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Abstract. Type 2 diabetes mellitus (T2DM) is a multifactorial and 
multigenetic disease, and its pathogenesis is complex and largely 
unknown. In the present study, microarray data (GSE201966) of 
β‑cell enriched tissue obtained by laser capture microdissection 
were downloaded, including 10 control and 10 type 2 diabetic 
subjects. A comprehensive bioinformatics analysis of microarray 
data in the context of protein‑protein interaction (PPI) networks 
was employed, combined with subcellular location information 
to mine the potential candidate genes for T2DM and provide 
further insight on the possible mechanisms involved. First, 
differential analysis screened 108 differentially expressed 
genes. Then, 83 candidate genes were identified in the layered 
network in the context of PPI via network analysis, which were 
either directly or indirectly linked to T2DM. Of those genes 
obtained through literature retrieval analysis, 27 of 83 were 
involved with the development of T2DM; however, the rest of 
the 56 genes need to be verified by experiments. The functional 
analysis of candidate genes involved in a number of biological 
activities, demonstrated that 46 upregulated candidate genes 
were involved in ‘inflammatory response’ and ‘lipid metabolic 
process’, and 37 downregulated candidate genes were involved 
in ‘positive regulation of cell death’ and ‘positive regulation of 

cell proliferation’. These candidate genes were also involved in 
different signaling pathways associated with ‘PI3K/Akt signaling 
pathway’, ‘Rap1 signaling pathway’, ‘Ras signaling pathway’ 
and ‘MAPK signaling pathway’, which are highly associated 
with the development of T2DM. Furthermore, a microRNA 
(miR)‑target gene regulatory network and a transcription 
factor‑target gene regulatory network were constructed based 
on miRNet and NetworkAnalyst databases, respectively. 
Notably, hsa‑miR‑192‑5p, hsa‑miR‑124‑5p and hsa‑miR‑335‑5p 
appeared to be involved in T2DM by potentially regulating the 
expression of various candidate genes, including procollagen 
C‑endopeptidase enhancer 2, connective tissue growth factor 
and family with sequence similarity 105, member A, protein 
phosphatase 1 regulatory inhibitor subunit 1 A and C‑C motif 
chemokine receptor 4. Smad5 and Bcl6, as transcription factors, 
are regulated by ankyrin repeat domain 23 and transmembrane 
protein 37, respectively, which might also be used in the 
molecular diagnosis and targeted therapy of T2DM. Taken 
together, the results of the present study may offer insight for 
future genomic‑based individualized treatment of T2DM and 
help determine the underlying molecular mechanisms that lead 
to T2DM.

Introduction

Type 2 diabetes mellitus (T2DM) has become the third main 
chronic non‑infectious disease following tumors and cardio-
vascular disease, and threatens human health worldwide (1). 
In total, ~425 million adults are currently living with diabetes 
in the world, with the majority of cases being T2DM (2). The 
International Diabetes Federation reported that in 2045, ~629 
million individuals globally will suffer from diabetes, of 
which ~90% will be T2DM (2). It is well known that insulin 
resistance and pancreatic β‑cell dysfunction are major patho-
physiological characteristics of T2DM. Pancreatic β‑cells 
are needed to yield more insulin to meet mounting require-
ments when insulin resistance occurs (3). Previous studies of 
pancreatic β‑cells provide a basis for improved insight into 
the pathogenesis and pathophysiology of T2DM, as pancreatic 
β‑cells help in the regulation of the blood glucose level (4,5). 
T2DM is a complex, polygenic disease that results from the 
interplay of environmental and genetic factors. Candidate gene 

Identification of potential markers for type 2 diabetes mellitus  
via bioinformatics analysis

YANA LU1,  YIHANG LI1,  GUANG LI1*  and  HAITAO LU2*

1Key Laboratory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Yunnan Branch, 
Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 

Jinghong, Yunnan 666100; 2Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, 
Shanghai Jiao Tong University, Shanghai 200240, P.R. China

Received March 20, 2019;  Accepted January 20, 2020

DOI: 10.3892/mmr.2020.11281

Correspondence to: Dr Guang Li, Key Laboratory of Dai and 
Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, 
Yunnan Branch, Institute of Medicinal Plant Development, Chinese 
Academy of Medical Sciences and Peking Union Medical College, 
138 Xuanwei Road, Jinghong, Yunnan 666100, P.R. China
E‑mail: lhbg311@hotmail.com

Professor Haitao Lu, Key Laboratory of Systems Biomedicine, 
Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong 
University, 800 D ongchuan Road, Minxing, Shanghai  200240, 
P.R. China
E‑mail: haitao.lu@sjtu.edu.cn

Key words: type 2 diabetes, differentially expressed genes, functional 
analysis, protein‑protein interaction, subcellular location, transcription 
factors, microRNA



LU et al:  POTENTIAL MARKERS IN TYPE 2 DIABETES MELLITUS VIA BIOINFORMATICS ANALYSIS 1869

association high‑throughput methods have been carried out to 
uncover the genetic aspects of the pathogenesis of T2DM (6‑8).

In recent years, single gene research and genome‑wide 
association studies have determined genetic susceptibility 
genes for the increased risk of T2DM (9‑11). Previous studies 
of gene expression in T2DM demonstrated that decreased 
expression of insulin  (12,13), and a reduced expression of 
syntaxin 1A and transcription factor 7 like 2 contributed to 
impaired insulin secretion (12,14,15). The downregulation of 
FXYD domain containing ion transport regulator 2‑stimulated 
β‑cell proliferation (13) and the upregulation of genes δ like 
non‑canonical Notch ligand 1, diacylglycerol kinase β and zinc 
finger MIZ‑type containing 1 were implicated in T2DM (11,16). 
Previous genetic studies identified several dozen genes leading 
to monogenic diabetes due to impaired insulin secretion  (17,18). 
These genes play a key role in pancreatic β‑cell lineage, pheno-
type and function. How genetic and epigenetic factors are 
involved in β‑cell development, proliferation, differentiation 
and function requires further investigation. Understanding of 
the underlying mechanisms is vital to the development of new 
therapeutic methods to prevent β‑cell dysfunction and failure 
in the development of T2DM. The identification of T2DM 
candidate genes has been challenging in biomedical research 
and the majority of the genes have yet to be discovered. The 
aim of the present study was to contribute to research efforts to 
identify the biological markers and signaling pathways associ-
ated with T2DM. These molecular mechanisms may provide 
insight for aspects of T2DM pathogenesis or pathophysiology.

High‑throughput sequencing is becoming an important 
tool, extensively applied in life sciences, including in cancer 
detection (19‑21) and for identifying global gene expression 
changes in T2DM (22). Knowledge of the subcellular localiza-
tion of proteins provides new insight into protein function and 
the complex pathways that modulate biological processes on a 
sub‑cellular level, contributing to the current understanding of 
the proteins that interact with each other and with other mole-
cules in the cellular environment (23). Accordingly, subcellular 
proteomics, as an important step to functional proteomics, has 
been the focus of the prediction of subcellular protein location, 
which is associated with molecular cell biology, proteomics, 
systems biology and drug discovery (24‑26); it is used to better 
understand complex diseases (27), such as breast cancer (28), 
ovarian carcinoma (29), ischemic dilated cardiomyopathy (30), 
esophageal squamous cell carcinoma (31) and asthma (32). It 
was previously demonstrated that an integrative analysis of 
gene expression and a protein‑protein interaction (PPI) network 
could offer insight of the molecular mechanisms of a variety 
of diseases (33‑35). Consequently, the present study proposed 
a comprehensive bioinformatics analysis of gene expression 
data combining protein subcellular localization information 
and the construction of a layered PPI network (as opposed to a 
traditional PPI network) to identify candidate genes. Functional 
enrichment analyses were performed for candidate genes. A 
microRNA (miRNA/miR)‑target gene regulatory network and 
transcription factor (TF)‑target gene regulatory network were 
also constructed to identify miRNAs and TFs, which could be 
involved in T2DM development. The findings of the present 
study may help in the discovery of potentially novel predictive 
and prognostic markers for T2DM, and provide insight into the 
underlying molecular mechanisms of T2DM.

Materials and methods

Data acquisition, preprocessing and differentially expressed 
genes (DEGs) analysis. GSE20966 (36), the gene chip datasets 
of β‑cells acquired from cadaver pancreases of non‑diabetic 
subjects (control group, n=10) and T2D subjects (T2D group, 
n=10), was assessed and obtained from the Gene Expression 
Omnibus database (http://www.ncbi.nlm.nih.gov/geo/). The 
annotation information of GeneChip was acquired from the 
GPL1352 Affymetrix Human X3P Array platform (Affymetrix; 
Thermo Fisher Scientific, Inc.). The probes were mapped to gene 
names based on the GPL1352 platform and the average expres-
sion value for the probes was calculated when there was more 
than one gene corresponding to the same probe. In the original 
gene expression profiles, after normalization, MATLAB 2018a 
(https://www.ilovematlab.cn/forum.php?mod=home) was used 
to identify the DEGs by value of a fold change >1.5 and a false 
discovery rate_Benjamini & Hochberg (fdr_BH) <0.1. The 
differences in gene expression between the control and T2DM 
subjects were assessed using hierarchical clustering and prin-
cipal component analysis (PCA).

PPI network, layering and network analysis. The PPI data 
were retrieved from the Human Protein Reference Database 
v9.0 (HPRD) (37), BioGRID v3.5 (38), IntACT v4.2 (39) and 
STRING v10.5 (40) databases. First, single nodes, self‑loops 
and duplicates were removed from the PPI data. Second, the 
total DEGs were mapped to the PPI data. To improve the reli-
ability, only the direct interaction proteins of these DEGs were 
matched. Third, the integrated PPI network was visualized 
and analyzed using Cytoscape v3.6.1 (41). Then, the subcel-
lular localization information for each protein in the integrated 
PPI network obtained from the HPRD, the UniProt database 
(http://www.uniprot.org/help/uniprotkb) and the Human 
Protein Atlas database (http://www.proteinatlas.org/) (42) was 
input as a node attribute. The Cerebral plug‑in in Cytoscape 
was applied to redistribute nodes on the basis of subcellular 
localization without changing their interactions  (43). The 
layered PPI network was split into five layers: Extracellular, 
plasma membrane, cytoplasm, nucleus and mitochondria. Hub 
protein nodes that encoded DEGs in the layered network with 
a connectivity degree >8 were screened as candidate genes.

Functional interpretations for the candidate genes. To 
investigate the functions of the candidate genes, functional 
enrichment analysis was performed using the ClueGO and the 
CluePedia plug‑ins (44) for Cytoscape v3.6.1 software (45). 
ClueGO was used to decipher functionally grouped Gene 
Ontology  (GO)  (46) and pathway annotation networks to 
understand their implication in three different classifica-
tions; biological process (BP), molecular function (MF) and 
cell component (CC), in addition to the Kyoto Encyclopedia 
of Genes and Genomes (KEGG)  (47) signaling pathway. 
The relationship between the terms was calculated using 
κ statistics and the ClueGO network was built based on the 
similarity of their related genes. The CluePedia plug‑in is a 
search tool for new markers potentially associated to path-
ways, and can provide a broad viewpoint of a pathway using 
integrated experimental and in silico data. In the present study, 
the enrichment analysis of gene‑BP and gene‑pathway was 
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statistically validated using the Cytoscape plug‑ins ClueGO 
and CluePedia. BPs/signaling pathways were functionally 
split into several groups with κ score ≥0.4 and a network was 
constructed, where the node represents a BP/pathway and the 
edge between two nodes indicates that the two BPs/pathways 
share common genes.

Prediction of target miRNAs and TFs for the candidate 
genes. Genes need to interact to react to the environment of 
an organism, as they cannot alone to regulate the organism. 
Gene expression is modulated by TFs and miRNAs at the tran-
scriptional and post‑transcriptional levels. Information on TFs, 
miRNAs and their corresponding target genes could provide 
insight into the processes of T2DM. miRNet v2.0 (http://www.
mirnet.ca/) (48) was used to predict the miRNAs associated 
with candidate genes noted in miRTarBase v7.6  (49) and 
miRecords (50). The 8 most captivating groups (top 15) and 

a minimum of two genes for each of the groups were picked 
as the threshold. Then, the TFs encoded by candidate genes 
were used for prediction coupled with human TF information 
(NetworkAnalyst v3.0; http://www.net workanalyst.ca) (51) 
noted in Binding and Expression Target Analysis v1.0.7 
(BETA) (http://cistrome.org/BETA/) (52). The miRNA‑target 
gene regulatory network and TF‑target gene regulatory 
network were visualized using Cytoscape.

Results

Screening for DEGs. Following data preprocessing, 108 DEGs 
were identified to be differentially expressed in 10 control 
subjects and 10 T2DM subjects, with 66 upregulated and 
42 downregulated genes, as presented in the heat map of the 
cluster analysis of DEGs, according to the cut‑off criteria 
of fold change >1.5 and fdr_BH <0.1 (Fig. 1A; Table SI). 

Table I. Distribution of nodes.

Localization	U pregulated	D ownregulated	U nchanged	 Total

Extracellular	 13	 5	    132	    150
Plasma membrane	 7	 9	    244	    260
Cytoplasm	 21	 8	    427	    456
Nucleus	 8	 14	    516	    538
Mitochondrion	 3	 0	    139	    142
Total	 52	 36	 1,458	 1,546

Figure 1. Hierarchical clustering and principal component analysis of DEGs between control and T2DM subjects. (A) Hierarchical clustering analysis of DEGs 
was performed using MATLAB software, which split samples into groups with similar models in gene expression data. Red represents upregulated genes and 
green represents downregulated genes. (B) Principal component analysis of control and T2DM subjects based on DEGs. Yellow dots and blue dots refer to 
controls and T2DM subjects, respectively. DEGs, differentially expressed genes; T2DM; type 2 diabetes mellitus.
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Figure 2. Integrated protein‑protein interaction network. Different color nodes represent the proteins that were encoded by differentially expressed genes. Red 
nodes are proteins that encoded upregulated genes and the green nodes are proteins that encoded downregulated genes. Pink nodes are proteins that were not 
encoded by significant differentially expressed genes.

Figure 3. Layered protein‑protein interaction network. Red nodes are upregulated genes, green nodes are downregulated genes and pink nodes are unchanged genes.
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The PCA plot demonstrated that the DEGs could roughly 
divide the majority of T2DM subjects from the non‑diabetic 
controls (Fig. 1B).

PPI network, layering network construction and network 
analysis. The identification of proteins that interact directly 
with proteins encoded by the 108 DEGs could help understand 
the molecular mechanism underlying T2DM pathophysi-
ology. In the present study, a PPI network was built from the 
108 DEGs with Cytoscape and was composed of 1,546 nodes 
and 1,842 edges, including 52 proteins that were encoded by 
upregulated genes, 36 that were encoded by downregulated 
genes and 1,458 nodes marking proteins that were not encoded 
by DEGs (Fig. 2; Table I).

Subcellular protein localization is a crucial process in 
numerous cells. Following synthesis, proteins are transported 
to distinct compartments depending on their molecular func-
tion within the cell. Certain proteins are even transported to 
distant sites. Protein localization data can contribute to the 
elucidation of protein functions. The subcellular localization 
information for each protein in the integrated PPI network 
obtained from the HPRD, the UniProt database (http://www.
uniprot.org/help/uniprotkb) and the Human Protein Atlas data-
base (http://www.proteinatlas.org/) (42), was input as a node 
attribute. Then, the layered network was created from the PPI 
network using the Cerebral plug‑in (43) of Cytoscape, according 
to the subcellular localization information of 1,546 proteins, 
which was split into five layers as follows: Extracellular, plasma 
membrane, cytoplasm, nucleus and mitochondrion (Fig. 3).

The degree distribution of a network is a standard feature 
of scale‑free networks. The degree distributions of the layered 
network closely followed the power law distribution, with an 
R2=0.865. This suggested that the integrated PPI network is a 
true cellular complex biological network and scale‑free. The 
other topological parameters of the network are presented 
in Table II. The results also suggested that a small number 
of nodes are hubs with a number of links to nodes. A total 
of 83 DEGs were identified as hub genes with an interaction 
degree ≥8 and were selected as candidate genes (Table SII). 
The top 20 candidate genes are presented in Table III . Of 
these candidate genes, ISG15 ubiquitin like modifier (ISG15) 
had the highest degree (185), followed by phosphoenolpyru-
vate carboxykinase 1 (PCK1) (85) and neural precursor cell 
expressed, developmentally downregulated 9 (NEDD9) (50). 
The present study identified 83 candidate genes for T2DM 
(Table I V). The identified candidate genes may serve as 
biological markers for future T2DM treatment research.

Functional enrichment analysis. To clarify possible biological 
functions of candidate genes, and examine the relationship 
between the functional groups and their underlying annotations 
in the networks, BP enrichment analyses were performed for 
the 46 upregulated and 37 downregulated candidate genes using 
ClueGO and CluePedia. A κ score >0.4 was set as the criterion. 
The results are presented in Fig. 4. Specifically, for the upregu-
lated groups, the results yielded BPs related to the activation of 
‘cellular response to cytokine stimulus’, ‘chemotaxis’, ‘inflam-
matory response’, ‘lipid metabolic process’, ‘macromolecule 
catabolic process’, ‘positive regulation of biosynthetic process’, 
‘neurogenesis’, ‘regulation of cell differentiation’, ‘regulation 
of peptidase activity’, ‘regulation of transport’, ‘response to 
external biotic stimulus’ and ‘response to wounding’ (Fig. 4A). 
For the downregulated groups, the results yielded BPs related 
to the activation of ‘ion transport’, ‘neuron differentiation’, 
‘positive regulation of cell death’, ‘positive regulation of cell 
proliferation’, ‘positive regulation of cellular component 
biogenesis’, ‘positive regulation of signaling’, ‘regulation of cell 
cycle process’ and ‘regulation of ion transport’ (Fig. 4B).

To obtain an improved understanding of the functional 
involvement of these candidate genes, pathway‑based func-
tional enrichment analyses was performed using ClueGO and 
CluePedia. A κ score >0.4 was set as the criterion. These genes 
were involved in pathways associated with ‘amyotrophic lateral 
sclerosis (ALS)’ [neurofilament light (NEFL) neurofilament 
medium], ‘axon guidance’ [ephrin A3 (EFNA3) and plexin A1 
(PLXNA1)], ‘cellular senescence’ [insulin like growth factor 
binding protein 3 (IGFBP3) and TRAF3 interacting protein 2 
(TRAF3IP2)], ‘complement and coagulation cascades’ 
[serpin family A member 5 (SERPINA5) and serpin family 

Table II. Topological parameters of network.

Parameters	 Value

y=βxα	 y=73.313x‑1.347

R2	 0.865
Correlation	 0.946
Clustering coefficient	 0.2
Network centralization	 0.118
Network density	 0.002

Table III. Top 20 hub genes.

No.	 Gene name	D egree	 Gene expression

1	I SG15	 185	U pregulated
2	 PCK1	 85	U pregulated
3	NEDD 9	 50	D ownregulated
4	 TMSB4X	 44	U pregulated
5	 SYT1	 44	U pregulated
6	I GFBP3	 41	D ownregulated
7	NE FL	 41	U pregulated
8	 TENC1	 37	U pregulated
9	 TIMM44	 36	U pregulated
10	 HMMR	 35	U pregulated
11	A SB9	 34	D ownregulated
12	 TRAF3IP2	 34	D ownregulated
13	 KLF5	 32	U pregulated
14	 SERPINA3	 31	U pregulated
15	NE FM	 30	U pregulated
16	 PHC1	 29	D ownregulated
17	RA SGRF1	 29	D ownregulated
18	 SERPING1	 28	U pregulated
19	 MYCN	 27	D ownregulated
20	 SERPINA5	 26	U pregulated
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G member 1 (SERPING1)], ‘fat digestion and absorption’ 
[carboxyl ester lipase (CEL) and phospholipase A2 group IB 
(PLA2G1B)], ‘glucagon signaling pathway’ (PCK1 and solute 
carrier family 2 member 2), ‘influenza A’ [serine protease 2 
(PRSS2) and transmembrane serine protease 2 (TMPRSS2)], 

Table IV. Candidate gene identification for type 2 diabetes 
mellitus.

A, Upregulated genes, n=46

Gene name	 PIMID

CCR4	 PMID: 17244154, PMID: 12464673
CEL	 PMID: 19760265
CKS2
CPA2
CTRB1
DKK3
DPYSL3
EFHD2
EFNA3
FHIT
FXYD3	 PMID: 25058609
GAD1
GIPC2
HMMR
ISG15	 PMID: 25031023
KANK4
KLF5
MDFIC
NCF4
NEFL
NEFM
NEU3	 PMID: 17292733
NHLH2
PAIP2B
PCK1	 PMID: 24089092, PMID: 25997216
PLA2G1B	 PMID: 16567514
PLXNA1
PRIM2
PRSS2
REG1A
REG1B
RENBP
RPS19BP1
SERPINA3	 PMID: 28150914
SERPINA5
SFTPD
SIX6	 PMID: 23478426
SLC22A3
SMOC1	 PMID: 28163738
SPINK1
SYT1
TCTEX1D1	 PMID: 15144884
TENC1
TIMM44	 PMID: 25749183
TMPRSS2	 PMID: 25749183, PMID: 9419343
TMSB4X

Table IV. Continued.

B, Downregulated, n=37

Gene names	 PIMID

SERPING1	 PMID: 23277452
ANKRD23	 PMID: 26398569
ASB9
CDK2AP2
CHD5
CHL1	 PMID: 22768844
CTGF	 PMID: 22045431
EDN3
ESM1	 PMID: 27756187
FAM105A	 PMID: 20644627
GALNT14
GLIS3	 PMID: 23737756
IGFBP3	 PMID: 22554827, PMID: 26880678
KCNG3
LPAR3
MBNL3
MCOLN3
MYCN
NEDD9
NXPH1
ODC1
PCOLCE2
PHC1
PIGA
PLA1A
PPM1E	 PMID: 20801214
PPP1R1A	 PMID: 25489054
RASGRF1
RCAN2
SLC2A2	 PMID: 28052964
TMEM27	 PMID: 24905913
TMEM37	 PMID: 29185012
TRAF3IP2	 PMID: 23085260
UBL3
UNC13B
ZNF610
ZNF697

PIMID, PubMed number.
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‘MAPK signaling pathway’ [EFNA3 and Ras protein specific 
guanine nucleotide releasing factor 1 (RASGRF1)], ‘neuro-
active ligand‑receptor interaction’ [lysophosphatidic acid 
receptor 3 (LPAR3) and PRSS2], ‘PI3K‑Akt signaling pathway’ 
(EFNA3, LPAR3 and PCK1), ‘pancreatic secretion’ [CEL, 
carboxypeptidase A2 (CPA2), chymotrypsinogen B1 (CTRB1), 
PLA2G1B and PRSS2], ‘pathways in cancer’ [CDC28 protein 
kinase regulatory subunit 2 (CKS2) and LPAR3), ‘phago-
some’ [neutrophil cytosolic factor 4 (NCF4) and surfactant 
protein D (SFTPD)], ‘protein digestion and absorption’ (CPA2, 
CTRB1 and PRSS2), ‘purine metabolism’ [fragile histidine 
triad diadenosine triphosphatase (FHIT) and DNA primase 
subunit 2), ‘Rap1 signaling pathway’ (EFNA3 and LPAR3), 
‘Ras signaling pathway’ (EFNA3, phospholipase A1 member 
A, PLA2G1B and RASGRF1), ‘small cell lung cancer’ (CKS2 
and FHIT), ‘synaptic vesicle cycle’ [synaptotagmin (SYT1) and 
unc‑13 homolog B (UNC13B)] and ‘transcriptional misregu-
lation in cancer’ (IGFBP3, MYCN proto‑oncogene, bHLH 
transcription factor and TMPRSS2) (Fig. 5).

miRNA‑target gene regulatory network. The miRNAs for DEGs 
were predicted using the two microRNA prediction tools through 
miRNet. The miRNA‑gene regulatory network was built, which 
included 22 upregulated target genes, 19 downregulated target 
genes and 12 miRNAs (Fig. 6). A total of 12 miRNAs were 
selected, including hsa‑mir‑335‑5p (degree=15), hsa‑mir‑8485 
(degree=4), hsa‑mir‑1277‑5p (degree=5), hsa‑mir‑190a‑3p 
(degree=5), hsa‑mir‑5011‑5p (degree=5), hsa‑mir‑124‑3p 
(degree=6), hsa‑mir‑7106‑5p (degree=5), hsa‑let‑7a‑5p (degree=5), 
hsa‑mir‑192‑5p (degree=5), hsa‑mir‑26b‑5p (degree=6), 
hsa‑let‑7b‑5p (degree=5) and hsa‑mir‑98‑5p (degree=5).

TF‑target gene regulatory network. In order to understand 
the topology and dynamics of the transcriptional regulatory 
network, TFs with a P<0.05 in BETA with its target genes via 
network analysis were built into a TF‑target gene regulatory 
network using Cytoscape. The network consisted of 127 edges 
and 66 nodes (Fig. 7). Based on the degree, the top 8 TFs 
were selected to be enhancers of SUZ12 polycomb repressive 
complex 2 subunit (SUZ12; degree=10), enhancer of zeste 2 
polycomb repressive complex 2 subunit (EZH2; degree=15), 
BCL6 transcription repressor (BCL6; degree=9), zinc finger 
protein 580 (ZNF580; degree=10), Kruppel like factor  9 
(KLF9; degree=8), MYC associated zinc finger protein 
(MAZ; degree=15), activating transcription factor 1 (ATF1; 
degree=12), structure specific recognition protein 1 (SSRP1; 
degree=10), WRN helicase interacting protein 1 (WRNIP1; 
degree=10), chromodomain helicase DNA binding protein 1 
(CHD1; degree=10) and SMAD5 (degree=11).

Discussion

T2DM is a multifactorial and multigenetic disease, and its 
pathogenesis is complex and largely unknown. A PPI network 
and a layered network for DEGs were constructed and it was 
observed that the majority of the proteins were localized in 
the cytoplasm, followed by the nucleus. The modules were 
mined from the PPI network and ISG15, PCK1, NEDD9, 
thymosin β 4 X‑linked (TMSB4X), SYT1, IGFBP3, NEFL, 
tensin 2, translocase of inner mitochondrial membrane 44 

(TIMM44), hyaluronan mediated motility receptor (HMMR), 
ankyrin repeat and SOCS box containing 9 and TRAF3IP2 
were screened as the candidate genes with the highest degree 
of connectivity.

ISG15 has an anti‑apoptotic capability on MIN6 cells (53). 
Upregulated ISG15 could be a potential therapeutic approach 
for type 1 diabetes (T1D) in pancreatic β‑cells (53). PCK1 has 
been a candidate gene for T2DM susceptibility (54). SYT1 is a 
Ca2+ sensor that plays a central role in insulin release, which is a 
characteristic deterioration in the early stages of T2DM (55,57). 
Higher levels of IGFBP3 might raise the risk of T2DM (57,58). 
The TIMM44 gene could be a new target for T2DM therapy (59). 
The procession of vascular diseases can be delayed by targeting 
TRAF3IP2 during diabetes and atherosclerosis, as TRAF3IP2 
reconciles high glucose‑induced NF‑κB and AP‑1‑dependent 
inflammatory signaling and endothelial dysfunction  (60). 
TRAF3IP2 may play a role in the pathogenesis of T1D (61). 
Notably, to the best of the authors' knowledge, ribosomal 
protein S19 binding protein 1 (RPS19BP1) and SFTPD have 
not been previously reported to be dysregulated in T2DM. 
RPS19BP1 is a direct regulator of NAD‑dependent deacetylase 
sirtuin‑1 (SIRT1), which is a promising molecular target for the 
treatment of obesity. RPS19BP1 can serve as a prognostic indi-
cator via the direct regulation of SIRT1 in obese patients with 
T2DM (62‑64). SFTPD is an element of lung innate immunity 
that strengthens pathogen clearance and regulates inflamma-
tory responses (65); its expression is decreased in obesity and 
in impaired glucose tolerance, both of which are related to the 
development of T2DM.

The functional assay for candidate genes using ClueGO 
and CluePedia in GO terms or KEGG pathways identified 
several molecular mechanisms, widely known to underlie the 
pathogenesis of T2DM. A number of vital processes/signaling 
pathways and key factors connected with the pathogenesis of 
T2DM were identified from the functional enrichment anal-
yses. In the upregulated group, a number of the corresponding 
encoded proteins were distributed in the extracellular and 
cytoplasmic layers. In particular, it was identified that 
the majority of BPs were associated with ‘inflammatory 
response’, ‘cellular response to cytokine stimulus’ and ‘lipid 
metabolic process’. In previous years, a number of studies 
have suggested that T2DM may be a chronic inflammatory 
response modulated by inflammatory factors (66‑69). Immune 
cell infiltration and high levels of cytokines were observed in 
the pancreas islets of T2DM (70,71), which caused differing 
degrees of impairment to pancreatic β‑cell activity, resulting 
in β‑cell failure (72,73). Lipotoxic effects lead to impaired 
insulin secretion and apoptosis of β‑cells, which can give rise 
to the β‑cell functional loss in the pathogenesis of T2DM (74). 
In the downregulated group, more corresponding encoded 
proteins were distributed in the plasma membrane and nucleus 
layers, and BPs were related to the ‘positive regulation of cell 
death’ and ‘positive regulation of cell proliferation’. Previous 
studies demonstrated that glucotoxic conditions are used to 
elevate β‑cell proliferation and neogenesis, and the inhibition 
of apoptosis and death lead to insulin release defects, which 
is typical of diabetes (75,76); β‑cell death is the major cause 
of T2DM. According to protein subcellular localization, the 
composition and biological value of proteins could change; 
analyzing PPIs may help identify the signaling pathways. The 
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Figure 4. Enriched GO network groups. (A) BP‑enrichment analysis using ClueGO and CluePedia for upregulated genes (red). (B) BP‑enrichment analysis 
using ClueGO and CluePedia for downregulated genes (green). Each node is a BP. Edges are links between the nodes and the length of edge indicates the 
degree of relatedness of two processes. The most significant parent or child term per group is displayed in the ClueGO grouped network as a group title. The 
size of the nodes indicates enrichment significance of the GO terms. Node color indicates the class. Mixed colors indicate that the particular node is owned by 
multiple classes. GO, Gene Ontology; BP, biological process.



Molecular Medicine REPORTS  22:  1868-1882,  20201876

present study identified three interactions among 83 candidate 
genes, including SERPINA3 and CTRB1 in the extracellular 
matrix, SERPING1 and thymosin b4 X‑linked (TMSB4X) 
in the cytoplasm, and SYT1 and UNC13B in the cytoplasm, 
which were shared between BPs, including protein input into 
the cytoplasm and cell‑cell signaling, which might indicate 
that their expression was altered by the signaling cascades 
of the extracellular‑plasma membrane‑cytoplasm or nucleus 
and alteration in cell development. Takahashi et al (77) identi-
fied that SERPINA3 levels were significantly increased in 
T2DM. The rs7202877 locus for CTRB1 and CTRB2, a known 
diabetes risk locus, might be able to prevent diabetes via the 
incretin pathway (78). SERPINA5 inhibits activated protein 
C (APC). APC has a potential preventative role for islet β‑cell 
damage and diabetes (79). A previous study observed that the 
plasma levels of APC were notably decreased in T2DM (80). 
SERPINA5 may be involved in T2DM via inhibited APC 
expression. TMSB4X is involved in cell proliferation, migra-
tion and differentiation, and its level increased in diabetic 
membranes (81).

The enriched KEGG pathways of candidate genes 
involved ‘MAPK signaling pathway’, ‘Ras signaling pathway’, 
‘PI3K‑Akt signaling pathway’, ‘Rap1 signaling pathway’ and 
‘purine metabolism’. Previous studies demonstrated that p38 
MAPK and ERK signaling were activated to inhibit obesity 
and associated T2DM (82,83). The Ras/Raf/ERK signaling 
pathway may control β‑cell proliferation, and Ras is essential 
for normal β‑cell development and function (84). Saltiel and 
Kahn (75) demonstrated that any obstacles in the PI3K/Akt 
insulin signaling pathway result in islet β‑cells insulin resis-
tance and lead to β‑cell function reduction. Previous studies 
demonstrated that the Rap1 pathway may yield targets for β‑cell 
dysfunction therapy in diabetes (85‑88). The pathway enrich-
ment results for candidate genes in the present study identified 
the MAPK. Ras, PI3K‑Akt and Rap1 signaling pathways in 
diabetes. RASGRF1 is mainly involved in the MAPK and Ras 
signaling pathways (89). Suppressing the expression of Rasgrf1 
may contribute to insufficient insulin secretion (90), which due 
to insulin resistance, causes T2DM. In addition, EFNA3 in the 
extracellular matrix was enriched in the PI3K‑Akt, MAPK, 

Figure 5. Group of significant Kyoto Encyclopedia of Genes and Genomes pathways of differentially expressed genes. Each node is a main pathway and 
their relation to genes (red is upregulated and green is downregulated). The node size indicates the significance of the pathway and the edge between nodes 
indicates shared or common genes. Dissimilar colors of node indicate dissimilar functional groups. The most significant pathway of each group is highlighted 
in different colors.



LU et al:  POTENTIAL MARKERS IN TYPE 2 DIABETES MELLITUS VIA BIOINFORMATICS ANALYSIS 1877

Rap1 and Ras signaling pathways. EFNA3 is an upstream gene 
of the MAPK signaling pathway and the PI3K‑Akt signaling 
pathway (91). Therefore, it was hypothesized that a low expres-
sion of EFNA3 may regulate β‑cell proliferation by activating 
Ras/Raf/MEK/ERK. FHIT, a protein product involved in 
purine metabolism that participates in the T2DM pathway, 
is expressed in the pancreas (92). Its single‑nucleotide poly-
morphism (rs3845971) was related to an intensified risk of 
T2DM (93). FHIT increases adenosine‑diphosphate in the 
purine metabolism pathway (94). Therefore, FHIT may induce 
β‑cell apoptosis in the pancreas due to T2DM.

miRNA‑target gene interaction networks were constructed 
from 12 miRNAs. HMMR, ubiquitin like 3, ornithine decarbox-
ylase 1, muscleblind like splicing regulator 3 and procollagen 
C‑endopeptidase enhancer 2 (PCOLCE2) were regulated by 
hsa‑miR‑192‑5p. Connective tissue growth factor (CTGF), 

family with sequence similarity 105, member A (FAM105A), 
MyoD family inhibitor domain containing, soluble carrier 
family 22 member 3, IGFBP3, CKS2 and EF‑hand domain 
family member D2 were regulated by hsa‑miR‑124‑3p. Protein 
phosphatase 1 regulatory inhibitor subunit 1 A (PPP1R1A), C‑C 
motif chemokine receptor 4 (CCR4), SYT1, LMBR1 domain 
containing 2, C‑type lectin domain containing 11A, NLR family 
pyrin domain containing 13, SERPINA3, protein phosphatase, 
Mg2+/Mn2+ dependent 1E (PPM1E), GIPC PDZ domain 
containing family member 2, NCF4, SERPING1, SIX homebox 
6 CTRB1, CEL, cell adhesion molecular L1 like (CHL1), 
SFTPD and PLXNA1 were regulated by hsa‑miR‑335‑5p. 
It was observed that hsa‑miR‑192‑5p, hsa‑miR‑124‑3p and 
hsa‑miR‑335‑5p appeared to regulate the majority of the 
candidate genes identified in T2DM in the present study. It was 
previously identified that the downregulation of miR‑192‑5p 

Figure 7. TF‑target gene regulatory network. Red indicates upregulated genes, green indicates downregulated genes and blue indicates TFs. TF, transcription factor.

Figure 6. miRNA‑target gene regulatory networks. The red diamonds indicate upregulated genes, the green diamonds indicate downregulated genes and the 
blue squares indicate miRNAs. miRNA/miR, microRNA.
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usually occurs in the more extreme stages of diabetes (95). 
PCOLCE2, a collagen‑related gene, is significantly reduced 
in T2DM (96). Zhu et al (97), identified that the expression 
level of hsa‑miR‑124‑3p is decreased in patients with T2DM [9 
high‑body mass index (BMI) and 1 low‑BMI] CTGF expres-
sion, a vital adjudicator of progressive pancreatic fibrosis, is 
elevated in T2DM (98). FAM105A is reported to be associated 
with T2DM (36). miR‑335‑5p expression was increased by 
islets in a diabetic Goto‑Kakizaki‑rat model (99). PPP1R1A has 
previously been identified as a potential participant and experi-
mentally validated in the pathogenesis of islet dysfunction in 
T2DM (100). The ratio of CXCR3 to CCR4 receptor expression 
was positively correlated with the duration of T1D (r=0.947; 
P=0.0004) (101). The expression of SERPINA3 was increased 
significantly in T2DM and can be used for the early detection 
of T2DM (77). PPM1E is a potential drug target for diabetic 
therapies (102). The CTRB1/2 locus influences the susceptibility 
and treatment for diabetes via the incretin pathway (78). It was 
previously identified that mutations for the highly polymorphic 
CEL gene can be a rare cause of monogenic diabetes (103). 
CHL1 affects insulin secretion in INS‑1 cells and has been 
identified as being potentially involved in T2DM  (104). 
SFTPD expression was decreased in patients with T2DM (65). 
Therefore, has‑miR‑8485, has‑miR‑1277‑3p, has‑miR‑190a‑3p, 
has‑miR‑5011‑3p, has‑let‑7a‑5p, has‑let‑7b‑5p, has‑miR‑98‑5p, 
has‑miR‑7106‑5p and has‑miR‑26b‑5p may also be involved 
in T2DM by potentially regulating the expression of various 
candidate genes, such as CTGF, PCK1, PPP1RA, PCOLCE2, 
FAM105A, TRAF3PI2 and neuraminidase 3.

A TF‑target gene regulatory network was constructed, 
from which 10 TFs were identified and Smad5 was a poten-
tial target for T2DM treatment (105). The Forkhead box class 
O/Bcl6/cyclin D2 pathway connects nutrient and growth 
factor status to cell cycle control in pancreatic β‑cells, and 
should therefore be considered for its therapeutic potential 
in diabetes (106). Notably, 8 of these transcription regulatory 
factors, SUZ12, EZH2, ZNF580, KLF9, MAZ, ATF1, SSRP1, 
WRNIP1, CHD1 were shown to be involved in the development 
of T2DM by modulating the expression of various candidate 
genes such as ankyrin repeat domain 23 (ANKRD23), trans-
membrane protein 37 (TMEM37), PPP1R1A, PCK1, CTGF, 
ISG1, SSRP1, WRNIP1 and CHD1, which have not been previ-
ously reported to be dysregulated in T2DM. The present study 
predicted that these TFs might play key roles in the occurrence 
and development of T2DM. This result provided preliminary 
evidence that a lower expression of TMEM37 could reflect 
a decrease in β‑cell numbers in T2DM (107). ANKRD23, a 
diabetes‑related ankyrin repeat protein, was identified as a novel 
gene that is upregulated in the hearts of KKA(y) mice, a T2DM 
and insulin‑resistant animal model (108). Solimena et al (110) 
also identified that ANKRD23, PPP1R1A and TMEM37 were 
enriched in β‑cells and downregulated in T2DM. TMEM37 
prohibits Ca2+‑influx and insulin secretion in β‑cells (109).

The present study has some limitations. The number of 
samples was relatively inadequate, although the combining 
of multiple datasets can compensate for missing or unreliable 
information in any single dataset. Additionally, the present 
results are preliminary and descriptive. Integrative analysis 
of gene profiling data cannot entirely exclude false positive 
results. Furthermore, the present study only discussed mRNA 

expression and did not refer to the protein expression of the 
factors identified. Due to post‑transcription regulatory events, 
protein expression levels may or may not correlate with 
mRNA levels. However, the alteration of protein structure, 
function and interaction is the underlying mechanism of a 
number of diseases, including diabetes (110‑112). Therefore, 
some experiments, such as reverse transcription‑quantitative 
PCR (113,114), western blotting (115), cross‑linking immuno-
precipitation (116) or functional experimental validation, are 
needed to validate key genes, TFs and miRNAs and relevant 
proteins in T2DM development. Despite these limitations, 
the present study still provided insight for understanding the 
complicated underlying molecular mechanisms of T2DM.

Overall, the bioinformatics analysis of the present study 
identified potential markers that may play a potential role in the 
occurrence, development and treatment of T2DM. A total of 83 
candidate genes were selected, and ISG15, PCK1, SYT1, IGFBP3, 
TIMM44 and TRAF3IP2 could be the core genes of T2DM. 
Certain key BPs such as ‘inflammatory response’, ‘cellular 
responses to cytokine stimulus’, ‘lipid metabolic process’, ‘posi-
tive regulation of cell death’ and ‘positive regulation of cell 
proliferation’, and certain signaling pathways associated with 
the PI3K‑Akt, MAPK, Rap1 and Ras signaling pathways were 
identified to be involved in T2DM. The present study also iden-
tified miRNAs, including hsa‑miR‑192‑5p, hsa‑miR‑124‑5p and 
hsa‑miR‑335‑5p, and TFs, including Smad5 and Bcl6, that might 
be potential targets for the diagnosis and treatment of T2DM. 
In addition, has‑miR‑8485, has‑miR‑1277‑3p, has‑miR‑190a‑3p, 
has‑miR‑5011‑3p, has‑let‑7a‑5p, has‑let‑7b‑5p, has‑miR‑98‑5p, 
has‑miR‑7106‑5p and has‑miR‑26b‑5p, and TFs SUZ12, EZH2, 
ZNF580, KLF9, MAZ, ATF1, SSRP1, WRNIP1 and CHD1 have 
not been previously identified to be related to T2DM, to the best 
of the authors’ knowledge, while they and their target genes may 
serve as diagnostic indicators for patients with T2DM. To obtain 
more reliable correlation results, it is necessary to validate the 
predicted results with a series of verification experiments. The 
present study identified candidate genes for T2DM develop-
ment, which might be redefined as pathogenic genes for T2DM 
diagnosis and therapy. The experimental results could provide 
insight for future genomic individualized treatment of T2DM 
and help to identify the underlying molecular mechanisms that 
lead to T2DM.
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