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Emergent tetratic order in crowded systems of
rotationally asymmetric hard kite particles
Zhanglin Hou1, Yiwu Zong1, Zhaoyan Sun2,3, Fangfu Ye4,5, Thomas G. Mason 6,7 & Kun Zhao 1,8✉

Considering multi-body systems of monodisperse hard Brownian particles, it remains chal-

lenging to predict the forms of order that can emerge in their dense assembled structures.

Surprisingly, here, using Monte Carlo simulations, we show that tetratic-ordered phases

emerge in a dense two-dimensional system of hard kites that are rotationally asymmetric and

have opposite 72° and α ≈ 90° internal angles. We observe a new tetragonal rectangular

crystal (TRX) phase possessing (quasi-)long-range fourfold molecular-orientational order.

We propose a method based on local polymorphic configurations of neighboring particle

pairs (LPC-NPPs) to understand this emergent tetratic order and show that LPC-NPPs can be

useful for predicting orientational order in such systems. To examine the dependence of the

tetratic order on α, we apply LPC-NPP analysis to other hard kites for 54° ≤ α ≤ 144°. Our

work provides insight into the creation of novel ordered materials by rationally designing

particle shape based on anticipated LPC-NPPs.
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Achieving desired phases and structures by assembling
shape-designed constituent particles is a promising yet
quite challenging route for fabricating new functional

materials1. Toward this goal, the physics governing the relation-
ship between particle shape and assembled structures1–3, which
could enable us to predict the forms of order of structures
assembled by constitute monodisperse particles, still remains
incomplete and therefore is worthy of highly detailed investiga-
tions. Two-dimensional (2D) systems of hard colloidal particles
interacting with excluded volume interactions have long been
used as model systems for such studies, because the phase
behavior of such systems is solely determined by particle shape
and their entropy. For example, for particles having a shape as
simple as disk, their 2D system can show the hexagonal crystal
phase, hexatic phase, and isotropic phase, and their melting
transition is a two-step process via the hexatic phase4–8, which is
different from the first-order melting transition in the three-
dimensional (3D) system9. Compared with spherical particles,
non-spherical colloidal particles like ellipses10,11 and rods12–14

can show more phases including nematic and smectic.
The tetratic phase is a type of liquid crystal phase which has

fourfold rotational symmetry in molecular orientation. It is dif-
ferent from the biaxial nematic phase observed in a fluid com-
posed of boomerang-shaped molecules15,16. In a tetratic phase,
mesogens are orientated along two perpendicular directors.
Whereas in a biaxial nematic phase, the orientation of mesogens
is uniaxial, but mesogen’s long and short transverse axes are
aligned along two perpendicular directors, respectively. The tet-
ratic phase has been observed in simulations of hard squares17 as
well as hard rectangles13. Experimentally, tetratic order has also
been found in a system of colloidal rectangles14 and in a granular
system of squares18. Both square shape and rectangle shape are
intrinsically biaxial and have at least twofold rotational symmetry,
which might facilitate the formation of tetratic order. This is
supported by recent work on regular polygons whose results show
the important role of rotational symmetry of polygons in their
phase behavior19–28. For example, for regular hexagons24, a
hexatic phase, a hexagonal rotator crystal, a hexagonal crystal,
and a frustrated hexagonal crystal are found whereas for regular
pentagons, whose fivefold rotational symmetry is not compatible
with the symmetry of crystal structures, hexagonal rotator crystals
and glass states are found in experiments under compression21.
For plastic crystal phases, like the hexagonal rotator crystal, which
have (quasi)long-range positional order and short-range orien-
tational order, Shen et al.26 showed that their appearance in
systems of regular polygons is dependent on the compatibility
between the symmetry group of the particle shape and that of the
local environment in the crystal. In addition, besides the rota-
tional symmetry of particles, the tetratic phase seems also to be
sensitive to the details of particle shape. Martínez-Ratón et al.29

have shown that a tetratic phase can be found in hard rectangles
but not in hard discorectangles. Also, both experiments and
simulations have shown that rounded squares have a quite dif-
ferent phase behavior than mathematically ideal squares, and no
tetratic phase is observed in rounded squares17,20,22,23. However,
it remains to be determined whether or not a single right internal
angle in a convex polygonal shape, which is rotationally asym-
metric, is enough to induce tetratic order in a slowly crowded
Brownian system composed of many identical copies of that
particular shape.

In materials other than liquid crystals, such as crystal phases,
constituent particle orientations are also important for controlling
their properties, including optical properties30,31. For instance,
crystals containing particles with multiple orientations have been
observed in 3D systems32–34. Alternatively, by using 2D periodic
substrates, which create potential substrate minima that can trap

colloids, novel colloidal molecular crystals are obtained. Multi-
mers consisting of trapped multiple-charged colloids can form
different orientational orders, such as an antiferromagnetic-like
phase in which dimers are located on a square 2D periodic
substrate but with perpendicular orientations between neighbor-
ing dimers35–37. In different 2D systems consisting of hard
polygons, Shen et al.26 also reported a discrete plastic crystal of 8,
9, 10-gons in which the distribution of particle orientations have
multiple peaks, which indicate that hard polygons can be possible
candidates for assembling colloidal molecular crystals. But such
discrete plastic crystals only show short-range order in molecular-
orientation. Thus far, 2D discrete plastic crystals possessing
(quasi)long-range molecular-orientational order have not been
assembled by slowly crowding hard rotationally anisotropic par-
ticles; all prior examples all involve particle shapes that are at least
twofold rotationally symmetric. In addition, a general method
that can be used to predict the forms of self-ordering in slowly
crowded Brownian systems of hard anisotropic particles of
arbitrary shape is still lacking. Particularly, considering tetratic
order, there has been no prior example of tetratically ordered
phases, either crystalline or liquid crystalline, based on a particle
shape that does not possess at least some form of rotational
symmetry.

In this work, to address the above questions, by Monte Carlo
(MC) simulations, we systematically studied an important class of
shapes in two dimensions: hard kites. Our results show that tet-
ratic order possessing fourfold rotational symmetry can be
formed by particles that are completely rotationally asymmetric.
A new crystal phase, tetragonal rectangular crystal (TRX) phase,
which has (quasi-)long-range positional order and (quasi-)long-
range fourfold molecular-orientational order, is observed. We
propose a LPC-NPPs method to understand this emergent tet-
ratic order and show that LPC-NPPs can be useful for predicting
orientational order in such systems.

Results
Construction of kites. The kites are generated from a Penrose-
kite shape by fixing three vertices that have an internal angle of
72° in the Penrose-kite, while moving the fourth vertex which has
an internal angle of 144° in the Penrose-kite along its symmetry
axis. For simplicity, we call the internal angle of the fourth vertex
α (Fig. 1a). And the vertex opposite to the α vertex will have a
fixed internal angle of 72° in all kites tested in this study. The
orientation of a kite is defined as the pointing direction from α
vertex to the fixed 72° vertex. The length of kites associated with
the fixed 72° vertex is L. The aspect ratio of kites is defined as Ll/
Lt, here Ll is the length of particle diagonal connecting the vertices
of 72° and α, and Lt is the length of particle diagonal perpendi-
cular to Ll. In this study, we chose α to be 54°, 60°, 66°, 72°, 75°,
81°, 90°, 99°, 103.5°, 108°, 112°, 126°, and 144° (Fig. 1). When
α= 72°, the particle shape becomes rhombus38, and when α=
144° the particle is Penrose-kite used in earlier works28,39. Except
for the rhombus of α= 72°, all other kites tested in this study
have fore-aft asymmetry and no rotational symmetry.

All particles designed in this study can fully tile the space with
an alternating striped crystal (ASX) which has a complex
rectangular lattice with a conventional unit cell containing two
lattice points (see one example shown in Fig. 1b, where the
conventional unit cell has lattice constants Lx= Ll and Ly= Lt)
except the case of α= 72°, where the shape of particles become
rhombus and the ASX phase becomes rhombic crystal (RB)
whose conventional unit cell is a simple rhombic cell (Fig. 1b).
Previous work on Penrose kites has shown that the system can be
easily frozen into a glassy state when it is under compression28,40.
Since here we focus on the phase behavior in thermal equilibrium,
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we perform MC simulations in both NPT and NVT ensembles by
performing an expansion starting from the densest packing
structures (ASX) and studying the melting of those structures (see
more details such as the equation of states, order parameters and
correlation functions, etc. in Methods and Supplementary
Methods, Supplementary Figs. 1–29).

TRX and tetratic phases observed in kites. We first studied a set
of hard (144°–α/2)–72°–(144°–α/2)–α kites (α from 90° to 108°)
that contain at least a ~90° internal angle. Figure 1c shows the
corresponding melting phase diagram (see more details in Sup-
plementary Figs. 14–23). Besides the ASX phase and the isotropic
liquid phase (I), surprisingly, two phases possessing tetratic order
are observed.

One is a new crystal phase; it appears when systems melt from
the ASX to the tetratic liquid crystal phase, which we call the TRX
phase. The TRX phase keeps the symmetry of rectangular lattice
in translation but has changed to a fourfold rotational symmetry
in particle orientation as systems melt from the ASX phase.
Figure 2 shows a representative configuration of particles in the
TRX phase observed in kites of α= 99° at ϕA= 0.800, which has a
global positional order parameter SREC= 0.579 and a global
fourfold molecular-orientational order parameter ϕ4= 0.834. In
the TRX phase, the centers of particles still approximately sit on a
complex rectangular lattice (Fig. 2a, b), inherited from the ASX
structure. However, the distribution of particle’s orientation
shows four peaks in [−180°, 180°) which are separated by 90°
(Fig. 2c). This indicates that particles in the TRX phase are not
aligned along one axis (like particles in the ASX phase) but along
two perpendicular axes. Graphically, this can be shown in a color-
coded configuration in which particles are colored based on their
orientations using a color wheel with fourfold rotational
symmetry. And the result shows a homogeneous-colored graph
(Fig. 2d). Quantitatively both the spatial correlation function of
rectangular crystal lattice gREC(r) (Fig. 2e) and the fourfold
molecular-orientational correlation function g4mo(r) (Fig. 2f)
show a power law decay with exponents bigger than −1/3 and
−1/4, respectively, indicating that the TRX phase has (quasi-)
long-range order both in translation and in fourfold molecular
orientation and is stable against the Kosterlitz–Thouless-type
transition. This TRX phase is different from plastic crystal
phases such as hexagonal rotator crystals reported in hard
pentagons21,27, rounded squares20,22,23, and rounded hexagons24,
in which particles are positioned on a hexagonal lattice but can
rotate freely (thus no broken rotational symmetry).

The other phase having tetratic order is the tetratic liquid
crystal phase (T1), observed at lower ϕA. Figure 3a shows a
color-coded configuration of particles using a color wheel with
fourfold rotational symmetry in a typical tetratic phase
obtained in kites of α= 90° at ϕA= 0.774. The homogeneity
of color in it is consistent with a measured high value of
fourfold molecular-orientational order ϕ4= 0.753. Quantita-
tively, the probability density of particle orientation P(θ) shows
four peaks with nearly equal peak values in [−180°, 180°) which
are separated by 90° (Fig. 3b), indicating that in T1 phase
particles have equal probabilities to align along two perpendi-
cular axes (i.e., there is no preference between the two
perpendicular axes for particles to align with). The tetratic
phase has a low value of global positional order SREC= 0.299
and does not have a stable quasi-long-range translational order
(Fig. 3c). The measured twofold molecular-orientational
correlation function g2mo(r) decays quickly to a near-zero
level, while the fourfold molecular-orientational correlation
function g4mo(r) decays algebraically and reaches to non-zero
plateau which is much higher than the background level in the
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Fig. 1 Sketch of kites and their phase diagrams obtained by MC
simulations. a Sketch of kites with a fixed vertex angle of 72° and
associated edge length of L, and a tunable shape parameter of angle α from
54° to 144°, whose vertex is opposite to the fixed 72° vertex. Ll is the length
of particle diagonal connecting the vertices of 72° and α, Lt is the length of
particle diagonal perpendicular to Ll. Ll/Lt is defined as the aspect ratio of
particle. Black arrow in particle indicates the pointing direction from α vertex
to the fixed 72° vertex, which is defined as the orientation of particle. b The
length of two lattice vectors Lx and Ly of a unit cell when kites are in the
closest packed ASX phase at different α. c Phase diagram of kites obtained
from MC simulations using NPT and NVT ensembles. I: isotropic,
Hmo: hexatic phase in molecular-orientational order, T: tetratic, CE:
coexistence, TRX: tetragonal rectangular crystal, RB: rhombic crystal, ASX:
alternating striped crystal. Solid lines indicate the determined phase
boundaries: dark purple line: phase boundaries between ASX and TRX;
orange line: melting transition from crystal phase (ASX/RB or TRX) to liquid
crystal phases or isotropic liquid phases; purple line: freezing transition from
liquid crystal phases or isotropic liquid phases to crystal phases; magenta
line indicates the phase boundaries between isotropic liquid phases and
liquid crystal phases (tetratic or hexatic).
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tested range of r (Fig. 3d), indicating a (quasi-)long-range
fourfold molecular-orientational order in the tetratic phase.

LPC-NPPs for understanding the emergent tetratic order. The
kites of α= 90°, 99°, 103.5°, and 108° have no rotational sym-
metry but can form tetratic-ordered structures. Apparently, there
is no direct correspondence between the symmetry of particle
shape and the rotational symmetry of their assembled thermo-
dynamic structures. What else would be critical properties of
particles having different shapes in governing the rotational

symmetry of structures that they thermodynamically assemble? In
Penrose-kite systems (α= 144°), it has been shown that the local
polymorphism of particles play a very important role in deter-
mining the structures of the condensed phase28. So in order to
address the above question, here we have generalized this local
polymorphism method and examined the local polymorphic
configurations of neighboring particle pairs (LPC-NPPs) for kites
having more general α.

We first classify the possible LPC-NPPs of a kite shape into six
types. As shown in Fig. 4a, in type 1 and type 4, the contacting
edges are the edges with α-dependent lengths, whereas in type 2
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lattice constants of 1.45L and 1.33L, obtained by maximizing the positional order parameter of the system. c The probability density P(θ) of the single
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symmetry) used for color-coding particle orientations. e The spatial correlation function of rectangular crystal lattice gREC(r). Dashed line is ∝ r−1/3, which
is the KTHNY prediction for spatial correlation function at the crystal–liquid crystal transition point. f The fourfold molecular-orientational correlation
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and type 5, the contacting edges are the edges with fixed length L.
In type 3 and type 6, one of the contacting edges has length L, and
the other has an α-dependent length. Since the contacting edges
in this case are not matched for kites of α ≠ 72°, one particle can
slide relative to the other along the contacting edges while
keeping the contacting part maximized. For example, type 3-1
and type 3-2 are two configurations when one particle slides
relative to the other so that the 72° vertex and the α vertex of one
particle coincides with one of the non-72° and non-α vertices of
the other particle, respectively. Similar for type 6-1 and type 6-2.
Figure 4b shows the calculated center–center distance lcc of each
type of LPC-NPPs from Fig. 4a.

Similar to the way used for Penrose kites, here each type of
LPC-NPPs can be treated as an assembling unit (this is a
reasonable assumption at high densities), then the appearance
probability of each type of LPC-NPPs and their associated
rotational symmetry properties will play important roles in
determining the global rotational symmetry of the final assembly
of those LPC-NPPs.

To test this hypothesis, we then measured the distribution P(ϑ)
of the relative pointing angle ϑ of neighboring particles (up to the
first four nearest neighbors). Figure 5a shows P(ϑ)s between a
center particle and its first, second, third, and fourth nearest
neighbors in a representative tetratic phase formed by kites of α
= 90° (see more results of other kites in Supplementary Fig. 30).
Insets show the LPC-NPPs of kites. We can see that P(ϑ) of the
first nearest neighbor shows peaks centered at 5°, 75°, 95°, and
175°, which match well with the relative pointing angles of its
ideal LPC-NPPs type 3 (ϑ= 9°), type 5 (ϑ= 72°), type 6 (ϑ= 99°),
and types 1 and 2 (ϑ= 180°), respectively, i.e., P(ϑ) of the first
nearest neighbor is largely determined by the configurations of

particles when they are in fully edge-edge contact. By contrast, P
(ϑ)s of second, third, and fourth nearest neighbors show three
peaks centered at 5°, ~90°, and 175°, which are broader and
shallower compared with those of the first nearest neighbor. This
is understandable, as neighboring particles with larger separation
will have more room to move relatively and result in a broad
range of relative pointing angles. Then the rotational symmetry of
the final assembled structures will be largely determined by the
sum of ϑ distributions from all neighbors including the first,
second, third, and fourth nearest neighbors. And depending on
the relative contribution between the first and the rest of nearest
neighbors, the final P(ϑ) could be different from the one solely
determined by the shape of particles. Taking kites of α= 90°
(Fig. 5a) as an example, P(ϑ)s of second, third, and fourth nearest
neighbors are clearly different from the one of the first nearest
neighbor. Consequently, the total P(ϑ) shows three peaks around
0°, 90°, and 180° (Fig. 5d), which are all compatible with fourfold
rotational symmetry and thus exhibit tetratic order.

Application of LPC-NPPs in other kites of different α. To test
the generality of LPC-NPPs method, we have applied it to
understand the phase behavior of other kites with varying α (from
54° to 144°) (Fig. 1c) that we have simulated. For example, in
systems of α= 60° (Fig. 5b), at ϕA= 0.788, P(ϑ) of the first
nearest neighbor has peaks centered at 5°, 55°, 115°, and 175°,
which correspond to the LPC-NPPs type 3 (ϑ= 6°), type 4 (ϑ=
60°), type 6 (ϑ= 114°), and types 1 and 2 (ϑ= 180°), respectively.
While P(ϑ)s of second, third, and fourth nearest neighbors show
four similar peaks except that peaks are broader and shallower
compared with that of the first nearest neighbor. Then the total P
(ϑ) has peaks centered around 0°, 60°, 120°, and 180° (Fig. 5d).
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Fig. 3 An example of a T1 phase (α= 90°, ϕA= 0.774, NPT ensembles). a A color-coded configuration using a color wheel with fourfold rotational
symmetry. Bottom left: the fast Fourier Transform (FFT); bottom right: color wheel used for color-coding particle orientations. b Probability density P(θ) of
single-particle orientational angle θ. c The spatial correlation function of rectangular crystal lattice gREC(r). Dashed line is ∝ r−1/3. d Two- and fourfold
molecular-orientational correlation functions: g2mo(r/L) and g4mo(r/L). Dashed line is ∝ r−1/4.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15723-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2064 | https://doi.org/10.1038/s41467-020-15723-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


This distribution is compatible with sixfold rotational symmetry
and thus we would expect the system to have a hexatic order at
the tested ϕA. This is confirmed by the results obtained from the
analysis of order parameters and correlation functions, which
show that kites of α= 60° at ϕA= 0.788 are in a Hmo phase which
has (quasi-)long-range sixfold molecular-orientational order but
short-range positional order (Supplementary Figs. 4 and 5). Here,
Hmo is used to differentiate it from the traditional hexatic phase
(H) which has (quasi-)long-range sixfold bond-orientational
order and short-range positional order5. Kites of α= 54° and
66° behave similarly (Supplementary Fig. 30a, b). But when α
changes from 60° to 66° the peak values of P(ϑ) around 60°and
120° become smaller and thus have less prominent contributions
to the final Hmo phase. This corresponds to a shorter existence
window of Hmo phase observed in the kite of α= 66° than that in
the kite of α= 60° (Fig. 1c).

Besides being found for kites of α= 90°, 99°, 103.5°, and 108°,
the tetratic phase T1 is also observed in kites of α= 81°and 112°.
But the relative contribution of each peak in P(ϑ) to the formed
tetratic order varies for kites with different α (Supplementary
Fig. 30d, h). In the tetratic phase of kites of α = 81°, the peak
values of P(ϑ) around 0° and 180° are both larger than the one
around 90°; whereas for kites of α= 90°, the three peaks around
0°, 90°, and 180° have roughly equal values. As α continues to
increase, the peak values around both 0° and 90° are gradually
reduced. In the tetratic phase of kites of α= 112°, the peak

around 0° is very small while the peak around 180° is much
stronger than peaks at both 0° and 90°, indicating that most of
neighboring pairs are anti-parallel, a remnant property from the
ASX crystal. Following this trend, we would expect that for kites
with higher α, when peaks around 0° and 90° becomes
insignificant enough there will be no tetratic phase. This is
consistent with our observations that there is no tetratic phase
observed for kites of α= 126° and 144°.

Interestingly, kites of α= 72° (i.e. 72° rhombus) and 75° show a
different tetratic phase T2. For a configuration of 72° rhombs at
ϕA= 0.773 (Fig. 5c), P(ϑ)s of first, second, and third nearest
neighbors are similar and show four peaks centered at 5°, 75°,
105°, and 175°. These are different from P(ϑ) of fourth nearest
neighbors (kites of α= 75° show similar behavior (Supplementary
Fig. 30c)). In this case, the total P(ϑ) shows two relatively sharp
peaks at around 0° and 180°, and a broad plateau centered at 90°
resulted from merging of two weak peaks centered at 72° and
108°, respectively (Fig. 5d). As a result, the system exhibits a
global fourfold symmetry in molecular orientation, and is thus
classified to be in a tetratic phase. But this tetratic phase (T2) has
a clearly different microscopic structure than T1 observed in kites
of α= 90° as illustrated in Fig. 3. Figure 6a shows one example of
T2 phase observed for kites of α= 72° at ϕA= 0.773, which is
color-coded using the same color wheel as in Fig. 3a. It shows a
palette-like pattern consisting of patches with different colors,
which is different from the homogeneous-colored pattern in the
T1 phase (Fig. 3a). The peaks of P(θ) are much higher at θ= ±90°
than at θ= ±180° and 0°, indicating that in T2, particles prefer to
align along one axis than the other (Fig. 6b). This can also explain
the observations that in T2, g2mo(r) does not decay to zero and
the plateau value that g4mo(r) reaches at large distance is smaller
than that in T1 (Figs. 6c and 3c). To further understand the local
structures in T2, Fig. 6d shows the same configuration but color-
coded using a color wheel with twofold rotational symmetry. It
can be seen that in T2, particles form nematic domains and in
each domain particles are aligned along a same axis, but the
orientation of the axis of each domain varies. A close examination
of nematic domains in T2 reveals that neighboring nematic
domains typically form twinning structures (see one example in
Fig. 6e). These observations are consistent with the measured P(ϑ)
shown in Fig. 5d, which shows relatively strong peaks centered at
0° and 180°, presumably contributed by particles in the nematic
domains, and shows two relatively weak peaks centered at 72° and
108°, contributed mostly by particles around twinning structures,
i.e., by particles around boundaries between nematic domains.
The two weak peaks merge with each other and result in an
elevated P(ϑ) at 90°, which will contribute positively to the
fourfold rotational order but negatively to the twofold rotational
order of the system. This is similar to the tetratic order formed by
the proliferation of grain boundaries which disrupt nematic order
but preserve tetratic order during the transition from nematic to
isotropic in colloidal rectangles14. We note that for kites of α=
72°, similar to the observed twin structures in experiments38, in
the configurations obtained by MC simulations, we also found
polysynthetic twin as well as cyclic twin structures during the
expansion of RB phases as ϕA is lowered (Fig. 7a, b). Moreover,
domains of single RB crystal, which exhibits emergent chirality,
are also observed in simulations (Fig. 7c, d), which again agree
with earlier experimental38 and simulation results41. However,
the phase behavior of rhombs (i.e., kites of α= 72°) obtained
from MC simulations shows a sequence of RB-T2-I as the system
melts; this is different from the experimental observations
for corner-rounded rhombs, where a phase sequence of
I–H–hexagonal rotator crystal (RX)–RB is observed as this
rhombus system is slowly compressed38. One possible reason that
could potentially account for this difference is the corner
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roundness of rhombus used in experiments, as corner roundness
of particles has been shown to affect the phase behavior
dramatically in crowded systems of squares17,20,22,23. But to test
this hypothesis, more work is needed.

Discussion
Tetratic phase has been reported in the systems of hard rectangles
with an aspect ratio between [1, 2.21]13, including the special case
of squares which have an aspect ratio of 1 (refs. 17,22). The kites
studied in this work have a range of aspect ratio of [0.85, 1.67]
(Supplementary Fig. 31. Note that for kites of α= 126° and 144°,
the aspect ratio which is defined by Ll/Lt, is <1 since for the two
kites Lt > Ll. They correspond to 1.06 for kite of α= 126° and 1.18
for kite of α= 144°, when the aspect ratio is defined by the ratio
of the longer diagonal length divided by the shorter diagonal
length). However, only kites of α between 72° and 112°, which
have a range of aspect ratio of [1.03, 1.38], show a tetratic phase,
indicating that compared with rectangles, the kites have a smaller
existence window of tetratic phase in the range of aspect ratio.

TRX phase observed in this study has not been reported before.
In this phase, centroids of kites still form a complex rectangular
lattice while their orientations are aligned along two perpendi-
cular axes. The TRX phase is observed in kites of α= 90°, 99°,
103.5°, and 108°. These four types of kites are more close to a disk
than other tested kites, indicated by their higher values of iso-
perimetric quotient25 IQ= 4πAP=C

2
P, where AP and CP are the

area and perimeter of particles, respectively (Supplementary
Fig. 31). Moreover, from the Fig. 4b, we can see that for kites of
α= 90°, 99°, 103.5°, and 108°, the lcc of six LPC-NPPs can be
roughly categorized into three groups, with each group having
two types of LPC-NPPs that have approximately equal lcc. For

example, for kite of α= 99°, the lcc of type 1 is approximately
equal to the one of type 4, similarly, type 2 and type 5, type 3 and
type 6 also have equal lcc, respectively. Together, these results
indicate that kites of α= 90°, 99°, 103.5°, and 108° would be
easier to rotate and thus certain LPC-NPPs types can interchange
without causing much variation in free space. In other words,
taking kites of α= 99° as an example, type 1 can be replaced by
type 4 without inducing a big change in the centroid positions of
particles. Such change in types would have minor effect on the
translational order, but would affect the orientational order very
much because the relative pointing angle of each type varies. In
the case of kites of α= 99°, when one LPC-NPP changes from
type 1 to type 4, ϑ of the corresponding neighboring pair changes
from 180° to 99°. Similarly, when one LPC-NPP changes from
type 2 to type 5, ϑ of the corresponding neighboring pair changes
from 180° to 72°, and so on, so forth. At the end, together with
thermal diffusion of particles which will lead to a wider range of
particle orientations, the final effect of these changes will result in
a total distribution P(ϑ) showing three peaks around 0°, 90°, and
180°, a feature of global fourfold rotational symmetry. But the
positional order can still be maintained as the spacing between
neighboring particles does not change much and particles still
approximately sit on a complex rectangular lattice sites. The TRX
phase observed in this work is different from discrete plastic
crystals of 8, 9, 10-gons reported by Shen et al.26. In the kite
systems, the TRX phase is an intermediate phase between ASX
phase and tetratic phase with (quasi-)long-range order in fourfold
molecular orientation, while the discrete plastic crystal phase is an
intermediate phase between crystal phase and hexatic fluid/iso-
tropic fluid phase with short-range order in molecular orienta-
tion. In the future, it will be very interesting to see whether other
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values of the fixed angle of kites (i.e. other than 72°) can also lead
to TRX phases.

In summary, by MC simulations we systematically investigated
the melting phase behavior of a series of kites with different α,
which can be roughly classified into four groups based on the type
of liquid crystals that they can form (Fig. 1c). Group I includes
kites of α= 54°, 60°, and 66°, which show an ASX-Hmo-I melting
sequence. There is a coexistence (CE) region between Hmo and
ASX (Supplementary Fig. 32), indicating a first-order ASX-Hmo

transition. Group II includes kites of α= 72° and 75°, which show
T2 phase that has global tetratic but microscopically nematic-like
structures, while group III includes kites of α from 81° and 112°,
which show T1 phase in which particles form assembled struc-
tures with microscopically uniform tetratic order. Group IV
includes kites of α= 126° and 144°, which show a direct melting
from ASX to isotropic phase with a CE region in between
(Supplementary Fig. 33). Finite system-size effects can influence
the precise determination of phase boundaries and the nature of

the associated phase transitions, and simulations on larger sys-
tems could add additional precision to the location and nature of
the phase boundaries that we have reported.

Our results showed that tetratic order which has fourfold
rotational symmetry can be formed by particles with no rotational
symmetries. A new crystal phase, TRX phase which has (quasi-)
long-range order in both position and fourfold molecular orien-
tation, is observed for kites of α= 90°, 99°, 103.5°, and 108°.
Together with the observation that the tetratic phase is found in
kites of α from 72° to 112°, these results indicate that the right
angle in a polygonal shape is not a necessary condition but will
facilitate to show a global tetratic order of their assembled
structures. We generalized the concept of local polymorphic
configurations, developed initially to explain glassy behavior of
Penrose kites, to propose a LPC-NPPs method, which can explain
the observed four(six)fold rotational symmetry in the T(Hmo)
phase of kites whose shape have no rotational symmetry (or have
twofold rotational symmetry for rhombus), indicating that the
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LPC-NPPs method can be useful as a tool for predicting orien-
tational order in systems as one or more shape parameters are
systematically varied. To develop a more complete model invol-
ving multiple particles based on the number of local particles and
relative configurations, which are needed in order to predict
behavior accurately without requiring full-scale simulations, is
very interesting and certainly worth of further studies. Thus, to
design the shape of particles for assembling, not just the shape
itself, but the local polymorphic configurations of two or
more particles also need to be taken into consideration. Our
results provide insight into controlling the bottom-up assembly-
based fabrication of new functional materials by rationally
designing the shape of constituent particles and their associated
LPC-NPPs.

Methods
MC simulations. We performed MC simulations in isobaric-isothermal NPT and
canonical NVT ensembles42 to investigate the melting phase behavior of hard kites.
Simulations are carried out in a square box with periodic boundary conditions. The
number of simulated particles is in a range of [3168, 3876] (see Supplementary
Table 1). In the NPT ensemble, perfect ASX crystal configurations (see Fig. 1b in
the main text) are used as the initial states for expansion (melting) runs. In each
MC step, there are N particle trial moves (each particle will have a trial move once)
and two box trial moves. A trial move of a particle consists of both translation and
rotation, and the amplitude of one-dimensional translational displacement is
proportional to the amplitude of rotational displacement by a factor of

ffiffiffiffiffiffiffiffi
I=m

p
based on equal partition theorem, where m is the mass and I is the moment of
inertia of particle. In both particle and box trial moves, the acceptance ratio is set to
be 40%. The system first run 4.5 × 106 steps to equilibrate, and then run 0.5 × 106

steps for statistical ensemble average. In the NVT ensemble, we first choose a
defect-free equilibrated structure with a slightly higher density than the target
density obtained in the NPT process, and then expand it so that the resulted
configuration has the target density, which serves as initial configuration. For
simulations in the NVT ensemble, in each MC step, there are only N particle trial
moves. Similar to the NPT ensemble, the system first run 4.0 × 106 steps to equi-
librate, and then run 1.0 × 106 steps for statistical ensemble average. Reduced units
are used in simulations and the reduced pressure and area fraction are defined as
P* ¼ PL2=kBT and ϕA=NAp/A, where P, L, N, kB, Ap, and A are pressure, length
of fixed edges of kite, total particle number, Boltzmann’s constant, particle area,
and the total area of system, respectively. Supplementary Figure 1 shows the
obtained phase diagram using NPT (Supplementary Fig. 1a) and NVT (Supple-
mentary Fig. 1b) ensembles. An expanded view of the combined phase diagram
between ϕA= 0.74 and ϕA= 0.82 is shown in Supplementary Fig. 1c.

To test the effect of the shape of boundary conditions on the observed phases,
using kites of α= 99° as an example, we performed additional MC simulations
using both an isothermal–isostress NσPT ensemble, which allows triclinic changes
in the shape of the boundary box, and a NPT ensemble but with a 60° rhombic-
shaped box (Supplementary Figs. 18 and 19). The results show the same phase
sequences as observed in the NPT ensemble with a square box, indicating that the
effect of the shape of boundary conditions on our observed structures is negligible.

Order parameters and correlation functions. Phases of kites obtained from MC
simulations are determined by order parameters and correlation functions. The
global n-fold molecular-orientational order parameter is defined as

ϕn ¼ 1
N

XN
i¼1

e�inθi ; ð1Þ

Where θi is the angle of orientation of particle i. To calculate the global n-fold
bond-orientational order parameter Ψn, the local n-fold bond-orientational order
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φn is first calculated as

φn rið Þ ¼ 1
Ni

XNi

k¼1

e�inθik ; ð2Þ

where Ni is the number of nearest neighbors of particle i, and θik is the angle
between an arbitrary fixed axis and the line connecting the centers of particles i and
k. For n= 4, the first four nearest neighbors are used; and for n= 5 and 6, the
neighbors are obtained through Voronoi construction. Then Ψn is defined as

Ψne
iω ¼ 1

N

XN
i¼1

φn rið Þ; ð3Þ

where ω represents a global phase. Similarly, the local positional order parameter ζ
for each particle i is defined as

ζ rið Þ ¼ e�iG�ri ; ð4Þ
where G is the reciprocal lattice vector of appropriate crystal lattice. And the global
positional order parameter S is defined as

S ¼ 1
N

XN
i¼1

ζ rið Þ
�����

�����: ð5Þ

In this study, the positional order parameters of square SSQ, hexagonal SHEX,
rectangular SREC, and rhombic SRB crystals are calculated. Using standard
conventions, the susceptibility of bond-orientational order parameter is defined as

χn ¼ NðhΨ2
ni � hΨni2Þ; ð6Þ

where N is the number of particles. The n-fold molecular-orientational correlation
function is defined as

gmo
n rð Þ ¼ cos nθ ri þ rð Þ � nθ rið Þ½ �h i; ð7Þ

the n-fold bond-orientational correlation function is defined as

gn rð Þ ¼ Re φ*
n rið Þφn ri þ rð Þ

D E
; ð8Þ

and the spatial correlation function relating to positional order is defined to be

gS rð Þ ¼ Re ζ* rið Þζ ri þ rð Þ
D E

: ð9Þ
Here, Re represents an operator returning the real part of the value, and < > means
taking the ensemble average.

The phase boundaries are estimated by a combination of calculated order
parameters, correlation functions, susceptibilities of bond-orientational order
parameters, and analyzed configuration images.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
Code for MC simulations used in this study are available from the corresponding author
upon reasonable request.
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