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Abstract 

Background:  The early death and health problems of calves caused substantial economic losses in the dairy indus-
try. As the immune system of neonates has not been fully developed, the absorption of maternal immunoglobulin 
(Ig) from colostrum is essential in protecting newborn calves against common disease organisms in their early life. The 
overwhelming majority of Ig in bovine whey is transported from the serum. Therefore, Ig concentration in the colos-
trum and serum of dairy cows are critical traits when estimating the potential disease resistance of its offspring.

Results:  Colostrum, blood, and hair follicle samples were collected from 588 Chinese Holstein cows within 24 h after 
calving. The concentration of total IgG, IgG1, IgG2, IgA and IgM in both colostrum and serum were detected via ELISA 
methods. With GCTA software, genome-wide association studies (GWASs) were performed with 91,620 SNPs geno-
typed by GeneSeek 150 K (140,668 SNPs) chips. As a result, 1, 5, 1 and 29 significant SNPs were detected associated 
with the concentrations of colostrum IgG1, IgG2, IgA IgM, and serum IgG2 at the genome-wide level (P < 3.08E–6); 11, 
2, 13, 2, 12, 8, 2, 27, 1 and 4 SNPs were found significantly associated with total IgG, IgG1, IgG2, IgA and IgM in colos-
trum and serum at the suggestive level (P < 6.15E–5). Such SNPs located in or proximate to (±1 Mb) 423 genes, which 
were functionally implicated in biological processes and pathways, such as immune response, B cell activation, inflam-
matory response and NF-kappaB signaling pathways. By combining the biological functions and the known QTL data 
for immune traits in bovine, 14 promising candidate functional genes were identified for immunoglobulin concentra-
tions in colostrum and serum in dairy cattle, they were FGFR4, FGFR2, NCF1, IKBKG, SORBS3, IGHV1S18, KIT, PTGS2, BAX, 
GRB2, TAOK1, ICAM1, TGFB1 and RAC3.

Conclusions:  In this study, we identified 14 candidate genes related to concentrations of immunoglobulins in 
colostrum and serum in dairy cattle by performing GWASs. Our findings provide a groundwork for unraveling the key 
genes and causal mutations affecting immunoglobulin concentrations in colostrum and important information for 
genetic improvement of such traits in dairy cattle.
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Background
The early survival rate and health of calves are impor-
tant factors affecting the production efficiency of the 
dairy industry. It was reported that approximately 31% 
of preweaning mortality events occurring in the first 
3 weeks of life were attributed to the low serum IgG con-
centration of calf (less than 10 mg/mL when sampled 
between 24 and 48 h of age) [1, 2]. Indeed, the immune 
system of neonates has not been fully developed depend-
ing almost entirely on the transport of maternal immu-
noglobulin (Ig) from colostrum after birth. Hence, the 
absorption of colostrum Ig during the first 24 h after 
birth is essential for the health and survival of the neo-
natal calf.

Immunoglobulins are the major protein components of 
colostrum, comprising 70–80% of the total protein con-
tent, while in mature milk, immunoglobulins constitute 
only 1–2% [3, 4]. There are three major immunoglobu-
lins in bovine serum and milk: IgG, IgM and IgA, with 
IgG consisting of two subclasses (IgG1 and IgG2). IgG1 
accounts for over 75% (46.4 mg/ml), and IgM (6.8 mg/ml), 
IgA (5.4 mg/ml) and IgG2 (2.9 mg/ml) are followed suc-
cessively [3]. Immunoglobulins are produced by B1-cells 
and possess a multitude of functions such as activate 
complement-mediated bacteriolytic reactions, augment 
the recognition and phagocytosis of bacteria by leuco-
cytes (opsonization), prevent the adhesion of microbes 
to surfaces, inhibit bacterial metabolism, agglutinate 
bacteria, and neutralize toxins and viruses [5]. Bovine 
colostrum immunoglobulins are notably transported 
from the serum and accumulated in the mammary gland 
during the prepartum dry period [6, 7]. Hence, delinea-
tion of the genetic architecture underlying the concentra-
tions of immunoglobulins in cows’ colostrum and serum 
is important for identifying ways to improve the survival 
rate of neonatal calves in dairy cattle.

Concentrations of immunoglobulins are typical quan-
titative characteristics controlled by multiple QTLs and 
polygenes [8]. Heritability estimates for IgG concentra-
tions in blood ranged from 0.27 to 0.64 in humans [9–
12]. Similarly, heritability estimates of immunoglobulins 
in serum and milk in dairy cattle ranged from 0.08 to 0.45 
[13–16]. Heritability for IgM was higher than IgG rang-
ing from 0.18 to 0.45 and from 0.08 to 0.23, respectively. 
Estimates of heritability in serum were generally higher 
than in milk (0.15–0.25) [13].

Genome-wide association studies (GWASs) have been 
performed for immunoglobulins in serum or mature 
milk. The first GWAS based on 2247 individuals from 

four European cohorts (CROATIA-Vis, CROATIA-
Korcula, Orkney Complex Disease Study and North-
ern Swedish Population Health Study) identified 9 
genome-wide significant loci associate with IgG glyco-
sylation and 4 out of them contained genes encoding 
glycosyltransferases [17]. Another GWAS for IgG glyco-
sylation patterns in humans indicated that RUNX fam-
ily transcription factor 3 (RUNX3) was associated with 
decreased galactosylation and involved in both IgA class 
switching and B-cell maturation as well as T-cell differ-
entiation and apoptosis [18]. In pigs, 2 genome-wide and 
4 chromosome-wide significant SNPs were detected for 
IgG blocking percentage to CSF virus in serum by per-
forming GWAS [19]. Especially, a GWAS for blood nat-
ural antibodies in Canadian Holstein cows identified 23 
SNPs that were significantly associated with IgG con-
centration at genome-wide level [20]. Another GWAS 
for milk natural antibodies in Dutch Holstein-Friesian 
cattle identified some significant SNPs for IgG1 and IgM 
with candidate genes on Bos taurus autosome (BTA) 3, 
17, 18, and 21 that related to immunoglobulin structure 
and early B cell development [21]. However, there are few 
studies on gene identification for immunoglobulin con-
centrations in colostrum in dairy cattle so far. In addition, 
in bovine colostrum, the immunoglobulins were found 
mainly derived from serum [6, 7]. Hence, investigation 
on the concentrations of immunoglobulins in both colos-
trum and serum can better disentangle the genetic archi-
tecture underlying colostrum immunoglobulin traits. 
Here, we conducted genome-wide association studies for 
the concentrations of immunoglobulin components in 
colostrum and serum in a Chinese Holstein population 
to identify the functional genes that contributed to the 
phenotypic variation of colostrum immunoglobulins and 
provide molecular information for genetically improving 
such traits to increase calves’ disease-resistance.

Results
Statistics of phenotypes
In this study, we measured the concentrations of immu-
noglobulins in both colostrum and serum for 588 Chi-
nese Holstein cows. As a result, a total of 10 traits were 
recorded, including concentrations of total IgG, IgG1, 
IgG2, IgA and IgM. Means and the corresponding stand-
ard deviations for the original and corrected phenotypic 
values were shown in Table 1. The estimated heritability 
of total IgG, IgG1, IgG2, IgA and IgM concentrations in 
colostrum and serum ranged from was at 0.094 to 0.48 
and from 0.087 to 0.295, respectively (Table 2).

Keywords:  Genome-wide association study, Immunoglobulins, SNP, Immune capacity, Chinese Holstein
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Genome‑wide association study
After LD analysis, a total of 16,257 effectively independ-
ent tests number were suggested. Thus, the threshold 
P-value for genome-wide significant association was set 
at 3.08E–6 (0.05/16,257) and that for suggestive signifi-
cant association was 6.15E–5 (1/16,257) [22]. Based on 
the QQ plots (Figs. 1 and 2) and the estimated inflation 
factor (λ) of 0.98–1.03 for all traits, no population stratifi-
cation was observed.

With GCTA 1.90.2, we performed the GWASs for the 
10 traits. In colostrum (Fig.  1 and Table  3), significant 
associations between 11 SNPs and total IgG were found 
at the suggestive level (P < 6.15E–5). The significant SNPs 

were located on BTA 2 (1 SNP), 4 (3 SNPs), 6 (5 SNPs), 
18 (1 SNP), 22 (1 SNP). For IgG1, one genome-wide sig-
nificant SNP (P < 3.08E-6) on BTA 13 and two suggestive 
significant SNPs (P < 6.15E–5) on BTA 11 were detected. 
For IgG2, five genome-wide significant SNPs (P < 3.08E-
6) and 13 suggestive significant SNPs (P < 6.15E–5) were 
observed, locating on BTA 20 (1 SNP) and 21 (17 SNPs). 
There was one genome-wide significant SNP (P < 3.08E-
6) and two suggestive significant SNPs (P < 6.15E–5) 
detected associated with IgA, locating on BTA 5 (1 SNP) 
and 11 (2 SNPs). Twelve SNPs were significantly associ-
ated with IgM at the suggestive level (P < 6.15E–5), dis-
tributing on BTA 1 (2 SNPs), 10 (4 SNPs), 15 (5 SNPs) 
and 17 (1 SNP).

In serum (Fig.  2 and Table  4), eight SNPs were found 
significantly associated with total IgG at the sugges-
tive level (P < 6.15E–5), locating on BTA 3 (3 SNPs), 6 
(3 SNPs), 22 (1 SNP) and 30 (1 SNP). Two SNPs located 
on BTA 9 and 19 had significant associations with total 
IgG1 at the suggestive level (P < 6.15E–5). For IgG2, 29 
genome-wide significant SNPs (P < 3.08E-6) and 27 sug-
gestive significant SNPs (P < 6.15E–5) were detected, 
locating on 7 (1 SNP), 12 (3 SNPs), BTA 20 (1 SNP) and 
21 (51 SNPs). Additionally, one and four SNPs were sig-
nificantly associated with the concentration of IgA and 

Table 1  Means and standard deviations for the original and corrected concentrations of immunoglobulins in colostrum and serum 
(N = 588)

N sample number, Mean arithmetic mean, SD standard deviation, Min minimum, Max maximum, col_IgG col_IgG1, col_IgG2, col_IgA and col_IgM represented the 
concentration of total IgG, IgG1, IgG2, IgA and IgM in colostrum, respectively; ser_IgG, ser_IgG1, ser_IgG2, ser_IgA and ser_IgM represented the concentration of total 
IgG, IgG1, IgG2, IgA and IgM in serum, respectively

Traits Original Transformed

Mean (mg/ml) SD Min Max Mean SD Min Max

col_IgG 33.46 43.64 1.16 342.05 5.16 2.62 1.08 18.49

col_IgG1 14.89 7.64 0.24 44.83 3.72 1.04 0.49 6.7

col_IgG2 3.16 1.93 0.07 11.04 1.66 0.59 0.26 3.32

col_IgA 3.07 3.65 0.01 51.18 0.27 0.49 −1.91 1.71

col_IgM 5.31 3.38 0.09 20.86 0.62 0.35 −1.06 1.32

ser_IgG 8.36 3.34 0.68 22.9 2.84 0.57 0.82 4.79

ser_IgG1 1.03 0.7 0.01 5.52 0.97 0.31 0.09 2.35

ser_IgG2 13.68 6.26 0.69 42.36 3.6 0.83 0.83 6.51

ser_IgA 0.23 0.16 0.01 1.17 −0.74 0.4 −5.4 0.07

ser_IgM 2.25 1.71 0.01 14.93 0.24 0.35 −2.34 1.17

Table 2  The estimated heritability of concentrations of 
immunoglobulins in colostrum and serum

Traits Colostrum Serum

IgG 0.235 ± 0.069 0.141 ± 0.078

IgG1 0.125 ± 0.070 0.078 ± 0.084

IgG2 0.094 ± 0.067 0.087 ± 0.070

IgA 0.329 ± 0.083 0.295 ± 0.085

IgM 0.482 ± 0.092 0.206 ± 0.087

(See figure on next page.)
Fig. 1  Manhattan and Q-Q plots of the observed P-values for the concentrations of immunoglobulins in the colostrum. A and B Indicated IgG 
concentrations. C and D Indicated IgG1 concentrations. E and F Indicated IgG2 concentrations. G and H Indicated IgA concentrations. I and J 
Indicated IgM concentrations. The Manhattan plots presented −log10 (P-values) for genome-wide SNPs (y-axis) plotted against their respective 
positions on each chromosome (x-axis), the horizontal red and red dashed lines in the Manhattan plots indicated the genome-wide (3.08E–6) 
and suggestive significance (6.15E–5) thresholds, respectively. The Q-Q plots showed the observed −log10-transformed P-values (y-axis) and the 
expected −log10-transformed P-values (x-axis)
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Fig. 1  (See legend on previous page.)
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Fig. 2  Manhattan and Q-Q plots of the observed P-values for the concentrations of immunoglobulins in the serum. A and B Indicated IgG 
concentrations. C and D Indicated IgG1 concentrations. E and F Indicated IgG2 concentrations. G and H Indicated IgA concentrations. I and J 
Indicated IgM concentrations
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Table 3  The significant SNPs for concentrations of total IgG, IgG1, IgG2, IgA and IgM in colostrum

a col_IgG, col_IgG1, col_IgG2, col_IgA and col_IgM represented concentration of total IgG, IgG1 IgG2, IgA and IgM in colostrum, respectively
b Cow chromosome number
c Minor allele frequency
d standard error

Traitsa Chrb SNP name Position (bp) Major/minor 
allele

MAFc SNP effect SEd P-value

col_IgG 2 BovineHD0200028482 98,947,581 G/A 0.36 −12.63 3.10 4.70E-05

col_IgG 4 ARS-BFGL-NGS-67542 190,619 A/G 0.38 13.20 2.98 9.66E-06

col_IgG 4 ARS-BFGL-NGS-114472 253,919 C/A 0.38 13.18 2.98 9.66E-06

col_IgG 4 ARS-BFGL-NGS-102812 360,794 G/A 0.38 13.18 2.98 9.66E-06

col_IgG 6 BovineHD0600021193 76,307,745 A/G 0.29 14.03 3.34 2.66E-05

col_IgG 6 BovineHD0600021227 76,365,244 G/A 0.29 14.08 3.34 2.45E-05

col_IgG 6 BovineHD0600021233 76,396,527 A/G 0.29 14.08 3.34 2.45E-05

col_IgG 6 Hapmap50522-BTA-98140 76,718,463 A/G 0.40 12.50 3.11 5.94E-05

col_IgG 6 BovineHD0600021300 76,762,984 A/C 0.41 12.70 3.07 3.57E-05

col_IgG 18 ARS-BFGL-NGS-88483 40,843,328 A/G 0.49 −13.35 2.94 5.47E-06

col_IgG 22 BovineHD2200017739 60,902,629 A/C 0.24 15.87 3.41 3.18E-06

col_IgG1 11 ARS-BFGL-NGS-27262 32,766,825 A/T 0.35 −0.31 0.07 2.94E-05

col_IgG1 11 BovineHD1100011957 40,807,680 A/G 0.35 −0.30 0.07 6.15E-05

col_IgG1 13 ARS-BFGL-NGS-11585 17,407,043 C/A 0.34 −0.39 0.08 5.10E-07

col_IgG2 20 BovineHD2000021006 71,896,856 G/A 0.27 0.24 0.04 7.30E-10

col_IgG2 21 BovineHD2100019814 67,542,721 A/C 0.36 0.16 0.04 1.09E-05

col_IgG2 21 BovineHD4100015366 67,786,313 A/G 0.42 0.14 0.04 4.99E-05

col_IgG2 21 ARS-BFGL-NGS-86477 68,399,787 A/C 0.48 −0.14 0.04 4.11E-05

col_IgG2 21 BovineHD2100020225 69,289,258 A/G 0.33 0.15 0.04 1.64E-05

col_IgG2 21 BovineHD2100020241 69,357,379 A/C 0.42 0.16 0.04 1.18E-05

col_IgG2 21 ARS-BFGL-NGS-115062 69,395,154 G/A 0.44 0.15 0.04 1.73E-05

col_IgG2 21 BovineHD2100020341 69,673,486 A/G 0.36 0.17 0.03 1.56E-06

col_IgG2 21 BovineHD2100020413 69,920,970 G/A 0.38 0.14 0.03 5.64E-05

col_IgG2 21 BovineHD2100020670 70,592,463 A/C 0.41 0.14 0.03 5.65E-05

col_IgG2 21 ARS-BFGL-NGS-2644 70,608,408 A/G 0.35 0.18 0.04 1.36E-06

col_IgG2 21 BovineHD2100020676 70,621,565 G/A 0.35 0.18 0.04 8.02E-07

col_IgG2 21 BovineHD2100020685 70,655,075 A/G 0.32 0.20 0.04 1.56E-07

col_IgG2 21 BovineHD2100020689 70,672,433 A/G 0.38 0.16 0.04 6.43E-06

col_IgG2 21 BovineHD2100020696 70,687,439 G/A 0.37 0.15 0.03 1.43E-05

col_IgG2 21 ARS-BFGL-NGS-73522 70,702,245 G/A 0.35 0.17 0.04 3.47E-06

col_IgG2 21 BovineHD2100020833 71,318,798 A/G 0.29 0.17 0.04 4.71E-06

col_IgG2 21 BovineHD2100020853 71,389,313 G/A 0.25 −0.17 0.04 4.96E-05

col_IgA 1 BovineHD0100012272 43,118,172 C/A 0.43 0.16 0.03 3.73E-06

col_IgA 1 BovineHD0100012276 43,138,880 C/A 0.43 0.16 0.03 2.16E-06

col_IgA 5 BovineHD0500021305 74,998,613 G/A 0.34 −0.15 0.03 6.46E-06

col_IgM 1 BovineHD0100012272 43,118,172 C/A 0.43 0.10 0.02 1.53E-05

col_IgM 1 BovineHD0100012276 43,138,880 C/A 0.43 0.10 0.02 1.02E-05

col_IgM 10 BovineHD1000019825 69,080,826 C/A 0.15 −0.13 0.03 1.23E-05

col_IgM 10 BovineHD1000019983 69,718,494 A/C 0.31 −0.10 0.02 1.78E-05

col_IgM 10 BovineHD1000024944 87,623,949 A/G 0.44 0.09 0.02 4.44E-05

col_IgM 10 BovineHD1000024954 87,671,849 A/G 0.44 0.09 0.02 4.44E-05

col_IgM 15 BovineHD1500000388 1,498,954 G/A 0.49 0.09 0.02 4.89E-05

col_IgM 15 BovineHD1500000626 2,664,438 A/G 0.48 −0.10 0.02 8.90E-06

col_IgM 15 BovineHD1500000698 3,061,918 A/G 0.35 −0.10 0.02 1.22E-05

col_IgM 15 BTB-01900838 4,285,360 A/G 0.32 0.10 0.02 3.98E-05

col_IgM 15 BovineHD1500001009 4,395,956 G/A 0.31 0.09 0.02 5.07E-05

col_IgM 17 ARS-BFGL-NGS-117653 73,315,120 A/C 0.40 −0.09 0.02 3.30E-05
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IgM at the suggestive level (P < 6.15E–5), respectively. 
Significant SNPs were located on BTA 15 (1 SNP), BTA6 
(2 SNPs), 7 (1 SNP) and 17 (1 SNP).

Candidate genes and function analysis
After comparing to the reference genes (UMD 3.1), a 
total of 423 genes that contained or were adjacent to (± 
1 Mb) the significant SNPs were mapped, including 392 
protein-coding genes, 30 non-coding RNAs and 1 pseu-
dogene (Additional file 1: Table S1).

To further investigate the biological functions of these 
candidate genes, we performed GO and KEGG analysis 
and observed that 73 genes were enriched in immune-
related biological processes and pathways such as adap-
tive immune response based on somatic recombination 
of immune receptors built from immunoglobulin super-
family domains, immune response, B cell activation, 
inflammatory response, and NF-kappaB signaling path-
ways (Additional  file 2: Table  S2). Simultaneously, we 
compared the physical positions of the 423 genes with 
the peak of the known QTLs that have been shown 
associated with immune capacity in dairy cattle (Cattle 
QTLdb), including IgG level, FMDV peptide-induced cell 
proliferation, ConA-induced cell proliferation and Clini-
cal mastitis. Consequently, 226 genes were found located 
within the QTL regions with a distance to the peak posi-
tions of less than 1.0 cM.

Integrating the results of GO/KEGG and QTL data, 
14 overlapping genes were considered as promising 
candidates for the concentrations of immunoglobulins 
in colostrum and serum (Table  5). They were fibroblast 
growth factor receptor 4 (FGFR4), fibroblast growth fac-
tor receptor 2 (FGFR2), neutrophil cytosolic factor 1 
(NCF1), inhibitor of nuclear factor kappa B kinase regu-
latory subunit gamma (IKBKG), sorbin and SH3 domain 
containing 3 (SORBS3), immunoglobulin heavy variable 
4–59 (IGHV1S18), KIT proto-oncogene, receptor tyros-
ine kinase (KIT), prostaglandin-endoperoxide synthase 2 
(PTGS2), BCL2 associated X, apoptosis regulator (BAX), 
growth factor receptor bound protein 2 (GRB2), Thou-
sand and one kinase 1 (TAOK1), intercellular adhesion 
molecule 1 (ICAM1), transforming growth factor beta 1 
(TGFB1), and Rac family small GTPase 3 (RAC3).

Discussion
In this study, we identified the chromosome regions 
related with immunoglobulin concentrations in colostrum 
and serum in dairy cattle by performing GWASs with high 
density SNP genotypes. Consequently, we detected 19, 
5, 74, 4 and 16 significant SNPs associated with the total 
IgG, IgG1, IgG2, IgA and IgM, respectively. To our knowl-
edge, this is the first investigation on the genetic architec-
ture of colostrum immunoglobulins in dairy cattle.

In general, a genomic inflation factor λ of < 1.05 sug-
gests no population stratification [23]. In this study, the 
calculated λ values ranged from 0.99 to 1.03 for concen-
trations of Ig concentration in colostrum and serum, sug-
gesting population stratification was well controlled.

In the present study, the significant SNPs associated 
with the concentration of IgG2 in colostrum and serum 
were almost entirely distributed on BTA21 from 63.3 to 
71.5 Mb. Similarly, two previous GWASs in Canadian 
and Dutch Holstein populations observed that the sig-
nificant SNPs for IgG in serum and IgG1 in mature milk 
were mainly located in BTA21 from 55.5 to 70.6 Mb and 
66.0 to 71.6 Mb, which contained the region identified 
in our study [20, 21]. The previous studies revealed that 
the main locus of bovine immunoglobulin heavy chain 
variable genes was located on approximately 71.5 Mb of 
BTA21 [24, 25], indicating this region may be related to 
the formation of immunoglobulin. Concurrently, the sig-
nificant SNPs for the total IgG and IgG1 concentrations 
in colostrum and serum distributed on multiple chro-
mosomes, including BTA2, 3, 4, 6, 9, 11, 18, 19, 22 and 
30, which is inconsistent with the previous two GWASs 
for IgG in serum and IgG1 in mature milk. Such incon-
sistency was most likely due to the huge difference of Ig 
formation mechanism and concentration between colos-
trum and mature milk. The majority of bovine colostrum 
Ig was transported from serum and accumulate in the 
mammary gland during the prepartum dry period, under 
the influence of prolactin and ceases abruptly at parturi-
tion, resulting in 200 times difference between Ig concen-
tration in colostrum and mature milk [26]. Furthermore, 
2 significant SNPs associated with IgM concentrations in 
colostrum and serum were detected on 73.3 and 74.2 Mb 
of BTA17, very close to 2 significant SNPs on BTA17 
(72.5 to 73.6 Mb) identified for IgM in mature milk in a 
previous GWAS in Dutch Holstein populations [20]. The 
remaining significant SNPs were first reported in this 
study.

Combing the biological functions of the 423 functional 
genes that contained or were closed to the significant 
SNPs with less than 1 Mb and the known QTL data for 
immune traits in bovine,14 promising genes were identi-
fied for Ig. Of these, 2, 2, 3 and 1 candidate genes were 
selected for the total IgG, IgG1, IgG2 and IgM concentra-
tion in colostrum, respectively. FGFR2 and FGFR4 belong 
to the fibroblast growth factor receptor family which has 
been shown to mediate pro-inflammatory signaling in 
the liver and airway epithelium in chronic obstructive 
pulmonary disease [27]. NCF1 encodes a cytosolic subu-
nit of neutrophil NADPH oxidase, an enzyme responsi-
ble for reactive oxygen species (ROS) production, which 
is pivotal in both host defense and the control of inflam-
mation [28, 29]. IKBKG encodes the regulatory subunit of 
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Table 4  The significant SNPs for concentrations of total IgG, IgG1, IgG2, IgA and IgM in serum

Traitsa Chrb SNP name Position (bp) Major/minor 
allele

MAFc SNP effect SEd P-value

ser_IgG 3 BovineHD0300032641 112,978,010 A/C 0.20 −0.18 0.04 6.12E-05

ser_IgG 3 BovineHD0300032649 113,013,960 A/G 0.20 −0.18 0.04 6.06E-05

ser_IgG 3 BovineHD0300032659 113,046,130 G/A 0.18 −0.20 0.05 1.31E-05

ser_IgG 6 ARS-BFGL-NGS-100863 54,826,213 G/A 0.26 0.17 0.04 1.10E-05

ser_IgG 6 BovineHD0600015431 56,407,206 G/A 0.21 0.17 0.04 5.20E-05

ser_IgG 6 BovineHD0600015455 56,506,982 G/A 0.20 0.17 0.04 5.55E-05

ser_IgG 22 ARS-BFGL-NGS-111049 46,902,036 G/A 0.35 0.15 0.04 3.38E-05

ser_IgG 30 BovineHD3000006683 20,390,212 A/G 0.40 0.16 0.04 1.39E-05

ser_IgG1 9 BovineHD0900016412 59,785,726 G/A 0.26 0.10 0.02 3.08E-05

ser_IgG1 19 BovineHD1900006278 21,930,663 A/G 0.27 −0.10 0.02 1.31E-05

ser_IgG2 7 BovineHD0700004317 15,718,585 G/A 0.47 0.20 0.05 4.79E-05

ser_IgG2 12 BovineHD1200006401 21,324,076 G/A 0.37 0.22 0.06 6.06E-05

ser_IgG2 12 BovineHD1200008568 28,980,452 C/A 0.34 0.24 0.06 4.55E-05

ser_IgG2 12 BovineHD1200024367 84,101,237 A/G 0.48 0.21 0.05 5.80E-05

ser_IgG2 20 BovineHD2000021006 71,896,856 G/A 0.28 0.47 0.06 1.01E-14

ser_IgG2 21 BovineHD2100018564 63,334,736 A/C 0.41 −0.24 0.06 2.10E-05

ser_IgG2 21 BovineHD2100018787 63,926,754 G/A 0.47 −0.26 0.05 1.21E-06

ser_IgG2 21 BovineHD2100018795 63,954,059 G/A 0.35 0.24 0.06 1.89E-05

ser_IgG2 21 BTA-24891-no-rs 63,955,841 G/A 0.36 0.24 0.05 9.73E-06

ser_IgG2 21 BovineHD2100019235 65,578,768 A/G 0.48 −0.23 0.05 1.49E-05

ser_IgG2 21 BovineHD2100019547 66,578,213 A/G 0.40 −0.24 0.05 1.11E-05

ser_IgG2 21 BovineHD2100019656 66,910,728 G/A 0.42 0.28 0.05 2.64E-07

ser_IgG2 21 BovineHD2100019670 66,973,587 A/C 0.39 0.28 0.06 5.53E-07

ser_IgG2 21 ARS-BFGL-NGS-37313 66,988,787 C/A 0.40 0.26 0.05 2.58E-06

ser_IgG2 21 BovineHD2100019681 67,009,668 A/G 0.40 0.26 0.05 1.65E-06

ser_IgG2 21 ARS-BFGL-NGS-107488 67,030,857 A/G 0.31 −0.24 0.06 2.07E-05

ser_IgG2 21 ARS-BFGL-NGS-20339 67,088,847 G/A 0.33 0.26 0.06 2.57E-06

ser_IgG2 21 BovineHD2100019763 67,342,472 C/A 0.44 0.25 0.06 8.91E-06

ser_IgG2 21 BovineHD2100019814 67,542,721 A/C 0.36 0.31 0.06 3.08E-08

ser_IgG2 21 BovineHD2100019834 67,604,077 A/C 0.15 0.33 0.08 1.60E-05

ser_IgG2 21 BovineHD2100019854 67,706,221 G/A 0.30 −0.25 0.06 1.85E-05

ser_IgG2 21 BovineHD4100015366 67,786,313 A/G 0.42 0.31 0.06 2.07E-08

ser_IgG2 21 BovineHD2100019888 67,885,290 A/G 0.21 0.29 0.06 4.33E-06

ser_IgG2 21 BovineHD2100019906 67,946,189 A/G 0.32 0.27 0.06 3.43E-06

ser_IgG2 21 ARS-BFGL-NGS-86477 68,399,787 A/C 0.48 −0.27 0.06 1.11E-06

ser_IgG2 21 BovineHD2100020097 68,740,864 G/A 0.30 0.25 0.06 1.68E-05

ser_IgG2 21 BovineHD2100020157 69,009,950 A/C 0.44 0.27 0.05 1.05E-06

ser_IgG2 21 BovineHD2100021033 69,033,145 G/A 0.20 0.38 0.07 8.11E-09

ser_IgG2 21 BovineHD2100020203 69,206,894 G/A 0.33 −0.23 0.06 3.77E-05

ser_IgG2 21 BovineHD2100020225 69,289,258 A/G 0.33 0.31 0.05 1.15E-08

ser_IgG2 21 BovineHD2100020232 69,327,116 G/A 0.35 0.32 0.05 4.36E-09

ser_IgG2 21 BovineHD2100020241 69,357,379 A/C 0.42 0.25 0.06 4.78E-06

ser_IgG2 21 ARS-BFGL-NGS-115062 69,395,154 G/A 0.44 0.26 0.06 2.21E-06

ser_IgG2 21 BovineHD2100020269 69,440,566 A/G 0.29 −0.25 0.06 4.16E-05

ser_IgG2 21 BovineHD2100020314 69,587,749 G/A 0.36 −0.24 0.05 1.51E-05

ser_IgG2 21 BovineHD2100020317 69,613,677 G/A 0.24 0.28 0.06 1.47E-05

ser_IgG2 21 BovineHD2100020325 69,637,166 A/G 0.36 −0.23 0.05 3.79E-05

ser_IgG2 21 BovineHD2100020341 69,673,486 A/G 0.36 0.34 0.05 1.78E-10

ser_IgG2 21 BovineHD2100020413 69,920,970 G/A 0.38 0.30 0.05 5.65E-08
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the inhibitor of kappaB kinase (IKK) complex, which acti-
vates NF-kappaB resulting activation of genes involved in 
inflammation and immunity [30, 31]. SORBS3 encodes an 
SH3 domain-containing adaptor protein that regulates 
cell adhesion and signal transduction. The deficiency 
of adaptor protein could suppress vascular inflamma-
tion and inactivate Akt–nuclear factor κB signaling [32]. 
IGHV1S18 is an immunoglobulin heavy chain variable 
region that encodes Ig heavy chain and is directly related 
to the formation of immunoglobulins. KIT encodes a 
receptor tyrosine kinase that is associated with the ear-
liest neutrophil developmental stages [33]. PTGS2 could 
activate the NF-κB signaling pathway which plays a key 
role in regulating the immune response to infection [34].

Simultaneously, 2, 1, 1 and 2 candidate genes were 
opted for the concentration of IgG, IgG1, IgG2 and 
IgM in serum, respectively. Of these, BAX belongs to 
the BCL2 protein family which could regulate B cell 
homeostatic proliferation and apoptotic process [35]. 
GRB2 encodes growth factor receptor-bound protein 2, 
which could regulate B-cell maturation, B-cell memory 

responses and inhibits B-cell Ca2+ signaling [36]. Thou-
sand and one kinase 1 (TAOK1) could as a negative 
regulator of IL-17 to mediate signal transduction and 
inflammation, controlling colitis of inflammatory bowel 
disease [37]. ICAM1 encodes a cell surface glycopro-
tein which is typically expressed on endothelial cells and 
cells of the immune system. Upregulation of ICAM1 in 
a mechanism involving NF-қB could inhibit the Epstein-
Barr virus infection [38]. The expression level of TGFB1 
was associated with melanoma immune response [39]. 
The protein encodes by RAC3 is a member of the p160 
family of nuclear receptor coactivators that plays an 
important role in NF-kappaB activation [40].

Generally, all these genes played vital roles in the 
inflammation, neutrophil activation, resistance to 
viruses, NF-kappaB, B cell homeostasis and immune-
related process, which indicated the potentially impor-
tant roles of Ig in colostrum and serum in resistance to 
infectious diseases.

In the present study we identified 8 and 6 first-time 
candidate genes for immunoglobulins in dairy cattle 

a ser_IgG, ser_IgG1, ser_IgG2, ser_IgA and ser_IgM represented concentration of total IgG, IgG1 IgG2, IgA and IgM in serum, respectively
b Cow Chromosome number
c Minor allele frequency
d standard error

Table 4  (continued)

Traitsa Chrb SNP name Position (bp) Major/minor 
allele

MAFc SNP effect SEd P-value

ser_IgG2 21 ARS-BFGL-NGS-1345 69,939,350 C/A 0.42 0.26 0.05 1.47E-06

ser_IgG2 21 BovineHD2100020425 69,955,674 G/A 0.45 0.24 0.05 1.55E-05

ser_IgG2 21 BovineHD2100020439 70,000,656 A/G 0.45 0.27 0.06 1.66E-06

ser_IgG2 21 ARS-USDA-AGIL-
chr21–70,182,028-000470

70,182,028 C/G 0.38 0.23 0.05 2.74E-05

ser_IgG2 21 BovineHD2100020583 70,430,736 G/A 0.23 0.29 0.06 4.23E-06

ser_IgG2 21 BovineHD2100020653 70,537,404 A/G 0.18 0.38 0.07 1.09E-08

ser_IgG2 21 BovineHD2100020670 70,592,463 A/C 0.41 0.29 0.05 1.38E-07

ser_IgG2 21 ARS-BFGL-NGS-2644 70,608,408 A/G 0.35 0.38 0.06 3.24E-11

ser_IgG2 21 BovineHD2100020676 70,621,565 G/A 0.35 0.39 0.06 8.11E-12

ser_IgG2 21 BovineHD2100020685 70,655,075 A/G 0.32 0.39 0.06 2.23E-11

ser_IgG2 21 BovineHD2100020689 70,672,433 A/G 0.38 0.29 0.06 3.46E-07

ser_IgG2 21 BovineHD2100020696 70,687,439 G/A 0.37 0.32 0.05 2.50E-09

ser_IgG2 21 ARS-BFGL-NGS-73522 70,702,245 G/A 0.35 0.32 0.06 1.25E-08

ser_IgG2 21 Hapmap54369-rs29015082 71,109,676 A/G 0.45 −0.22 0.05 3.52E-05

ser_IgG2 21 BovineHD2100020833 71,318,798 A/G 0.29 0.32 0.06 4.01E-08

ser_IgG2 21 BovineHD2100020847 71,359,883 A/G 0.14 0.33 0.08 1.72E-05

ser_IgG2 21 BovineHD2100020883 71,479,429 A/G 0.16 0.43 0.07 2.43E-09

ser_IgA 15 BTA-91367-no-rs 60,316,301 A/G 0.47 −0.11 0.03 2.13E-05

ser_IgM 6 BovineHD0600009523 34,015,077 G/A 0.28 −0.11 0.02 5.25E-06

ser_IgM 6 BovineHD0600014163 51,369,747 G/A 0.12 −0.14 0.03 4.59E-05

ser_IgM 7 ARS-BFGL-NGS-12159 19,220,954 A/C 0.44 −0.09 0.02 4.98E-05

ser_IgM 17 BovineHD1700021706 74,223,510 G/A 0.17 −0.12 0.03 2.79E-05
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colostrum and serum, respectively. From the breeding 
perspective, our findings provide important molecular 
information for the genetic improvement program on 
health and disease-resistance traits in dairy cattle. On 
the other hand, as the absence of biological validation 
and the measurements of serum Ig in the offspring, 
further in-depth investigations are needed to bet-
ter understand the genetic mechanisms on how these 
genes regulated and impacted the formation of immu-
noglobulins in colostrum before applying them on the 
breeding of dairy cattle.

Conclusion
In this study, we conducted genome-wide association 
studies for the concentrations of immunoglobulins in 
colostrum and serum in Chinese Holstein. A total of 36 
genome-wide and 82 suggestive significant SNPs were 
detected for the total IgG, IgG1, IgG2, IgA and IgM 
traits, in which the main quantitative trait loci for immu-
noglobulins were on BTA6 and 21. Combining the iden-
tified significant SNPs, functional enrichment, and the 
known QTL data, we identified 14 promising candidate 
genes for the concentration of IgG and IgM in colostrum 
and serum, including FGFR4, FGFR2, NCF1, IKBKG, 
SORBS3, IGHV1S18, KIT, PTGS2, BAX, GRB2, TAOK1, 
ICAM1, TGFB1 and RAC3. Our findings provided new 
insights into the genetic architectures underlying immu-
noglobulins concentrations in colostrum and important 

molecular information for the genetic improvement pro-
gram on these traits in dairy cattle.

Methods
Animals and phenotypes
The animals used in this study consist of 588 Chinese Hol-
stein cows daughters of 44 sires from 10 dairy farms in the 
Beijing Dairy Cattle Center and the Beijing Sunlon Live-
stock Development Company Limited. The pedigree con-
tained 1839 animals and was provided by the Beijing Dairy 
Cattle Center. The average number of daughters per sire 
was 13.4. Cows ranged from parity 1 to 4 (mean = 2.52). 
The blood serum and colostrum samples were taken from 
each cow during the first milking within 24 h after calving 
for measurement of immunoglobulins. Hair follicle sam-
ples were collected from each animal for SNP chip geno-
typing as well. The whole procedure for collection of the 
samples (blood, hair and colostrum) was implemented in 
strict accordance with the protocol approved by the Ani-
mal Welfare Committee of China Agricultural University 
(Permit number: DK996). The animals used in this study 
were all released to their own population for normal pro-
duction after sample collection.

The concentrations of immunoglobulins of each colos-
trum and serum sample were measured, including total 
IgG (Bovine IgG ELISA Quantitation Set E10–118, Bethyl 
Laboratories, Montgomery, TX, USA), IgG1 (Bovine 
IgG1 ELISA Quantitation Set, E10–116), IgG2 (Bovine 
IgG2 ELISA Quantitation Set, E10–117), IgA (Bovine IgA 

Table 5  The list of candidate genes contained or nearby the significant SNPs associated with total IgG, IgG1, IgG2, IgA and IgM in the 
colostrum and serum

a Cow chromosome number
b The position of gene was based on the UMD 3.1 assembly

col_IgG, col_IgG1, col_IgG2, col_IgA and col_IgM represented concentration of total IgG, IgG1 IgG2, IgA and IgM in colostrum; ser_IgG, ser_IgG1, ser_IgG2, ser_IgA 
and ser_IgM represented concentration of total IgG, IgG1 IgG2, IgA and IgM in serum

Gene ID Gene Name Chra Gene Startb Gene Endb Traits

ENSBTAG00000010543 FGFR4 18 39,936,163 39,946,911 col_IgG

ENSBTAG00000014064 FGFR2 18 41,823,602 41,930,655 col_IgG

ENSBTAG00000003305 NCF1 11 33,267,455 33,282,333 col_IgG1

ENSBTAG00000006268 IKBKG 11 40,501,901 40,519,263 col_IgG1

ENSBTAG00000014401 SORBS3 21 70,357,692 70,384,760 col_IgG2, ser_IgG2

ENSBTAG00000053635 IGHV1S18 21 71,529,984 71,530,481 col_IgG2, ser_IgG2

ENSBTAG00000002699 KIT 21 71,796,317 71,917,430 col_IgG2, ser_IgG2

ENSBTAG00000014127 PTGS2 10 69,263,775 69,271,399 col_IgM

ENSBTAG00000013340 BAX 6 55,985,201 55,989,210 ser_IgG

ENSBTAG00000004736 GRB2 6 56,754,111 56,818,428 ser_IgG

ENSBTAG00000000827 TAOK1 19 21,308,164 21,363,337 ser_IgG1

ENSBTAG00000010303 ICAM1 7 16,040,883 16,051,454 ser_IgG2

ENSBTAG00000020457 TGFB1 6 50,772,077 50,785,924 ser_IgM

ENSBTAG00000022927 RAC3 6 51,470,005 51,471,808 ser_IgM
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ELISA Quantitation Set, E10–131) and IgM (Bovine IgM 
ELISA Quantitation Set, E10–101). For further statisti-
cal analysis, the phenotypic values for the concentrations 
of total IgG, IgG1 and IgG2 in colostrum or serum were 
square root transformed to fit a normal distribution, 
simultaneously phenotypes for IgA and IgM concentra-
tions were log-transformed.

Genotyping and quality control
Genomic DNA was extracted from the hair follicle sam-
ples with the QIAamp® DNA Mini Kit (QIAGEN, Valen-
cia, CA, USA) for genotyping. A total of 588 individuals 
were genotyped with the GeneSeek GGP_HDv3 chip 
(150 K, including 140,668 SNP markers: GeneSeek, Lin-
coln, NE, USA).

Quality control was conducted on PLINK 1.90 software 
and the filtering processes were as follows: firstly, sam-
ples with all SNPs genotyping rate < 95% were deleted; 
then, SNPs with call rates < 90%, minor allele frequencies 
(MAF) < 0.1 and Hardy–Weinberg equilibrium (HWE) 
p-values < 10–6 were discarded [41, 42]. Thus, 563 indi-
viduals with 91,620 SNPs were kept for further analysis 
(Additional files 3 and 4).

Statistical analysis
Mixed Model based single locus Regression Analyses (MMRA)
We performed single-SNP association analysis for the 
individual phenotype in GCTA 1.90.2 with the following 
mixed linear model:

Where y is a vector of transformed phenotypes (the 
concentration of IgG, IgG1, IgG2, IgA and IgM in colos-
trum and serum) of all cows; μ is the overall mean; f is the 
vector of fixed effects, including herd (classes: 1 to 10), 
parity (classes: 1 = parity 1, 2 = parity 2, 3 = parity 3 and 
4 = parity 4) and season of calving (classes: 1 = March 
to May, 2 = June to August, 3 = September to November 
and 4 = December to February), X is an incidence matrix 
relating elements of f to y; c is the vector of the SNP gen-
otype indicators which take values 0, 1 or 2 correspond-
ing to the three genotypes 11, 12 and 22 (assuming 2 is 
the allele with a minor frequency), b is the regression 
coefficient of y on c; g is the vector of residual polygenic 
effects with g ~ N (0, Gσg

2) (where G is the genomic rela-
tionship matrix and σg

2 is the additive variance), Z is the 
incidence matrix of g; e is the vector of residual errors 
with e ~ N (0, Iσe

2) (where I is the indentity matrix and 
σe

2 is the residual variance). The heritability estimation 
were carried out by GCTA 1.90.2 software.

The existence of linkage disequilibrium (LD) of SNPs 
in every chromosome may lead to over-correction when 
using Bonferroni adjustments [41, 43]. Hence, we used an 

y = 1µ+ Xf + bc+ Zg + e

effectively independent test number to define the thresh-
olds for genome-wide/suggestive significant associations 
based on the assessed number of independent markers 
and linkage disequilibrium blocks for markers on every 
chromosome [22].

Population stratification can result in spurious associ-
ation findings in a GWAS [42]. Thus, we calculated the 
genomic inflation factor (λ) and depicted quantile-quan-
tile (Q-Q) plot to assess stratification in our study popu-
lation using qqman packages in R 3.6.0.

Identification of candidate genes
To further identify the candidate genes associated with 
the concentrations of immunoglobulins, we selected the 
functional genes that contained or were adjacent to the 
significant SNPs with less than 1 Mb based on the bovine 
gene set in RefSeq database (Bos_taurus_UMD_3.1; http://​
hgdow​nload.​cse.​ucsc.​edu/​golde​nPath/​bosTa​u6/​datab​
ase/). Additionally, to figure out the biological functions of 
these genes, Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathway enrichment 
were implemented with DAVID Bioinformatics Resources 
(https://​david.​ncifc​rf.​gov). In addition, we also compared 
the physical position of these functional genes with the 
reported quantitative traits loci (QTLs) for immune capac-
ity traits in the Cattle QTL database (https://​www.​anima​
lgeno​me.​org/​cgi-​bin/​QTLdb/​BT/​index).
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