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Simple Summary: Malignant pleural mesothelioma (MPM) is an incurable asbestos-related thoracic
cancer for which early-stage diagnosis remains a major challenge. Volatile organic compounds
(VOCs), which are metabolites present in exhaled breath, have proven to be promising non-invasive
biomarkers for MPM. However, without the necessary validation in an independent group of in-
dividuals, clinical implementation is hampered. Therefore, we performed external validation of a
VOC-based prediction model for MPM, which initially revealed a poor performance and thus poor
generalisability of the model. However, subsequent updating of the model improved its performance
in the validation cohort, resulting in a more generalisable model with a screening potential, which
could significantly impact MPM management.

Abstract: During the past decade, volatile organic compounds (VOCs) in exhaled breath have
emerged as promising biomarkers for malignant pleural mesothelioma (MPM). However, as these
biomarkers lack external validation, no breath test for MPM has been implemented in clinical practice.
To address this issue, we performed the first external validation of a VOC-based prediction model for
MPM. The external validation cohort was prospectively recruited, consisting of 47 MPM patients and
76 asbestos-exposed (AEx) controls. The predictive performance of the previously developed model
was assessed by determining the degree of agreement between the predicted and actual outcome
of the participants (patient/control). Additionally, to optimise the performance, the model was
updated by refitting it to the validation cohort. External validation revealed a poor performance
of the original model as the accuracy was estimated at only 41%, indicating poor generalisability.
However, subsequent updating of the model improved the differentiation between MPM patients
and AEx controls significantly (73% accuracy, 92% sensitivity, and 92% negative predictive value),
substantiating the validity of the original predictors. This updated model will be more generalisable
to the target population and exhibits key characteristics of a potential screening test for MPM, which
could significantly impact MPM management.
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1. Introduction

Malignant pleural mesothelioma (MPM) is an aggressive, incurable thoracic cancer that
is strongly associated with asbestos exposure. Despite recent advances in treatment, the five-
year survival rate remains only 5 to 10% [1]. It is believed that screening and early detection
could reduce mortality, which prompted an ongoing search for MPM biomarkers more than
30 years ago [2,3]. An emerging field of research is the analysis of volatile organic compounds
(VOCs) in exhaled breath, referred to as breathomics, which has been extensively studied as a
non-invasive approach for the diagnosis of a range of diseases including MPM [4–6]. VOCs
are considered suitable biomarker candidates as they reflect (patho)physiological processes in
the human body because they are (by)products of the cellular metabolism. After entering the
bloodstream and circulating to the lungs, these volatile compounds diffuse across the alveolar
membrane to eventually be exhaled through breath [4].

Different promising VOC-based prediction models for MPM have been proposed over
the years, but none of these have been implemented in clinical practice due to a lack of
external validation [7–9]. In biomarker development, confirmation of the performance in an
independent set of participants (different time and/or location) is compulsory to externally
validate the promising findings of the discovery phase. This is essential to evaluate the gen-
eralisability of the developed models, ensuring reliable and reproducible predictions [10].
Although external validation in the metabolomics field is highly recommended, many
studies fail to perform this and only report internal validation results, which tend to be
overoptimistic; so, reproducibility remains a major issue in breath research [11].

Previously, our research group determined the breath VOC profiles of MPM patients and
asbestos-exposed (AEx) controls in an initial discovery study using ion mobility spectrometry
(IMS) and reported differentiation between both groups with 85% accuracy [12]. To address
the lack of validation studies in (MPM) breath research, here, we now performed external
validation of this prediction model for MPM in an independent group of individuals, sampled
several years after the initial discovery study. Additionally, to further optimise the model’s
performance, the model was updated by refitting it to the validation cohort using the predictor
variables of the original model as input features. The TRIPOD guidelines for good reporting
of studies validating multivariate prediction models were followed [13].

2. Materials and Methods
2.1. Study Design and Population

A multicentre, cross-sectional, case-control study was set up to recruit the external
validation cohort. The study was approved by the ethics committee of the Antwerp
University Hospital (Belgian registration number B300201837007) and was conducted in
accordance with the Helsinki Convention. Participants were recruited from October 2018 to
November 2021. MPM patients were randomly included after referral through the Thoracic
Oncology department of the Antwerp University Hospital (Belgium). MPM diagnosis was
histologically confirmed, and patients were treatment-naïve at the time of participation.
At-risk controls with a known history of asbestos exposure (AEx), both asymptomatic
individuals and patients with benign asbestos-related diseases (pleural plaques, asbestosis,
and/or pleuritis), were recruited through the occupational health departments of two
companies that used asbestos until 1997, and through an online advertisement on the
website of the Antwerp University Hospital. Upon inclusion, participants gave written
informed consent and completed two questionnaires to check if the inclusion criteria were
met and to collect data about their demographics and asbestos exposure history. None of
the participants had taken part in the initial discovery study.

2.2. Exhaled Breath Sampling and Analysis Procedure

Participants were asked not to eat, drink, or smoke at least two hours prior to sam-
pling. Breath sampling and analysis were carried out using a multicapillary column/ion
mobility spectrometer (MCC/IMS; BioScout, B&S Analytik, Dortmund, Germany) with
an integrated breath sampler (SpiroScout, Ganshorn Medizin Electronic, Niederlauer, Ger-
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many), according to a previously validated protocol [12,14]. An additional viral filter was
placed before the inlet of the MCC/IMS device to protect the participants from potential
cross-contamination of SARS-CoV-2 during the COVID-19 pandemic. After every breath
sample, a background sample was taken by sampling 10 mL of room air. To minimise
external contamination, disposable mouthpieces and filters were used, and to remove
any potential contaminants, the MCC/IMS device was flushed with humid air between
sampling of different participants.

To assess any potential effect of the additional viral filter on the VOC measurements,
three test samples with a viral filter and three test samples without a viral filter were
obtained from a healthy subject.

2.3. Data Processing and Statistical Analysis
2.3.1. Data Pre-Processing

The raw MCC/IMS data consist of chromatograms, visualising individual VOCs
separated by their retention time (RT) and inverse reduced ion mobility (1/K0). The
software VisualNow (B&S Analytik, Dortmund, Germany) was used to pre-process the raw
data by (1) chromatogram alignment, (2) baseline correction, (3) normalisation to reactant
ion peak (RIP), (4) compensation for RIP-tailing, and (5) smoothening. After pre-processing,
VOCs were manually selected and analysed by an analysis expert blinded to the patient
outcome, resulting in a peak intensity for each VOC in each sample. To reduce the risk of
interference from potential confounding factors from ambient air, the alveolar gradient was
determined for each selected VOC by subtracting the peak intensity in the corresponding
background sample from the peak intensity in the breath sample. Those alveolar gradient
values were used as predictor variables in further statistical analysis.

The data of the six test samples were used to assess any potential effect of the additional
viral filter on the VOCs analysed in this study using the paired Wilcoxon signed rank test.

2.3.2. Model Validation

The model characteristics reported in the initial discovery study were obtained by
performing least absolute shrinkage and selection operator (lasso) regression with leave-
one-out cross-validation (LOOCV) [12]. The VOCs that were selected in at least 80% of the
folds of the LOOCV were considered the most important variables in the differentiation be-
tween MPM patients and AEx controls (with and without benign asbestos-related diseases).
To extract the final prediction model to be validated, we fitted a new lasso regression model
to the discovery dataset using the VOCs that were reported to be selected in at least 80%
of the folds as the input variables (Table 1). The advantages of lasso regression are that it
performs variable selection (which is particularly useful in cases with a large number of
features) and reduces overfitting by penalising the model. The performance of the final
prediction model was re-estimated through internal validation by LOOCV. The predictive
ability of the model was reflected by the corresponding receiver operating characteristics
(ROC) curve and the accompanying area under the curve (AUC).

External validation of the prediction model was performed by applying the model to
the validation cohort to predict the outcome of the independent samples (patient/control).
The cut-off value determined on the discovery cohort was used as the decision threshold.
The degree of agreement between the predicted and actual outcome of the participants
was determined and expressed in terms of sensitivity, specificity, negative predictive value
(NPV), positive predictive value (PPV), and accuracy.

Baseline clinical characteristics were compared within and between the discovery and
validation cohort. For continuous variables, the Student t-test or Mann–Whitney U test was
performed, after assessing normality. Categorical variables were compared using Fisher’s
exact test. For significant variables between both cohorts, Kendall’s τ rank correlation
coefficients were calculated to assess a possible association between the variable and the
VOCs of the model.
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Table 1. List of volatile organic compounds (VOCs) selected as important predictor variables in the
initial discovery study with their corresponding retention time (RT) and inverse reduced ion mobility
(1/K0). Data selected from [12].

VOC Peak RT (s) 1/K0 (V·cm−2)

P1 5.9 0.503
P7 6.6 0.578
P9 1.6 0.601
P15 4.5 0.715
P21 1.2 0.514
P26 4.2 0.689
P84 116.1 0.742
P88 5.5 0.657

P101 20.0 0.716
P122 8.0 0.610
P151 9.5 0.616
P153 253.3 0.599
P159 273.3 0.594
P161 8.9 0.781
P167 5.6 0.715
P173 146.9 0.658
P178 33.9 0.804
P236 3.6 0.733
P240 151.1 0.772

2.3.3. Model Updating

To update the prediction model, a new lasso regression was fitted to the validation
cohort using only the predictor variables of the original model as the input features. The
predictive performance of the updated model was estimated using LOOCV as the internal
validation procedure. As for the original prediction model, a ROC curve was constructed,
and the performance characteristics were determined.

3. Results
3.1. Participant Characteristics

In total, 123 participants were included in the validation study: 47 MPM patients and
76 AEx controls. The clinical characteristics of both the discovery and validation cohort are
shown in Table 2. No significant differences between both cohorts could be observed in
terms of sex, BMI, smoking status, and packyears. The AEx controls were also similar in
age, whereas the MPM patients in the validation cohort were slightly older than those in
the discovery cohort (69.99 vs. 66.43 years, respectively, p = 0.018). Within both cohorts, the
MPM patients were significantly older and had a slightly lower BMI compared with the
AEx controls.

3.2. Model Validation

The original prediction model, fitted to the discovery cohort, differentiated MPM patients
from AEx controls with 87% accuracy, as estimated by LOOCV (Table 3). Eleven VOCs were
selected by the lasso regression to be included in this prediction model, which were P1, P7,
P9, P15, P21, P26, P84, P88, P101, P122, and P236 (model specifications in Table S1). The
corresponding ROC curve is shown in Figure 1, which had an AUC of 92% (95% CI: 86–96%).

Prediction of the participants’ outcome of the external validation samples by this
original classification model appeared to be inaccurate as the accuracy was estimated at
only 41%. This poor performance was also reflected in the low sensitivity (53%), specificity
(33%), PPV (33%), and NPV (53%) values (Table 3). It must thus be stated that the external
validation of the original prediction model showed that the latter is not generalisable to the
general patient/control population.
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Table 2. Overview of the baseline clinical characteristics of the two participant classes in the discovery
and validation cohort.

MPM Patients AEx Controls

Discovery
Cohort

Validation
Cohort p-Value Discovery

Cohort
Validation

Cohort p-Value p-Value * p-Value **

Subjects 52 47 100 76
Sex (M/F)

Male 43 39 98 71
Female 9 8 1 a 2 5 0.241 a 0.001 a 0.078 a

Age 66.43 ± 8.31 69.99 ± 6.36 0.018 b 55.72 ± 6.62 55.73 ± 9.47 0.991 b <0.001 b <0.001 b

BMI 25.29 ± 3.10 25.40 ± 3.56 0.876 b 27.59 ± 3.84 27.25 ± 4.19 0.585 b <0.001 b 0.010 b

Smoking status
Never 19 22 34 33

Current 5 3 0.561 a 22 10 0.235 a 0.160 a 0.575 a

Ex 28 22 44 33

Packyears 2.65 5.25
0.962 c 5.80 1.50

0.170 c 0.356 c 0.686 c
(0.00–14.55) (0.00–20.00) (0.00–24.15) (0.00–15.00)

BARD
diagnosis

Pleural
plaques 35 6

Pleural
thickening 2 0

Asbestosis 3 2
Pleuritis 1 3

Values are presented as n, mean ± SD or median (Q1–Q3). AEx: asbestos-exposed; BARD: benign asbestos-
related disease; MPM: malignant pleural mesothelioma. a: Fisher’s exact test; b: T-test; c: Mann–Whitney U test.
*: comparison of MPM patients vs. AEx controls within the discovery cohort; **: comparison of MPM patients vs.
AEx controls within the validation cohort.

Table 3. Performance characteristics of the original prediction model, determined by internal and
external validation, and of the updated prediction model, determined by internal validation.

Original Model Updated Model

Internal Validation
(Study 2017)

External Validation
(Study 2022)

Internal Validation
(Study 2022)

Sensitivity 90.4 (80.0–96.4) 53.2 (39.0–67.0) 91.5 (80.8–97.2)
Specificity 85.0 (77.0–91.0) 32.9 (23.1–44.0) 61.8 (50.6–72.2)

PPV 75.8 (64.1–85.2) 32.9 (23.1–44.0) 59.7 (48.2–70.6)
NPV 94.4 (88.2–97.9) 53.2 (39.0–67.0) 92.2 (82.2–97.4)

Accuracy 86.8 (80.8–91.5) 40.7 (32.3–49.5) 73.2 (64.9–80.4)
Values are presented as percentages with their 95% confidence interval. NPV: negative predictive value;
PPV: positive predictive value.

As the age of the MPM patients was the only clinical characteristic to significantly differ
between the discovery and validation cohort, a correlation analysis was performed to assess
any association between this parameter and the VOCs of the prediction model. Of the 11 VOCs,
only P15 showed a weak correlation with age (Kendall’s τ = 0.172, p = 0.012; Table S2).

In addition, based on the test samples taken with and without an additional viral
filter, no significant effect could be observed of the viral filter on the VOCs analysed in
this study (Table S3).

3.3. Model Updating

To update the original model and to assess the validity of the 11 discriminatory VOCs
included in the original model, a new lasso regression was fitted to the external validation
cohort using this subset of 11 VOCs as the input variables. The VOCs selected by the lasso
and thus included in this updated model were P9, P88, P101, and P122 (model specifications
in Table S1). By updating the model, four out of the eleven VOCs of the original model
were retained as important predictors (P9, P88, P101, and P122), albeit with re-estimated
coefficients, while the other seven VOCs of the original model were considered irrelevant
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features for the prediction of the outcome and were removed from the model (P1, P7, P15,
P21, P26, P84, and P236).
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Figure 1. Receiver operating characteristics (ROC) curve of the original (discovery study) and
updated (validation study) prediction models, reflecting the models’ predictive ability as estimated
by leave-one-out cross-validation. The area under the curve (AUC) is 92% (95% CI: 86–96%) for the
original model and 75% (95% CI: 66–83%) for the updated model. The marked points (black dots)
correspond to the determined decision thresholds of both models (cut-off value original model: 0.369,
cut-off value updated model: 0.358).

With 73% accuracy, 92% sensitivity, and 62% specificity, the updated model showed an
improved performance on the validation samples compared with the original prediction
model (Table 3). The corresponding ROC curve is displayed in Figure 1 and had an AUC of
75% (95% CI: 66–83%).

4. Discussion

Research in the field of breathomics has led to a plethora of studies associating VOCs
with pathological conditions [15,16]. However, the lack of comprehensive validation studies
in this research field has caused VOC-based prediction models to be rarely implemented
in clinical practice. Considering all the effort that has gone into discovery studies, this
could be considered a substantial waste of research resources and time. Most of the studies
mainly focus on highlighting the great potential of VOCs as non-invasive biomarkers but
often fail to evaluate the performance of the model using independent data, which is key
to verifying the model’s applicability to the general patient population [17].

This study aimed to tackle this lack of external validation by performing the first
external validation study of a VOC-based prediction model for MPM. To evaluate the
reproducibility and generalisability of the model, an independent participant cohort was
included several years after the discovery study that reported differentiation of MPM
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patients from AEx controls with 85% accuracy, as estimated by a LOOCV procedure [12].
After extraction of the final prediction model and re-estimating its performance, we applied
this original model to the external validation cohort. This resulted in an important decline in
accuracy compared with the internal validation (from 87% to 41%). Such a strong reduction
in accuracy is a quite typical phenomenon in external validation studies, as the initial
model was designed to optimally fit the discovery cohort and thus potentially suffers from
overfitting [18]. Many factors could potentially have contributed to this drop in predictive
capacity, such as differences in sampling location, time, or interobserver variability during
VOC analysis. Despite the presence of automated peak detection methods, manual peak
selection by experts in the field is still the gold standard for the analysis of MCC/IMS data,
as this is less prone to overselection of peaks and yields a higher accuracy [19]. However,
because of the subjective nature of this manual process and the difference in analysis experts
between the discovery and validation study, the risk of interobserver variability inevitably
increased, which could have led to a less well fit of the model. As far as potential clinical
confounding factors are concerned, the discovery and validation cohort were well balanced
for sex, BMI, smoking status, and packyears. Only a small difference in age between the
MPM patients of both cohorts could be observed (69.99 vs. 66.43 years). However, the
correlation analysis within this patient group revealed that only one of the eleven VOCs
of the original model was weakly correlated with age. In addition, age-related effects
on breath VOC profiles are not uniformly acknowledged, and the studies that do show
any effect typically compared groups with much larger age differences, so it can thus be
assumed that this small age difference will not have impacted the results [20,21]. Therefore,
the reduced predictive performance should not be attributed to an imbalance in the known
clinical characteristics. It can hence be stated that the decreased model performance is
probably due to a combination of an unlimited list of potential influencing factors about
which one can only speculate, but which certainly require more attention from the breath
research community.

External validation showed poor performance of the original model, which is, as
mentioned before, a quite typical phenomenon. In practice, these “failing” models are
often rejected and replaced by completely new ones. However, this is considered a waste
of scientific data from existing studies, which goes against the principle that scientific
inferences should be based on as much information as possible [17,22]. A much better
approach would be to adjust or update the original model to improve its performance and
thereby combine information from the discovery study captured in the original model with
information from the new validation cohort [22,23].

Therefore, next to external validation, our study also presents a way of updating
the model while integrating information from the discovery study. To do this, a new
lasso regression was fitted to the validation cohort using the 11 discriminatory VOCs
of the original model of the discovery study as the input variables. This resulted in an
updated model that was created by removing seven irrelevant variables and re-estimating
the predictor weights (coefficients) of four retained, informative variables compared with
the original model. The updated model showed a better performance on the validation
samples by discriminating patients and controls with 73% accuracy. With high sensitivity
(92%) and NPV (92%) values, the model exhibited the required characteristics of a potential
screening test that could allow for ruling out MPM in the asbestos-exposed population [24].
As this model is adjusted to the features of a new cohort, it is also expected to be more
generalisable to other individuals of the target population [22]. This approach also gave us
the opportunity to assess the validity of the 11 discriminatory VOCs that were selected in
the discovery study. As retaining four of these discriminatory VOCs (P9, P88, P101, and
P122) and re-estimating their coefficients improved the model’s performance, the added
value and usefulness of these four VOCs can be substantiated. Moreover, updating the
prediction model even led to model simplification (reduced number of features), which
generally improves model interpretability and reduces the risk of overfitting [25]. However,
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although promising, the updated model in turn requires external validation to validate
these findings.

What could be considered as a potential limitation of this study is the fact that we
do not know the chemical identity of the VOCs as we opted for validating a prediction
model that is based on MCC/IMS data. MCC/IMS is a technique that only allows for
“pseudo-identification” of VOCs, returning a list of peaks with unique retention times
and ion mobility characteristics. The advantages of MCC/IMS are its high sensitivity and
analytical speed, relatively low cost, portability, and ease of use in a clinical setting [26].
These benefits make MCC/IMS an attractive technique for clinical practice, allowing for
potential disease diagnosis based on the recognition of peak patterns without the need
for further chemical identification [27]. However, to obtain more information about the
identity of the VOCs, the MCC/IMS data could be cross-checked against additional gas
chromatography–mass spectrometry data [12,28]. An additional point of attention is the
sample size of the study. Although few uniform guidelines on sample size considerations
are at hand, a current rule-of-thumb is to include a minimum of 100 events in the validation
cohort to ensure precise performance estimates, as too small sample sizes may lack sufficient
power to detect differences in performance [29,30]. As MPM is a rare disease, this number
is challenging to reach, which is why we initially settled for 47 MPM patients. However,
in our case, this smaller sample size proved to be sufficient to demonstrate the significant
decrease in model performance compared with the discovery study. A final limitation is
related to the emergence of the COVID-19 pandemic during this validation study. As a
consequence, we had to take additional safety precautions in order not to endanger the
participants. Specifically, this meant using an additional viral filter during the sampling
procedure. Although the material of the filter, polypropylene, is reported to have no VOC
absorption capacity, which we also demonstrated through our test experiments, this is
a minor modification to the protocol, which should be considered as a possible factor
contributing to the discrepancies between the discovery and validation results [31,32].

5. Conclusions

This external validation study was the first one to be performed regarding a VOC-
based prediction model for MPM. The results revealed a poor performance of the original
model when applied to an independent validation set, demonstrating the issue of repro-
ducibility and generalisability in the breath research field. An approach to improve model
performance is updating the model instead of discarding it, which also allowed us to
verify the validity of the discriminatory VOCs that were included in the original model
of the discovery study. Adjustment of the model led to promising outcomes, but it is
now of importance that this updated model is in turn validated externally, ideally by an
independent research group. Only in this way can a clinically useful prediction model for
MPM be established.
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www.mdpi.com/article/10.3390/cancers14133182/s1. Table S1: Model Specifications of the original
and updated prediction models. Table S2: Kendall’s τ rank correlation between the age of the
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rank test).
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