: BP, biological process; CC, cellular component; MF, molecular function; FC, fold change.
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Previous studies on hsa-miR-3200-5p in orthopedic 
disease are very rare, and only a recent report showed 
significantly higher expression of hsa-miR-3200-5p in the 
osteosarcoma.59 In our study, we found that the expression 
level of hsa-miR-3200-5p was increased in osteonecrosis 
of the femoral head. Moreover, down-regulated reelin 
(RELN) was targeted by hsa-miR-3200-5p. It is noted 
that RELN had a diagnostic value for osteonecrosis of 
the femoral head. RELN, expressed in osteoblast lineage 
cells, is considered as a stromal cell-specific and hemato-
poietic cell-lineage marker.60 Clinically, RELN is 
a potential molecular target candidate for diagnosis and 
therapy of rheumatoid arthritis.61 Our result indicated that 
hsa-miR-3200-5p and RELN may play a critical role in 
osteonecrosis of the femoral head.

Hsa-miR-532-5p plays roles in the regulation of the 
adaptation to hypoxia in endothelial cells.62 Hsa-miR-532- 
5p is differentially expressed in chondrocytes from distinct 
regions of developing human cartilage.63 In the present 
study, we found that hsa-miR-532-5p was up-regulated in 

osteonecrosis of the femoral head. Furthermore, claudin 18 
(CLDN18) and claudin 10 (CLDN10) were down- 
regulated and regulated by hsa-miR-532-5p. In addition, 
CLDN18 and CLDN10 were associated with disease diag-
nosis. Elevated expression of CLDN18 is found in 
osteoblasts.64,65 Knock-out of CLDN18 leads to reduced 
bone mass from hyperactive osteoclasts.64 The expression 
of CLDN10 is increased in osteosarcoma osteoblast 
cells.66 Our result suggested that CLDN18 and CLDN10 
could be associated with bone loss under the regulation of 
hsa-miR-532-5p in osteonecrosis of the femoral head.

Based on KEGG analysis, we found seven valuable 
signaling pathways including the Wnt signaling pathway 
(involved WNT3A), chemokine signaling pathway 
(involved RELA), focal adhesion and ECM-receptor inter-
action (involved RELN), cell adhesion molecules (CAMs) 
(involved CLDN18 and CLDN10), cytokine–cytokine 
receptor interaction, and hematopoietic cell lineage 
(involved CSF1 and IL9R) in osteonecrosis of the femoral 
head. The Wnt/β-catenin pathway induces VEGF to 

Term
Hematopoietic cell lineage
Melanogenesis
Amoebiasis
Leishmaniasis
TGF−beta signaling pathway
Toxoplasmosis
Tuberculosis
Leukocyte transendothelial migration
Regulation of actin cytoskeleton
Rheumatoid arthritis
Tight junction
Chemokine signaling pathway
Phagosome
Protein digestion and absorption
Wnt signaling pathway
ECM−receptor interaction
Cytokine−cytokine receptor interaction
Cell adhesion molecules (CAMs)
Pathways in cancer
Focal adhesion

Figure 6 KEGG signaling pathways of targeted differentially expressed mRNAs in osteonecrosis of the femoral head. Different colors represent different signaling pathways; 
mRNA outside the circle represents the enriched one of mRNAs in the particular signaling pathway.
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Table 3 Total KEGG Terms Involved Targeted Differentially Expressed mRNAs in Osteonecrosis of the Femoral Head

Terms Count P-value FDR mRNAs

Focal adhesion 19 2.09E-11 3.15E-09 RELN,PGF,MYLK,ROCK2,CCND2,SPP1,PRKCA,COL5A2,CAV1,COL1A1, 
THBS2,VEGFC,COL5A1,ITGB8,COL6A1,VEGFA,MYL9,COL11A1,COL6A3

Pathways in cancer 16 7.87E-06 0.00017 CDK6,PPARD,EGLN3,FGF2,PGF,ABL1,WNT3A,CSF3R,PRKCA,FZD1, 
VEGFC,TCF7L2,RELA,SLC2A1,VEGFA,PTGS2

Cell adhesion molecules 
(CAMs)

15 1.25E-10 9.43E-09 JAM3,JAM2,HLA-DOA,NFASC,ITGAM,CD8B,CADM1,HLA-DQA1, 
CLDN18,CLDN10,HLA-DQB1,ITGB8,HLA-DMB,VCAN,CLDN4

Tight junction 11 1.35E-06 4.07E-05 JAM3,JAM2,TJP1,GNAI3,PRKCA,MAGI3,CLDN18,CLDN10,PRKCI,MYL9, 

CLDN4

ECM-receptor interaction 10 1.70E-07 8.54E-06 RELN,SPP1,COL5A2,COL1A1,THBS2,COL5A1,ITGB8,COL6A1,COL11A1, 

COL6A3

Leukocyte transendothelial 

migration

10 2.71E-06 6.83E-05 JAM3,JAM2,ROCK2,ITGAM,GNAI3,PRKCA,CLDN18,CLDN10,MYL9, 

CLDN4

Cytokine-cytokine receptor 

interaction

9 0.00791727 0.031461 TNFRSF10D,IL11,INHBC,CSF3R,CSF1,XCR1,VEGFC,VEGFA,IL9R

Protein digestion and 

absorption

9 9.24E-07 3.49E-05 SLC36A1,SLC1A1,COL5A2,COL1A1,COL5A1,COL6A1,COL11A1, 

COL6A3,SLC16A10

Regulation of actin 

cytoskeleton

9 0.00196338 0.01098 FGF2,TIAM1,MYLK,ROCK2,ITGAM,PIP5K1A,TIAM2,ITGB8,MYL9

Phagosome 9 9.15E-05 0.001256 HLA-DOA,ITGAM,HLA-DQA1,THBS2,STX7,EEA1,HLA-DQB1,MRC1, 

HLA-DMB

Tuberculosis 8 0.00214245 0.011554 HLA-DOA,ITGAM,HLA-DQA1,RELA,EEA1,HLA-DQB1,MRC1,HLA-DMB

Wnt signaling pathway 8 0.000859587 0.006181 PPARD,ROCK2,CCND2,WNT3A,PRKCA,FZD1,TCF7L2,CSNK1A1

Rheumatoid arthritis 8 1.58E-05 0.000299 PGF,IL11,HLA-DOA,CSF1,HLA-DQA1,HLA-DQB1,VEGFA,HLA-DMB

Chemokine signaling 

pathway

7 0.0121892 0.044892 TIAM1,ROCK2,ADCY7,GNAI3,XCR1,TIAM2,RELA

TGF-beta signaling pathway 7 0.000108744 0.001368 ROCK2,INHBC,PITX2,LTBP1,ID4,THBS2,ID2

Toxoplasmosis 7 0.00128054 0.007734 HLA-DOA,GNAI3,HLA-DQA1,RELA,HLA-DQB1,PDK1,HLA-DMB

Melanogenesis 7 0.000330342 0.003118 WNT3A,ADCY7,GNAI3,PRKCA,FZD1,TCF7L2,DCT

Leishmaniasis 7 2.67E-05 0.000448 HLA-DOA,ITGAM,HLA-DQA1,RELA,HLA-DQB1,HLA-DMB,PTGS2

Amoebiasis 7 0.000421534 0.003744 ITGAM,PRKCA,COL5A2,COL1A1,COL5A1,RELA,COL11A1

Hepatitis C 6 0.00865149 0.033497 DDX58,CLDN18,CLDN10,RELA,PDK1,CLDN4

Lysosome 6 0.00552762 0.023848 NAPSA,NAGA,CTSH,SORT1,AP4E1,IDS

Axon guidance 6 0.00722661 0.029492 EPHA8,ABL1,ROCK2,GNAI3,SEMA3D,EPHA3

Hematopoietic cell lineage 6 0.000824081 0.006222 IL11,ITGAM,CSF3R,CSF1,CD8B,IL9R

Gap junction 6 0.00111969 0.007045 TJP1,ADCY7,GNAI3,PRKCA,MAP3K2,GJA1

Epithelial cell signaling in 

Helicobacter pylori 

infection

6 0.000260077 0.002805 JAM3,JAM2,TJP1,ADAM10,HBEGF,RELA

(Continued)
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promote neovascularization.67,68 In addition, the signaling 
pathway plays a key role in regulating chondrocyte pro-
liferation. It is found that the Wnt/β-catenin pathway is 
involved in the process of cartilage damage.69 It is noted 
that the Wnt/β-catenin pathway is associated with the 
pathogenesis of early stage femoral head osteonecrosis 
via regulating of transcriptional regulator Myc-like 
(c-Myc) that affects the cell apoptosis and cell cycle.70 

Chemokines are involved in angiogenesis and wound heal-
ing. It is reported that chemokines secreted from chondro-
cytes alter functional abilities of subchondral bone 
osteoblasts.71 The chemokine signaling pathway is signifi-
cantly enriched in immature articular cartilage after osteo-
necrosis of the femoral head.72 Focal adhesion, involved in 
cell growth, shape, and movement, attach chondrocytes to 
the pericellular cartilage matrix and link to intracellular 
organelles. It has been shown that focal adhesion is 

a remarkably enriched biological pathway in the immature 
articular cartilage after osteonecrosis of the femoral 
head.72 Cell adhesion molecules, such as cadherins, selec-
tins, and immunoglobulin superfamily proteins, are asso-
ciated with angiogenesis.73–75 In addition, cell adhesion 
molecules play a vital role in regulating cartilage matrix 
turnover.76,77 ECM-receptor interaction is associated with 
angiogenesis, chondrogenesis, and cartilage 
degeneration.78 It is found that ECM-receptor interaction 
is significantly enriched in hip cartilage with osteonecrosis 
of the femoral head.79 It has been identified that cytokine– 
cytokine receptor interaction is one of the most dramati-
cally important pathways in osteonecrosis of the femoral 
head.72,80 Osteoclasts originated from hematopoietic stem 
cells are involved in maintaining bone integrity. Normal 
femoral head shows trabecular bones surrounded by bone 
marrow endowed with hematopoietic cells. Infiltration of 

Table 3 (Continued). 

Terms Count P-value FDR mRNAs

Staphylococcus aureus 

infection

6 3.08E-05 0.000466 HLA-DOA,ITGAM,HLA-DQA1,C3AR1,HLA-DQB1,HLA-DMB

Viral myocarditis 6 0.000185105 0.00215 ABL1,HLA-DOA,CAV1,HLA-DQA1,HLA-DQB1,HLA-DMB

Complement and 
coagulation cascades

5 0.00169723 0.009857 THBD,A2M,PLAT,C3AR1,F7

Gastric acid secretion 5 0.00266688 0.01299 MYLK,ADCY7,GNAI3,PRKCA,KCNK2

Renal cell carcinoma 5 0.00235692 0.011863 EGLN3,PGF,VEGFC,SLC2A1,VEGFA

Pancreatic cancer 5 0.00235692 0.011863 CDK6,PGF,VEGFC,RELA,VEGFA

Antigen processing and 
presentation

5 0.000864725 0.005935 HLA-DOA,CD8B,HLA-DQA1,HLA-DQB1,HLA-DMB

Autoimmune thyroid 
disease

4 0.00292128 0.013367 HLA-DOA,HLA-DQA1,HLA-DQB1,HLA-DMB

Type I diabetes mellitus 4 0.00101917 0.006691 HLA-DOA,HLA-DQA1,HLA-DQB1,HLA-DMB

Intestinal immune network 

for IgA production

4 0.0026893 0.01269 HLA-DOA,HLA-DQA1,HLA-DQB1,HLA-DMB

N-Glycan biosynthesis 4 0.00398592 0.017702 RPN1,MAN1A1,MGAT2,MGAT3

Shigellosis 4 0.00867634 0.032753 ABL1,ROCK2,UBE2D2,RELA

Acute myeloid leukemia 4 0.006843 0.028703 PPARD,TCF7L2,RELA,PIM1

Allograft rejection 4 0.000549845 0.004613 HLA-DOA,HLA-DQA1,HLA-DQB1,HLA-DMB

Graft-versus-host disease 4 0.000627861 0.00499 HLA-DOA,HLA-DQA1,HLA-DQB1,HLA-DMB

Asthma 4 0.000305331 0.003074 HLA-DOA,HLA-DQA1,HLA-DQB1,HLA-DMB

Abbreviation: FDR, false discovery rate.
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hematopoietic cell to the ischemic area plays a significant 
role in regulating ischemia-induced angiogenesis.81

In conclusion, the epigenetic modifications of hsa- 
miR-378c-WNT3A/DACT1/CSF1, hsa-let-7a-5p-RCA 
N2/IL9R, hsa-miR-28-5p-RELA, hsa-miR-3200-5p- 
RELN, and hsa-miR-532-5p-CLDN18/CLDN10, and 
seven signaling pathways (Wnt signaling pathway, 

chemokine signaling pathway, focal adhesion, cell adhe-
sion molecules (CAMs), ECM-receptor interaction, 
cytokine-cytokine receptor interaction, and hematopoie-
tic cell lineage) may be involved in osteonecrosis of the 
femoral head. In addition, CLDN10, CLDN18, CSF1, 
DACT1, IL9R, RCAN2, RELN, and WNT3A had 
a diagnostic value for osteonecrosis of the femoral 

Table 4 Clinical Information of Enrolled Individuals in vitro Validation

Group Gender Age Weight Pain Function Malformation Joint Activities Cartilage 
Injury of Hip 
Joint

ARCO 
Stage

NC Male 53 77 No Good No Normal No No

Male 62 68 No Good No Normal No No
Female 58 63 No Good No Normal No No

Female 58 63 No Good No Normal No No

Male 51 70 No Good No Normal No No
Female 63 55 No Good No Normal No No

Female 49 62 No Good No Normal No No

Case Male 50 80 Yes Limp Shortening Adduction abduction limited 

and buckling 90°

Yes IV

Male 39 72 Yes Limp Shortening Adduction abduction limited 

and buckling 90°

Yes IV

Male 46 66 Yes Limp Shortening Adduction abduction limited 

and buckling 80°

Yes IV

Female 35 62 Yes Limp Shortening Adduction abduction limited 

and buckling 90°

Yes IV

Female 58 67 Yes Limp Shortening Adduction abduction limited 

and buckling 90°

Yes IV

Male 20 65 Yes Limp Shortening Adduction abduction limited 

and buckling 90°

Yes IV

Abbreviation: NC, normal controls.

Figure 7 The in vitro validation of differentially expressed miRNAs and targeted differentially expressed mRNAs. Fold change >1 and fold change <1 represent up-regulation 
and down-regulation, respectively. *P<0.05.
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head. However, there are limitations of our study. 
Firstly, the deeper mechanism study of identified differ-
entially expressed miRNAs, mRNAs, and relevant 
downstream molecules in the disease is further needed 

in animal models. Secondly, the regulatory relationship 
between identified miRNAs and targeted mRNAs is not 
investigated. Further in vitro experiment, such as luci-
ferase reporter gene assay is needed in the further study.

Figure 9 The ROC curves of CLDN10, CLDN18, CSF1, DACT1, IL9R, RCAN2, RELN, and WNT3A between osteonecrosis of the femoral head and normal controls. The 
ROC curves were used to show the diagnostic ability of these mRNAs with 1-specificity and sensitivity.

* ** ** *** ***
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Figure 8 Expression box plots of CLDN10, CLDN18, CSF1, DACT1, IL9R, RCAN2, RELN, and WNT3A in the GSE123568 dataset. *P<0.05, **P<0.01. 
Abbreviation: ONFH, osteonecrosis of the femoral head.
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growth factor 2; GEO, Gene Expression Omnibus data-
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