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Abstract: A route to directly access mixed Al–Fe polyphos-
phide complexes was developed. The reactivity of pentaphos-
phaferrocene, [Cp*Fe(h5-P5)] (Cp* = C5Me5), with two differ-
ent low-valent aluminum compounds was investigated. The
steric and electronic environment around the [AlI] centre are
found to be crucial for the formation of the resulting Al–Fe
polyphosphides. Reaction with the sterically demanding
[Dipp-BDIAlI] (Dipp-BDI = {[2,6-iPr2C6H3NCMe]2CH}�)
resulted in the first Al-based neutral triple-decker type poly-
phosphide complex. For [(Cp*AlI)4], an unprecedented regio-
selective insertion of three [Cp*AlIII]2+ moieties into two
adjacent P�P bonds of the cyclo-P5 ring of [Cp*Fe(h5-P5)]
was observed. The regioselectivity of the insertion reaction
could be rationalized by isolating an analogue of the reaction
intermediate stabilized by a strong s-donor carbene.

The discovery of ferrocene [Cp2Fe] (Cp = h5-C5H5) in 1951
led to a fundamental change in organometallic chemistry.[1]

The isolobal analogy between Cp� and cyclo-P5
� steered

interest in using cyclo-P5
� as a ligand for the synthesis of

sandwich-type complexes.[2] In a seminal report in 1987,
Scherer and Br�ck synthesized pentaphosphaferrocene,
[Cp*Fe(h5-P5)] (Cp* = C5Me5), by co-thermolysis of white
phosphorous and [Cp*Fe(CO)2]2.

[3] Scheer and co-workers
have engaged in using [Cp*Fe(h5-P5)] as a tool to access
inorganic supramolecules and polymers by taking advantage
of the phosphorus lone pairs on the cyclo-P5 ring.[4] Apart
from using [Cp*Fe(h5-P5)] in inorganic polymer chemistry,
understanding the reactivity of [Cp*Fe(h5-P5)] towards nucle-
ophiles and different reducing agents has also attracted recent
attention.[5] The redox properties of [Cp*Fe(h5-P5)] were
studied by cyclic voltammetry[6] and synthetically.[5a–c,e]

It is interesting to explore the scope of air-stable starting
materials as sources for poly-pnictogen species as alternatives
to the conventionally used and highly reactive P4.

[7] Recently,
we have shown that the cyclo-P5 ring of [Cp*Fe(h5-P5)] could
be used as a polyphosphorous source. The reaction of
[Cp*Fe(h5-P5)] with [LSiCl] (L = PhC(NtBu)2) resulted in
the sila-phosphaferrocene, [h4-P4SiL-FeCp*], via substitution
of one P atom by an isoelectronic [LSi] fragment.[8]

Recently, the organometallic chemistry of mono-valent
aluminum compounds, which was pioneered in the 1990s,[9]

has witnessed renewed interest,[10] which can be attributed to
their ability to activate small molecules and organic substrates
featuring single, double, or triple bonds.[9l, 11] The reactivity of
[AlI] is not limited to organic substrates: main-group ele-
ments, such as S8,

[12] Se,[9b] and Te,[9b] have been used to make
aluminum heterocyclic complexes. Monovalent aluminum
complexes have also been used to access rare Al–P cages and
clusters by reducing white phosphorous.[12a,13] In general,
phosphorous containing heterocyclic compounds can be
prepared by derivatization of the highly reactive P4 cage.
We were challenged to examine the reactivity of air stable
[Cp*Fe(h5-P5)] with [AlI] complexes to obtain Al polyphos-
phorous complexes. The reactivity pattern of [AlI] is known to
be highly dependent on the type of ligands used to stabilize
the monovalent aluminum centre.[9l, 11a,c,d,14, 15] Therefore, using
different electronic and steric environments on [AlI] com-
plexes may lead to different types of activation of [Cp*Fe(h5-
P5)], such as conformational changes or controlled fragmen-
tation of the cyclo-P5 ring.

Herein, we report on the reactivity of [Cp*Fe(h5-P5)] with
two different monovalent aluminum complexes. We have
isolated the first examples of Al–Fe-based neutral triple-
decker polyphosphides. Also, the insertion of three
[Cp*AlIII]2+ moieties into P�P bonds led to the isolation of
an unprecedented Al–Fe polyphosphide complex containing
four metal centres. The possible intermediate for the insertion
of [Cp*AlIII]2+ moieties in the cyclo-P5 ring was trapped by
using a nucleophilic carbene.

The reaction between equimolar amounts of [Cp*Fe(h5-
P5)] and [Dipp-BDIAlI][9j] in toluene at room temperature
resulted in the formation of [(Dipp-BDIAlIII)(m,h3:h4-
P5)FeCp*] (1) in 35% yield (Dipp-BDI = {[2,6-
iPr2C6H3NCMe]2CH}� ; Scheme 1). During the reaction, the
aluminum atom is oxidized to give [AlIII] while [Cp*Fe(h5-P5)]
is reduced twice. As a result, the cyclo-P5 ring loses its 6 p-
electron aromaticity, resulting in a conformational change
from planar to envelope-shaped.[5b,e] The 1H NMR spectrum
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of 1 showed one single resonance for the Cp* methyl protons,
shifted downfield from d = 1.08 ppm (in [Cp*Fe(h5-P5)]) to
d = 1.22 ppm. Also, three new broad resonances at d = 98.4,
60.7, and 32.1 ppm were observed in the 31P{1H} NMR
spectrum at room temperature, suggesting a fluxional behav-
iour of the cyclo-P5 ring. A well-resolved 31P{1H} NMR
spectrum could be recorded at �40 8C showing an
AA’MXX’ spin system with multiplets at d = 97.2 (PXX’),
60.6 (PM), and 30.7 (PAA’) ppm apparent for the formation of
an envelope conformation of the cyclo-P5 ring (Figure 1 and
Table S1 in the Supporting Information). The molecular
structure of 1 in the solid state revealed the formation of
a triple-decker type complex with a bent cyclo-P5 ring
(Figure 2). To our knowledge, 1 is the first example of an
Al-containing neutral triple-decker heterometallic polyphos-
phide complex. The Al�P1 (2.3231(15) �) and Al�P4 (2.465-
(2) �) bond lengths are in the reported range of Al�P single
bonds (2.308(2) to 2.422(2) �),[12a, 13] whereas the Al–P5
separation (2.784(2) �) is relatively long indicating only
a weak coordination.[16] The P2�P3 (2.1647(14) �) and P3�P4
(2.186(2) �) bond lengths are shorter than the P1�P2 (2.223-
(2) �), P1�P5 (2.2145(14) �) and P4�P5 (2.2735(14) �)
analogues, which is a result of the elongation of P�P bonds
upon coordination to aluminum. This is in line with the
theoretically calculated shared electron numbers (SEN) given
in the Supporting Information. A similar trend has been
observed in a samarium polyphosphide complex.[5e] The

reduction of [Cp*Fe(h5-P5)] by [Dipp-BDIAlI] complex is in
sharp contrast with the reported reactivity of [Cp*Fe(h5-P5)]
with cationic [GaI] and [TlI] species. In the case of [MI(Al-
{OC(CF3)3}4)] (M = Tl and Ga), coordination polymers fea-
turing a planar cyclo-P5, [{MI(Al{OC(CF3)3}4)} (m,h5:h5:h1-
P5)FeCp*] were obtained.[17] This anomalous trend in reac-
tivity can be mainly attributed to the higher reductive ability
of [AlI] complexes as compared to [GaI] and [TlI] analogues.

As the reactivity of monovalent aluminum complexes
highly depends on the coordination environment around the
aluminum centre (see above), we decided to examine the
reactivity of another low-valent aluminum complex, that is,
[(Cp*AlI)4].[9a,b] The reaction between [(Cp*AlI)4] and
[Cp*Fe(h5-P5)] in toluene resulted in the formation of
complex [(m3-P)(Cp*AlIII)2{P4(AlIIICp*)} (FeCp*)] (2) irre-
spective of the stoichiometric ratio and the reaction con-
ditions. The solid-state structure of 2 confirmed the formation
of an unprecedented Al–Fe polyphosphide complex contain-
ing four metal centres (Figure 3). Formally, the cyclo-P5-ring
has been six-fold reduced by three equivalents of [Cp*AlI]
forming one P4

4� and one P3� unit, which are charged
balanced by three [Cp*AlIII]2+ and one [Cp*Fe]+ moiety.
However, theoretical calculations show an electron distribu-
tion, which is more complex (see below). The [4+1] frag-
mentation of the cyclo-P5 ring is very rare.[18] The reaction of
[LSi-SiL] with [Cp*Fe(h5-P5)] showed a similar fragmenta-
tion, however, in this case, a seven-membered Si-P ring, [h4-
P5(SiL)2-FeCp*], was obtained.[8]

On the basis of the identity of 2, the yield of the complex
could be increased to 47% by using the optimised conditions
(Scheme 2). The reaction mixture needs to be heated for
7 days at 80 8C to ensure the purity of complex 2. We have
noticed that during prolonged heating all the minor side-
products decompose and precipitate from the toluene solu-
tion, hence facilitating the isolation of complex 2 in a pure
form. As illustrated in Figure 3, one [Cp*Fe]+ unit is h4-
coordinated to one cyclo-P4(AlCp*) moiety, where the
average Fe�P bond length is slightly longer than that in
[Cp*Fe(h5-P5)] (2.317 vs. 2.273 �, respectively).[5b] The cyclo-
P4(AlCp*) unit is bound in a h4-mode to [Cp*Fe]+ as well as
h2-coordinated to two [Cp*AlIII]2+ units. In addition, a P atom

Scheme 1. Synthesis of complex 1.

Figure 1. 31P{1H} NMR spectrum (162 MHz, 233 K, [D8]toluene) of
compound 1 with nuclei assigned to an AA’MXX’ spin system; insets:
extended signals (upward) and simulations (downward).

Figure 2. Molecular structure of 1 in the solid state. H atoms are
omitted for clarity. CCDC numbers of all the structures reported herein
are available in the Supporting Information.
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is bound to the ring. The Cp*-rings bind in a h5-fashion to Al1
and Al2 whereas Al3 is only h3-coordinated. Al1 and Al2 also
bind in h2-mode to the cyclo-P4(AlCp*) moiety and are
further coordinated to the terminal P5. The average Al�P5
bond length (2.316(2) �) is in the usual range of Al�P single
bonds (2.308(2) to 2.422(2) �),[12a, 16] as are the Al3�P1 and
Al3�P4 bonds. However, the Al1�P1 (2.476(2) �), Al1�P2
(2.676(2) �), Al2�P3 (2.678(2) �), and Al2�P4 (2.517(2) �)
bonds are longer than usual Al�P single bonds, which suggests
a weaker coordination.[13, 12a, 16] In addition, there are weak Al–
Al interactions with short Al–Al separations (Al1�Al3
(2.911(2)) and Al2�Al3 (2.919(2) �).[13] The average P�P
bond length (2.191(2) �) in the cyclo-P4(AlCp*) unit is
shorter than a P�P single bond, indicating the presence of
a partial double-bond character.[12a, 16]

In contrast to the non-equivalent character of the three
aluminum centres of 2 in the solid state, only two sharp
singlets at d = 2.16 ppm (45 H, Cp* on Al atoms) and d =

1.30 ppm (15 H, Cp* on Fe atom) were observed in the
1H NMR spectrum of 2 at room temperature suggesting
a fluxional behaviour in solution of the Cp* ligands bound to

Al. Surprisingly, the 31P{1H} NMR
spectrum of 2 showed only two
singlets at d = 73.4 ppm (cyclo-P4-
(AlCp*)) and d =�202.9 ppm,
respectively. No P–P coupling pat-
tern for the cyclo-P4(AlCp*) unit
was observed even at low temper-
atures, although a broadening and
splitting of the signals was noticed
with decreasing temperatures (Fig-
ure S11, Supporting Information).

The regioselectivity of the inser-
tion reaction of [Cp*AlIII]2+ in two
adjacent P�P bonds may arise by
formation of the proposed inter-
mediate 2 i (Scheme 2). The inter-
mediate 2 i has an envelope-shaped
cyclo-P5 ring, in which the P�P
bonds, out of the planar P4 fragment

h4-coordinated to the [Cp*Fe]+ moiety, are the most suscep-
tible for insertion reactions. An NMR-scale reaction between
[(Cp*AlI)4] and [Cp*Fe(h5-P5)] in the presence of dimethoxy-
ethane showed the formation of this possible intermediate
(Figures S12,S13). In order to trap such an intermediate, the
reaction between [(Cp*AlI)4] and [Cp*Fe(h5-P5)] in a molar
ratio of 1:4 was carried out in the presence of 1,3,4,5-
tetramethylimidazolin-2-ylidene (ITMe) at 60 8C. As a result,
[(Cp*AlIIIITMe)(m,h3:h4-P5)FeCp*] (3) was isolated in 63%
yield as a masked intermediate (Scheme 3). In the solid state,
3 forms a carbene stabilized Al–Fe triple-decker complex

analogous to the proposed intermediate 2 i (Figure 4). The Al
centre is h3-coordinated to the cyclo-P5 ring and h1-coordi-
nated to the Cp* ring. The Al�P bond lengths are similar to
those in complex 1. The Al�C1(carbene) (2.017(6) �) bond
length is in line with previous reports.[19] The 1H NMR
spectrum of complex 3 (203 K) features only one singlet for
the [AlCp*] methyl protons, indicating a fluxional behaviour
in solution. The 31P{1H} NMR spectrum (203 K) showed five
sets of multiplets at d(ppm) =�96.2, �58.6, 53.2, 103.6, and
138.7 corresponding to the envelope-shaped cyclo-P5 ring
(details in Section 3.5 in the Supporting Information).

To obtain a better view in the energetics of the system
under discussion, theoretical DFT calculations were per-
formed (technical details are given in the Supporting Infor-
mation). The results are as follows:

Figure 3. Molecular structure of 2 (left) in the solid state and view of 2 (right) without the Cp*
moieties for a clearer view of the core structure.

Scheme 2. Synthesis of complex 2 via intermediate 2 i.

Scheme 3. Synthesis of complex 3.
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½Dipp-BDIAlI� þ ½Cp*Feðh5-P5Þ� !
½ðDipp-BDIAlIIIÞðm,h3 : h4-P5ÞFeCp*� ð1Þ DE ¼ �115:0 kJ mol�1

1=4½ðCp*AlIÞ4� þ ½Cp*Feðh5-P5Þ� !
½ðCp*AlÞðm,h3 : h4-P5ÞFeCp*� ð2 iÞ DE ¼ �33:3 kJ mol�1

as well as

½ðCp*AlÞðm,h3 : h4-P5ÞFeCp*� ð2 iÞ þ 1=2½ðCp*AlIÞ4� !
½ðm3-PÞðCp*AlIIIÞ2fP4ðAlIIICp*ÞgðFeCp*Þ� ð2Þ DE ¼ �139:6 kJ mol�1

1=4½ðCp*AlIÞ4� þ ½Cp*Feðh5-P5Þ� þ ITMe!
½ðCp*AlIIIITMeÞðm,h3 : h4-P5ÞFeCp*� ð3Þ DE ¼ �144:8 kJ mol�1

1=4½ðCp*AlIÞ4� ! ½Cp*AlI� DE ¼ þ29:4 kJ mol�1

Although probably resulting from combined steric and
electronic effects, the larger energy gain in the formation of 1,
in contrast to hypothetical 2 i, is qualitatively made plausible
on the basis of the calculated localized MOs with prominent
Al�P bonding character (see Figures S31 and S32 in the
Supporting Information). For 1, two Al�P bonds in the range
around 2.4 � are found, while only one Al�P bond is found
for 2 i. Shared electron numbers (SEN) as reliable measures
for covalent bonding obtained from Ahlrichs–Heinzmann
population analyses[20] confirm these findings. The reaction
step of 2 i with two equivalent units of [Cp*AlI] leading to 2 is
highly exothermic (�139.6 kJmol�1) due to the formation of
a stable Al/P framework. The high two-centre SEN(Al-P) and
three-centre SEN(Al-Al-P) confirm this hypothesis and can
explain the unexpectedly short Al–Al distances. A compara-
ble situation has been intensively investigated in the com-
pound [P4(AlCp*)6].[13] The highly exothermic reaction of
hypothetical 2 i and the carbene ITMe leading to 3
(�111.5 kJmol�1) is explained by substantial electron transfer
away from the carbene (0.48 electron) accompanied by the
formation of a strong Al�C bond (SEN(Al-C) = 1.04).

In summary, we have studied the reactivity of [Cp*Fe(h5-
P5)] with monovalent aluminum complexes. In case of
monomeric [Dipp-BDIAlI], a neutral triple-decker Al-Fe
polyphosphide complex 1 was obtained. Complex 1 consists of
a formally di-reduced anion [(m,h3:h4-P5)FeCp*]2� coordi-

nated to a [Dipp-BDIAlIII]2+ moiety. In contrast, the reaction
between tetrameric [(Cp*AlI)4] and [Cp*Fe(h5-P5)] in a molar
ratio of 3:4 resulted in an unprecedented Al–Fe polyphos-
phide cluster 2 containing four metal atoms, which is formed
by the regioselective insertion of three [Cp*AlIII]2+ moieties
in the cyclo-P5 ring of [Cp*Fe(h5-P5)]. The formation of
intermediate 2 i could explain the [4+1] fragmentation of the
cyclo-P5 ring. The possible intermediate for the insertion
product was stabilized by using a strong s-donor carbene,
resulting in the Al–Fe triple-decker type polyphosphide 3.
Noticeably, these findings highlight the role of supporting
ligands and donor groups in the reduction chemistry of
polyphosphide systems. In addition, this work establishes
a route to directly access Al containing heterometallic
polyphosphide complexes.
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