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The Plasmodium ovale curtisi (Poc) prevalence has increased substantially in sub-Saharan
African countries as well as regions of Southeast Asia. Poc parasite biology has not been
explored much to date; in particular, the invasion mechanism of this malaria parasite
remains unclear. In this study, the binding domain of the Duffy binding protein of P. ovale
curtisi (PocDBP) was characterized as an important ligand for reticulocyte invasion. The
homologous region of the P. vivax Duffy binding protein in PocDBP, named PocDBP-RII
herein, was selected, and the recombinant PocDBP-RII protein was expressed in an
Escherichia coli system. This was used to analyze reticulocyte binding activity using
fluorescence-activated cell sorting and immune serum production in rabbits. The binding
specificity was proven by treating reticulocytes with trypsin, chymotrypsin and
neuraminidase. The amino acid sequence homology in the N-terminal Cys-rich region
was found to be ~ 44% between PvDBP and PocDBP. The reticulocyte binding activity of
PocDBP-RII was significantly higher than the erythrocyte binding activity and was
concentration dependent. Erythrocyte binding was reduced significantly by
chymotrypsin treatment and inhibited by an anti-PocDBP-RII antibody. This finding
suggests that PocDBP may be an important ligand in the reticulocyte invasion process
of P. ovale curtisi.

Keywords: P. ovale curtisi, malaria, invasion, PocDBP-RII, reticulocyte binding
INTRODUCTION

Malaria is a leading global public health concern, especially in Africa (World Health Organization,
2020). The World Health Organization reported that approximately 229 million cases of malaria
occurred worldwide in 2019, compared with 218 million cases in 2018, and estimated that 409,000
deaths occurred from malaria in 2019, compared to 411,000 in 2018 (World Health Organization,
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2020). Among the five Plasmodium spp. parasites, Plasmodium
falciparum is the deadliest parasite that accounts for substantial
death each year, primarily in Africa, while Plasmodium vivax
causes a benign form of the disease and is widely distributed in
Southeast Asia and areas of the Amazon Basin of South America
(Gething et al., 2011; Howes et al., 2016). Compared to these two
species, Plasmodium ovale has become much less prevalent,
presumably, in recent decades (Hawadak et al., 2021;
Mahittikorn et al., 2021). However, the number of ovale
malaria cases has increased in African countries and in
Chinese individuals returning from Africa (Roucher et al.,
2014; Cao et al., 2016). Although the primary emphasis for
malaria research has been on falciparum malaria and noticeably
on vivax malaria, P. ovale malaria is typically neglected.

Due to its low parasite density, milder clinical manifestations,
and morphological resemblance to P. vivax in microscopy
examination, P. ovale tends to be mis- or underdiagnosed
(Phuong et al., 2016; Yerlikaya et al., 2018). However, recent
findings indicated that P. ovale could be divided into two
genetically distinct sympatric subspecies named P. ovale curtisi
and P. ovale wallikeri (Sutherland et al., 2010; Oguike et al., 2011;
Fuehrer and Noedl, 2014). A growing body of evidence has
indicated a significant increase in P. ovale curtisi and P. ovale
wallikeri cases worldwide, especially in African countries
(Mahittikorn et al., 2021). Because of the low endemicity and
lack of an in vitro cultivation system, the biology of the P. ovale
subspecies has not been well investigated to date. Moreover, the
genome sequences of these two parasites were published recently,
allowing in-depth exploration of parasite pathophysiology,
particularly the blood-stage invasion process (Ansari et al.,
2016; Rutledge et al., 2017).

Several blood-stage ligands of Plasmodium spp. are
responsible for invasion into erythrocytes (Weiss et al., 2015).
P. vivax and P. knowlesi depend primarily on the interactions of
Duffy binding protein (DBP) and Duffy antigen receptor for
chemokine (DARC) for reticulocyte invasion (Chitnis et al.,
1996; Kanjee et al., 2021). A previous study reported that P.
ovale invades reticulocytes (Collins and Jeffery, 2005). However,
there is a lack of in vitro experimental evidence regarding the P.
ovale curtisi invasion pathway. Here, we performed functional
characterization of one of the invasion ligands, P. ovale curtisi
Duffy binding protein domain region II (PocDBP-RII), which is
probably responsible for host red blood cell invasion.

Merozoite invasion is a multistep sequential process of
molecular interactions between merozoite ligands and host
receptors present on the erythrocyte membrane (Cowman and
Crabb, 2006; Weiss et al., 2015; Collins et al., 2020). The invasion
process is broadly categorized into three phases: initial
attachment, invasion, and echinocytosis (Cowman et al., 2017).
Initial attachment to erythrocytes mediated by merozoite surface
proteins is usually initiated by merozoite surface protein-1
(MSP-1) and can occur at any point in erythrocytes (Cowman
et al., 2017). Reorientation facilitates further close interaction
between the apical end of the merozoite and the erythrocyte
surface, followed by robust deformation at a place of contact. A
tight junction is formed by apical membrane antigen-1 (AMA-1)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
and rhoptry neck protein 2 (RON2), and the invasion process is
propelled by an actin-myosin motor (Srinivasan et al., 2011).
This step leads to shedding of the fuzzy coating of the merozoite
surface by proteases. Finally, at the echinocytosis phase, the
parasite seals itself from the host cell cytoplasm, forms a
parasitophorous vacuole, and stops the invasion process
(Srinivasan et al., 2011).

Several proteins secreted from apical secretory organelles play a
key role in successful invasion (Cowman et al., 2017). However,
the detailed mechanism of this invasion process is not yet fully
understood (Cowman and Crabb, 2006; Cowman et al., 2017).
Moreover, primary invasion ligands vary among Plasmodium spp.
(Cowman et al., 2017). According to a previous report, P. ovale
curtisi has unique characteristics and a reticulocyte preference for
invasion of erythrocytes (Collins and Jeffery, 2005). The lack of a
continuous culture system for P. ovale has hindered the
investigation of the exact mechanism of invasion (Schuster,
2002). Functional characterization of individual proteins might
be an indirect method to overcome this technical difficulty. Thus,
in the current study, we aimed to determine the functional activity
of PocDBP-RII. Our results showed that PocDBP-RII has a
preference for reticulocyte binding.
MATERIALS AND METHODS

Expression and Purification of the
Recombinant PocDBP-RII and
PvDBP-RII Protein
The gene encoding region II (RII) of PocDBP (aa 182 to 506) was
amplified using nested PCR. Genomic DNA was extracted from
whole-blood samples from a parasite-infected patient, which was
kindly provided by Jiangsu Institute of Parasitic Diseases, Wuxi,
China. Primer sets for nested PCR were designed based on the
pocdbp (PocGH01_00129200) sequence. The primers used were
as follows: Nest 1 F: tcgcggatccgaattcGCTTTTAGAGATGT
TCCTAATTATGG; Nest 1 R: ggtggtggtgctcgagTTTTATTC
CTTTCTGCGCG; Nest 2 F: tcgcggatccgaattcAATATTAC
AAACAATGATGTAAATTATGT; Nest 2 R: ggtggtggtgctcgag
TTTTATTCCTTTCTGCGCG. The restriction enzymes EcoRI
and XhoI are indicated as italicized and underlined letters. PCR
amplification was performed using high-fidelity Phusion DNA
polymerase (New England Biolabs Inc., Ipswich, MA). Each
reaction consisted of a total volume of 20 µl containing 7.5
mM MgCl2, 2.5 mM dNTPs, 0.5 µl of sense and antisense
primers (100 pmol/µl), 0.2 µl of high-fidelity Phusion DNA
polymerase (2 U/µl) and 2 µl of gDNA as template. The PCR
thermal cycling conditions were set as follows: initial
denaturation at 95°C for 5 min, followed by 35 cycles of 95°C
for 30 s, 59°C for 30 s and 72°C for 1 min and a final extension at
72°C for 10 min. Amplicons were gel purified using a DNA
purification kit (Macherey–Nagel, Duren, Germany) according
to the manufacturer’s instructions and ligated into the pET28a
(+) expression vector (Novagen, Madison, WI) with a C-terminal
His-tag. The obtained purified plasmid DNA sequence was
confirmed by sequencing analysis and transformed into BL21
December 2021 | Volume 11 | Article 764293
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(DE3) competent ce l l s (Novagen) . I sopropyl -b-d-
thiogalactopyranoside (IPTG; 1.0 mM; Sigma-Aldrich Co., St.
Louis, MO) was used to induce recombinant protein expression.
Protein solubilization, purification, and refolding were
performed as previously described (Singh et al., 2001). The
refolded proteins were eluted by ion-exchange chromatography
(HiTrap™ SP FF; GE Healthcare Life Sciences, Chicago, IL)
using 1 M NaCl. GST-His (glutathione S-transferase 6 X His tag)
protein was expressed as per manufacturer’s protocol (GST Gene
Fusion system, GE Healthcare Life Sciences, Uppsala, Sweden).
Recombinant PvDBP-RII protein was expressed and purified as
described elsewhere (Singh et al., 2001).

SDS-PAGE and Western Blot Analyses
The refolded recombinant PocDBP-RII protein was separated by
8% SDS-PAGE and stained with 0.25% Coomassie brilliant blue
(Sigma-Aldrich Co.). Briefly, 5 mg of refolded protein was
incubated with 10 mM dithiothreitol (DTT, reducing
condition) at 37°C for 1 hr, followed by the addition of 2×
loading dye containing the reducing agent 2-mercaptoethanol; in
addition, 5 mg of protein was processed without DTT
(nonreducing condition) and with the 2× loading dye without
reducing agent. The samples were heated at 100°C for 4 min. For
the Western blot analysis, the proteins were electrotransferred to
0.45 mm PVDF membranes (Millipore, Bedford, MA) by
electrophoresis in semidry transfer buffer (50 mM Tris, 190
mM glycine, 3.5 mM SDS, 20% methanol) with a continual
current of 370 mA for 40 min using a semidry transfer system
(ATTO Corp., Tokyo, Japan). Then, the membrane was
incubated with blocking buffer (5% skim milk in PBS
containing 0.2% Tween 20) and then incubated with a primary
anti-penta-histidine antibody (1:2000) and rabbit immune serum
(1:1000), followed by incubation with a secondary IRDye® goat
anti-rabbit antibody (1:10,000 dilution) (LI-COR® Bioscience,
Lincoln, NE). Data analysis was performed using an Odyssey
infrared imaging system and the company-recommended
software (LI-COR® Bioscience).

Animal Immune Sera Production
One Japanese white rabbit was used to produce an anti-PocDBP-RII
antibody. Two hundred and fifty micrograms of purified protein
with complete Freund’s adjuvant (Sigma-Aldrich Co.) was injected
subcutaneously, followed by treatment with 250 µg of incomplete
Freund’s adjuvant for subsequent boosting. All immunizations were
administered 3 times at 3-week intervals. Antisera were collected
two weeks after the final boost. Anti-PvDBP-RII antibody
generation was performed as described in our previous study
(Han et al., 2016). Total IgG was purified from 1 mL of anti-
PvDBP-RII and anti-PocDBP-RII rabbit immune serum by using a
protein G HP column as per manufacturer’s protocol (GE
Healthcare Life Sciences) as described elsewhere (Muh et al.,
2018). All the experimental protocols were approved by the
Kangwon National University Animal Care and Use Committee,
and the experiments were conducted according to the Ethical
Guidelines for Animal Experiments of Kangwon National
University (KIACUC-16-0157).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Cord Blood Samples
Umbilical cord blood samples were collected in a 10 ml heparin
tube (BD Vacutainer®, Becton-Dickinson Co., Franklin Lakes,
NJ). The relevant guidelines and regulations were followed to
conduct all the experiments, and the human sample-related
experimental protocols were approved by the Kangwon
National University Hospital Ethical Committee (IRB No.
2014-08-008-006). Written informed consent was obtained
from all the subjects.

Reticulocyte Enrichment From Cord Blood
Reticulocytes were enriched from umbilical cord blood using a
cushion of 19% Nycodenz solution (Axis-Shield, Oslo, Norway)
in high-KCl buffer via gradient centrifugation. Upon receipt, the
fresh cord blood was washed twice with incomplete RPMI 1640
medium, and white blood cells (WBCs) were removed using an
NWF filter (Zhixing Bio Co., Ltd., Bengbu, China). WBC-free
packed cells were then resuspended in high-KCl buffer (115 mM
KCl) (pH 7.4), followed by incubation at 4°C for 3 hr with
rotation. Three milliliters of prewarmed Nicodenz solution
(19%) was transferred into 15 ml tubes. Then, 5 ml of the
RBC-high-KCl buffer mixture was poured on top of the
Nicodenz cushion and centrifuged for 30 min at 3000 ×g
without braking. The reticulocytes were harvested from the
interface layer between Nicodenz and high-KCl buffer and
washed three times with incomplete RPMI 1640 medium.
Reticulocyte purity was determined from thin blood smears
with new methylene blue staining by light microscopy and
thiazole orange (TO) staining of the harvested reticulocytes. A
total of 100,000 events were obtained per sample using a FACS
Accuri™ C6 Flow Cytometer (Becton-Dickinson Co.,
Mansfield, NJ).

Enzyme Treatment of RBCs
Enriched reticulocytes were prepared with up to 50% hematocrit.
Then, the erythrocytes were washed with 500 ml of incomplete
RPMI 1640 medium twice by centrifugation at 500 ×g for 3 min
at 4°C. Then, the erythrocytes were treated with either
neuraminidase (100 mU; from Vibrio cholerae, Sigma-Aldrich
Co.), trypsin (0.5 mg; from bovine pancreas, Sigma-Aldrich Co.)
or chymotrypsin (0.5 mg; from bovine pancreas, Sigma-Aldrich
Co.) at 37°C on a rotator for 1 hr. After enzyme treatment,
chymotrypsin- and trypsin-treated RBCs were incubated with a
trypsin inhibitor from soybean (Glycine max) (Sigma-Aldrich
Co.) at 37°C for 10 min and subsequently washed three times
with 10 ml of incomplete RPMI 1640 medium. Packed cells were
prepared at a concentration of 1 × 106 cell/ml and used for flow
cytometry analysis.

Reticulocyte Binding Assay by
Flow Cytometry
The erythrocyte binding assay was performed as described
previously (Tran et al., 2005). Briefly, a gradient concentration
of purified PocDBP-RII protein was incubated with 1 × 106/ml
cells or the same concentration of reticulocytes treated with each
enzyme for 3 hr at 25°C. The PvDBP-RII and GST-His protein
December 2021 | Volume 11 | Article 764293
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reticulocyte binding activities were used as the experimental
controls. The samples were washed with 200 µl of PBS (1%
BSA) two times, followed by incubation with diluted (1:50)
mouse anti-penta-His Alexa Fluor 647-conjugated monoclonal
antibody (Qiagen, Hilden, Germany) for 1 hr at 4°C in the dark.
The samples were washed three times with PBS (1% BSA) and
incubated with TO (Becton-Dickinson Co., San Jose, CA) for 30
min at 25°C. A total of 100,000 events were counted per sample
using a FACS Accuri™ C6 Flow Cytometer (Becton-Dickinson
Co.). FlowJo 7.6 (Treestar, Ashland, OR) was used to analyze the
flow cytometric results. Unstained cells and cells singly stained
with TO represented normocytes and reticulocytes, respectively.

Three-Dimensional Structure Prediction
Three-dimensional (3-D) structure modeling and validation of
PocDBP-RII and PvDBP-RII were performed by homology-
based modeler software. Satisfactory structural templates were
explored and modeled using SWISS-MODEL (Biasini et al.,
2014). The error residues were refined by using Galaxy Refine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
(Ko et al., 2012). Finally, all the structures were visualized by
UCSF CHIMERA (Huang et al., 2014).

Statistical Analysis
Data analysis was performed using GraphPad Prism (GraphPad
Software, San Diego, CA). Student’s t-test was used to compare
the experimentally measured values of different groups. Values of
p < 0.05 indicated significant differences.
RESULTS

Schematic Structure of PocDBP
The pocdbp gene sequence encodes a moderate-sized protein (900
amino acids) with a predicted molecular weight of 103.22 kDa
(Figure 1A). The gene consists of 5 exons encoding a signal
sequence, a transmembrane domain and 22 cysteine residues. The
putative functional domain site of PocDBP-RII is defined based on
the PvDBP-RII homolog site as an erythrocyte-binding domain.
A

B

FIGURE 1 | Schematic depiction and sequence alignments of DBP proteins. (A) Schematic depiction of PvDBP, PkDBP-a and PocDBP. The PocDBP-RII (aa 182–
506) domain was expressed using bacterial expression systems. The signal peptide (black box), transmembrane domain (blue box), recombinant protein expression
(black bar) and functional erythrocyte-binding domain (red bar) are indicated. (B) Clustal alignment of the PvDBP-RII, PkDBP-a-RII, and PocDBP-RII homologous
sequences. The red bar represents the conserved identical amino acids in the alignment of the three proteins, the green bar represents identical amino acids in two
proteins, and the blue bar represents diverse amino acids in the three proteins. The yellow shading denotes conserved cysteine residues.
December 2021 | Volume 11 | Article 764293
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Twelve cysteine residues are conserved in the RII domain of the
pocdbp gene, similar to PvDBP-RII and PkDBP-a RII, which is
probably indicative of similar functions. The sequence alignments
of PvDBP-RII, PkDBP-a-RII, and PocDBP-RII were generated
using Clustal W, revealing that PocDBP-RII shares 44.4% and
40.4% amino acid sequence identity with PvDBP-RII and PkDBP-
a-RII, respectively (Figure 1B).

Three-Dimensional Structure Analysis
The three-dimensional structure analysis clearly indicated the
similar shape of the binding pocket and structure between
PvDBP-RII and PocDBP-RII (Figure 2). Based on the electric
charge, the structure is represented mainly by two distinct parts
(Figure 2). Positively charged PvDBP-RII structures are well
known for binding to reticulocytes (Batchelor et al., 2011).
Despite low sequence identity, the PocDBP-RII structure was
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
very similar to that of PvDBP-RII (Figure 2), which might
indicate similar functional activities.

Expression and Purification of the
Recombinant PocDBP-RII and
PvDBP-RII Protein
The recombinant PvDBP-RII and PocDBP-RII protein was
purified from inclusion bodies after bacterial expression and
refolded by rapid dilution as previously published (Singh et al.,
2001). The recombinant PocDBP-RII protein was used for rabbit
immunization. Evidence for refolding of the purified recombinant
PvDBP-RII and PocDBP-RII protein was shown by SDS-PAGE
analysis (Figures 3A, B) (Muh et al., 2018). Different mobilities of
the refolded protein between reducing (DTT +) and nonreducing
conditions (DTT −) indicated that the native protein had been
formed correctly after refolding (Figures 3A, B). Anti-PocDBP-
A

B

FIGURE 2 | Three-dimensional structure of DBP-RII. The electrostatic surfaces of (A) PvDBP-RII and (B) PocDBP-RII with positive (blue) and negative (red) charges
are shown.
A B C

FIGURE 3 | Recombinant PvDBP-RII and PocDBP-RII protein expression and evaluation of refolding. (A, B) Coomassie blue-stained SDS-PAGE gel of recombinant
PvDBP-RII and PocDBP-RII. Dithiothreitol (DTT) (-) and DTT (+) indicate the refolded protein and denatured protein, respectively, before and after treatment with 10
mM DTT. M, protein size markers. (C) Western blot analysis of the recombinant PocDBP-RII protein probed with antibodies. Black-head arrows indicate specific
target bands. H, anti-His antibody; R, aPocDBPRII IgG; P, preimmune rabbit IgG.
December 2021 | Volume 11 | Article 764293
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RII IgG and anti-His antibodies could be used to detect the
recombinant proteins by Western blot analysis (Figure 3C).
These results suggest that immune serum raised against
PocDBP-RII can recognize the recombinant protein.

Reticulocyte-Binding Activity
of PocDBP-RII
A fluorescence-activated cell sorting (FACS)-based binding assay
was used for reticulocyte-binding activity evaluation. The PvDBP-
RII and His-tagged GST proteins were used as positive and negative
controls, respectively, for validation of binding activity.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Reticulocytes (61.93% on average) were enriched from cord blood
and used for the binding assay (Figure 4A). PvDBP-RII bound
strongly to reticulocytes at a protein concentration of 1.25 mg/ml,
and binding saturation was observed at a concentration of
approximately 5 mg/ml (Figure 4B). The binding of PocDBP-RII
to reticulocytes was shown to increase in a concentration-dependent
manner and was saturated at a concentration of 10 mg/ml
(Figure 4B). PvDBP-RII binding was detected at a concentration
of 10 mg/ml, with a mean binding activity of 83.74% ± 1.24% with
reticulocytes and 24.59% ± 2.90% with normocytes (p < 0.0001),
which represented a 3.4-fold increase in reticulocytes (Figure 4C).
A

B C

FIGURE 4 | Reticulocyte-binding activity of recombinant PocDBP-RII in the FACS-based assay. (A) Dot plot patterns. Unstained RBCs, gating control (upper left);
enriched reticulocytes, thiazole orange, TO+ (upper center); binding control without protein, phosphate-buffered saline (PBS) in the added fractions (upper right).
Recombinant proteins (10 mg/ml) added to the test samples are shown in the lower image. (B) Reticulocyte-binding assay showing the total binding percentage of
reticulocytes with gradient concentrations of the proteins. The PvDBP-RII and GST-His proteins were used as positive and negative controls, respectively. The data
are shown as the mean ± standard deviation (SD) of at least three independent experiments. (C) The bar chart shows the binding of the PvDBP-RII, PocDBPRII and
GST-His proteins (each at 10 mg/ml) to TO (+) (normocytes) and TO (-) (reticulocytes). Significant differences are shown as double asterisks, p < 0.002; triple
asterisks <0.0001. The data are shown as the mean ± SD of at least three independent experiments.
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The PocDBP-RII protein was bound explicitly to reticulocytes at a
concentration of 10 mg/ml with a mean binding activity of 44.55% ±
5.44%, which was a 8.0 fold higher than the normocyte binding
activity (p < 0.002) (Figure 4C). The GST-His protein normocyte
binding activity was similar to that of reticulocytes and was below
the cutoff percentage, which indicated that there was no binding
activity with normocytes (Figure 4C). The GST-His protein binding
activity was measured as a negative control.

The reticulocyte binding specificity was confirmed by an
antibody inhibition assay. The anti-PocDBP-RII IgG antibody was
able to inhibit reticulocyte binding in a concentration-dependent
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
manner (Figure 5). Binding inhibition was significantly different at
concentration of 50 mg/ml and 100 mg/ml of anti-PocDBP-RII IgG
(p = 0.0228 and p = 0.0496 respectively) as compared to preimmune
rabbit IgG. Reticulocytes treated with trypsin, chymotrypsin, and
neuraminidase were also used to check the binding specificity of the
recombinant PocDBP-RII protein. The PvDBP-RII reticulocyte
binding activity with chymotrypsin-treated reticulocytes was
inhibited by three-fourths compared to that of untreated PvDBP-
RII (percentage of relative binding, mean ± SD: 23.87% ± 7.49%);
this binding activity was significantly different (p = 0.0196) from the
binding activity for normal reticulocytes. A similar binding pattern
A B

FIGURE 5 | Binding inhibition assay with the anti-PocDBP-RII antibody. Rabbit anti-PvDBP-RII (A) and anti-PocDBP-RII (B) antibodies were tested against
homologous proteins in a flow cytometry binding assay for inhibition of PvDBP-RII and PocDBP-RII reticulocyte binding. Each bar represents the percent binding to
reticulocytes in the presence of immune IgG relative to preimmune IgG. Significant differences are shown as single asterisks, p < 0.05. The data are shown as the
mean ± standard deviation of at least two independent experiments.
A B

FIGURE 6 | Enzyme-treated reticulocyte binding assay. A flow cytometry-based erythrocyte binding assay of PvDBP-RII (A) and PocDBP-RII (B) was performed
with different enzyme-treated erythrocytes: Un, untreated RBCs; Nm, neuraminidase; T, trypsin; Ct, chymotrypsin. Significant differences are shown as single
asterisks, p < 0.05. The data are shown as the mean ± standard deviation of at least two independent experiments.
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was also observed for the PocDBP-RII protein. The PocDBP-RII
binding activity (39.8% ± 9.19%) was significantly inhibited by
chymotrypsin (p = 0.0226) (Figure 6).
DISCUSSION

Merozoite invasion into erythrocytes in blood-stage parasites is
critical for malaria infection (Cowman et al., 2017). Notable
progress has already made in understanding this mechanism in
the last few decades, especially for P. falciparum and P. vivax
(Wright and Rayner, 2014; Cowman et al., 2017; Scully et al.,
2017). However, only a few invasion ligands along with their
corresponding receptors have been identified as critically
important for the erythrocyte invasion process (Dolan et al.,
1994; Chitnis et al., 1996; Tham et al., 2010; Crosnier et al.,
2011; Baldwin et al., 2015; Gruszczyk et al., 2018). Compared to P.
falciparum and P. vivax, the invasion ligands for P. ovale curtisi
have not yet been studied. In this study, we characterized PocDBP-
RII as one of the domains essential for the invasion process.

This study demonstrates that the PocDBP-RII domain
preferentially binds to reticulocytes rather than erythrocytes in
a concentration-dependent manner. The P. vivax and P. knowlesi
parasites use DBP and DBP-a, respectively, for erythrocyte
invasion. PocDBP is a homolog of the DBL family of the P.
vivax and P. knowlesi DBPs. A similar binding preference of
PocDBP to reticulocytes was identified in the current study,
which supports the previous hypothesis that P. ovale uses
reticulocytes for invasion (Collins and Jeffery, 2005). However,
the highest binding strength of PocDBP was found at 10 µg/ml
(Figure 3C), which was approximately half the binding strength
of PvDBP-RII. We speculated that difference in binding
frequency to reticulocyte between PvDBP-RII and PocDBP-RII
may suggest different receptor-ligand interaction (França et al.,
2016; Han et al., 2016; Gruszczyk et al., 2018). Likewise, Poc
parasites may use PocDBP-RII as a secondary pathway for
invasion whereas identification of primary invasion ligands
exploited by Poc parasites require further exploration. A similar
binding activity was previously identified for the PvRBP1b-32
protein (Han et al., 2016). Moreover, compared to P. vivax, P.
ovale curtisi has an additional DBL protein, PocDBP2, which is
homologous to the P. vivax erythrocyte binding protein (PvEBP)
(Ansari et al., 2016; Rutledge et al., 2017). PvEBP also prefers to
bind to reticulocytes rather than normocytes, although the
binding activity observed was relatively low (Ntumngia et al.,
2016). In the current study, the PocDBP-RII domain function was
characterized, but the function of another DBL family member,
PocDBP2, has yet to be studied to determine the complete role of
the DBL family in the case of P. ovale curtisi.

Although similar to P. vivax DBP, PocDBP-RII shows a
preference for reticulocytes over normocytes, and it was
reported that P. ovale spp. infection was not restricted by
DARC on the erythrocyte surface for complete invasion
(Jeffery et al., 1954; Jeffery et al., 1955). A previous study
hypothesized that the two sympatric P. ovale spp. might use
the receptor-ligand mechanism to invade reticulocytes (Oguike
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et al., 2011). The findings of this study suggest that PocDBP-RII
is an essential ligand for P. ovale curtisi blood-stage invasion.
However, our results do not support the hypothesis that the same
ligand is used by two P. ovale subspecies during invasion, as P.
ovale wallikeriDBP is a pseudogene (Ansari et al., 2016; Rutledge
et al., 2017). Whether the two P. ovale subspecies utilize the same
ligands for invasion needs further exploration.

Due to the much lower morbidity, limited geographical
distribution, and difficulty in the diagnosis of P. ovale by
microscopic examination, the actual burden of P. ovale curtisi
and P. ovale wallikeri is largely overshadowed by non-falciparum
malaria parasites (Fuehrer et al., 2011; Bauffe et al., 2012; Fuehrer
et al., 2012; Fuehrer and Noedl, 2014; Akerele et al., 2017; Joste
et al., 2018). Improvements in molecular detection and
surveillance studies have shown increasing evidence of P. ovale
infection globally (Roucher et al., 2014; Trape et al., 2014; Li
et al., 2016; Hawadak et al., 2021). However, along with
surveillance studies, the invasion mechanism of these parasites
also needs to be studied. The current study is the first
experimental documentation of the function of one of the
invasion ligands, PocDBP-RII, as determined by an in vitro
study without P. ovale curtisi in in vitro culture system
(Schuster, 2002). Other homologous invasion ligands of P.
ovale curtisi compared to P. falciparum and P. vivax similarly
need to be further comprehensively studied to elucidate the basic
invasion mechanism of this parasite.

The most promising function of PvDBP is its reticulocyte
binding and selection activity (Tran et al., 2005). In the current
study, the high-likelihood binding functional domain from
PocDBP was selected for the FACS-based binding assay with
enriched reticulocytes. The PocDBP RII domain exhibited
specific binding activity with reticulocytes rather than
normocytes. This strong binding activity indicated that the
PocDBP ligand might bind with an abundantly expressed
reticulocyte receptor. One of the shortcomings in the current
study is that anti-DARC antibody inhibition activity against the
PocDBP-RII was not explored. Perhaps, which particular
receptor is being used by the PocDBP-RII requires further
exploration. PvDBP-RII showed stronger binding activity with
reticulocytes than normocytes and bound specifically with
DARCs, which are abundant in reticulocytes (Ovchynnikova
et al., 2017). Similar to the PvDBP-RII protein, PocDBP-RII also
showed neuraminidase resistance, which suggests that PocDBP-
RII interacts with a non-sialic acid receptor on reticulocytes.
Chymotrypsin-treated reticulocyte binding assays showed
approximately 50% binding inhibition of PocDBP-RII
compared with untreated control samples, which is consistent
with the PvDBP-RII binding pattern (Han et al., 2016).

The 3-D structural prediction of PocDBP-RII shows a structure
similar to that of PvDBP-RII. Although the sequence identity
between PvDBP-RII and PocDBP-RII was low, the structural
similarity indicated that PocDBP-RII might play a role in the
invasion process. The reticulocyte preference of PocDBP-RII
strengthens this hypothesis. Additionally, these findings could be
indicative of cross-reactivity between PvDBP-RII and PocDBP-
RII, although this requires experimental verification.
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In summary, we found conserved domain sequences in the
pocdbp gene in inter-Plasmodium spp. comparisons and
observed specific binding to reticulocytes. This interaction
inhibited by an immune IgG antibody and the binding
specificity following enzyme treatment demonstrates the
chymotrypsin sensitivity of PocDBP-RII. This finding suggests
that PocDBP may be an essential ligand for reticulocyte invasion
by P. ovale curtisi. Further similar studies with other blood-stage
proteins of P. ovale curtisi may provide a clear picture of the
complete invasion process of this neglected malaria parasite.
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