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This study aims at analyzing the separability of acute cerebral infarction lesions which were invisible in CT. 38 patients, who were
diagnosed with acute cerebral infarction and performed both CT and MRI, and 18 patients, who had no positive finding in either
CT or MRI, were enrolled. Comparative studies were performed on lesion and symmetrical regions, normal brain and symmetrical
regions, lesion, and normal brain regions. MRI was reconstructed and affine transformed to obtain accurate lesion position of CT.
Radiomic features and information gain were introduced to capture efficient features. Finally, 10 classifiers were established with
selected features to evaluate the effectiveness of analysis. 1301 radiomic features were extracted from candidate regions after
registration. For lesion and their symmetrical regions, there were 280 features with information gain greater than 0.1 and 2
features with information gain greater than 0.3. The average classification accuracy was 0.6467, and the best classification
accuracy was 0.7748. For normal brain and their symmetrical regions, there were 176 features with information gain greater
than 0.1, 1 feature with information gain greater than 0.2. The average classification accuracy was 0.5414, and the best
classification accuracy was 0.6782. For normal brain and lesions, there were 501 features with information gain greater than 0.1
and 1 feature with information gain greater than 0.5. The average classification accuracy was 0.7480, and the best classification
accuracy was 0.8694. In conclusion, the study captured significant features correlated with acute cerebral infarction and
confirmed the separability of acute lesions in CT, which established foundation for further artificial intelligence-assisted CT
diagnosis.

1. Introduction

Globally, stroke is still the leading cause of mortality and dis-
ability, and there are substantial economic costs for post-
stroke care [1–4]. In practice, CT is the preferred radiologic
modality for patients with stroke-like clinical manifestation,
since it is immediately available, cost effective, and capable
of differentiating brain disorders [5]. CT is very sensitive in
detecting intracranial hemorrhagic stroke and chronic ische-

mic stroke. CT detects acute cerebral infarction (ACI) in
terms of decrease of CT attenuation, loss of gray-white mat-
ter differentiation, sulcal effacement, and other indirect signs
[6]. In practice, radiologists often encounter poor accuracy in
diagnosing acute infarct by CT, with accuracy rate ≤67%
within 3 hours [5].

Patient, who has stroke-like symptom but CT showed
negative findings, needs MRI [7]. MR diffusion-weighted
imaging (DWI) can detect ischemic lesions within minutes
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of symptoms, which is an extremely sensitive technology and
used for estimating whether thrombolysis is appropriate.
However, MRI is still not the primary modality, because it
is time-consuming, which may lead to miss time window of
thrombolysis, costing expensive, and various contradictions
[8, 9]. Studies demonstrated that better clinical outcomes
correlated with earlier diagnosis of ischemic stroke [10].
Therefore, it is essential to improve the accuracy rate of early
recognizing ACI by CT within the time window.

In this study, we hypothesize that ACI lesions in CT are
separable by combining image registration, accurate lesion
location, radiomic feature extraction, and information gain
calculation, so as to establish a foundation for artificial
intelligence-assisted CT diagnosis.

2. Materials and Methods

2.1. Patients. This retrospective study protocol was reviewed
and approved by the institutional review board of our hospi-
tal. Written informed consent was waived.

Between February 2019 and February 2020, we retrospec-
tively studied 38 patients, who have performed both CT and
MRI and diagnosed as ACI by DWI; meanwhile, CT has no
positive finding by radiologist. Another 18 patients with no
positive finding in either CT or MRI were also enrolled as
normal control (Figure 1).

2.2. CT and MRI. CT images were acquired on a 320-MDCT
scanner (Aquilion ONE, Toshiba Medical System, Otawara,
Japan) with the following parameters: 120 kV and 300mA,

5-mm slice thickness, 512 × 512 matrix, and 0.6mm
collimation.

MRI was acquired on 1.5 T MR scanner (Sonata, Siemens
Healthcare, Erlangen, Germany) and 3.0T MR scanner
(MAGNETOM Skyra, Siemens Healthcare, Erlangen, Ger-
many). The parameters of 1.5T DWI were as follows: TR/
TE == 3800ms/84ms, slice thickness = 5mm, matrix = 128
× 128, FOV = 200 × 220, b value = 1000. The parameters of
3.0 T DWI were as follows: TR/TE == 4950ms/64ms, slice
thickness = 5mm, matrix = 164 × 164, FOV = 220 × 220, b
value = 1000.

2.3. Registration and Candidate Region Acquisition. The
pipeline of our methodology was shown in Figure 2. Since
the position and angle of CT were different from MRI for
one patient, the DWI had to be registered to CT images
(Figure 3). Herein, the CT images were not adjusted to avoid
loss of intact information. The DWI were multiple planners
reconstructed to get a consistent angle with CT and achieve
coarse registration. Then, a series of affine transformations
were performed to get a consistent position and achieve fine
registration, including translation, rotation, and scaling
transformation.

Early cerebral infarction was obvious on DWI which was
sensitive to the restricted Brownian movement of water mol-
ecules in brain tissue [5]. Immediately after registration, we
highlighted the lesion regions in DWI through adjusting
the window width and window level. Because of CT and
DWI were matched, the salient lesion position of DWI was
also used as the lesion label for CT.

91 patients were enrolled
between February 2019 and February 2020

73 performed both CT and MRI

Exlussion:
1 chronic lesion in its symmetrical region
4 sulci in its symmetrical region
4 overlap between lesion and its symmetrical region
18 serious artifacts impacted on highlighting the lesion in DWI

46 performed registration from MRI to CT

8 occured exceptions during registration

38 were eligibility for analysis

18 wer eligibility for analysis
CT and MRI has no positive findingDiagnosed as ACI by MR DWI

CT has no positive finding

Figure 1: Flowchart of the recruitment produce for this study. ACI denotes acute cerebral infarction.
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Besides delineating exact lesion regions in CT projected
from DWI, we took the midline of the brain as the axis of
symmetry and depicted the profile of symmetrical regions
(Figure 4). Instead of simply comparing the left and right
sides of the brain [11–13], the lesion regions and their sym-
metrical regions were served as candidate regions to reduce
redundant information and achieve accurate comparative
analysis.

2.4. Feature Extraction and Analysis. Unlike Lo et al. [13]
who improved a texture feature of radiomics, our scheme
was to extract features from the image firstly, and then used
machine learning techniques to learn these features, so that
the computer can mine the information of cerebral infarction
in CT according to the acquired characteristics and then
identify. Radiomic feature extraction and statistical analysis
were performed to complete the plentiful features extraction
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Figure 2: The pipeline of our methodology included three steps: registration and candidate region acquisition, feature extraction and analysis,
and classifiers establishment. Firstly, CT and MRI were input to obtain lesion regions and their symmetrical regions as candidate regions
through registration. Then, features were extracted and calculated from candidate regions to capture useful features for auxiliary
separating acute cerebral infarction. Finally, the classifiers were introduced to separate candidate region with selected features.

CT

MRI

(a) (b) (c)

Figure 3: Image registration. (a) DWI was adjusted by multiple planner reconstruction to obtain a consistent angle with CT. Dotted line
denoted MRI and point solid line denoted CT. (b) CT and DWI were put together to achieve coarse registration. (c) Fine registration was
performed by a series of affine transformation including translation, rotation, and scaling.

(a) (b)

Figure 4: Candidate region acquisition. (a) The midline of the brain
was the axis of symmetry for projecting symmetric position. (b)
Depict the profile of symmetrical regions for achieving
comparative analysis. The lesion regions and their symmetrical
regions were served as candidate regions.
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and choose features which are contributing to classification,
respectively.

High-throughput feature extraction was applied to search
abundant information in CT images. In this study, we
followed the radiomic method by Lambin et al. [14] for the
extraction process, which were divided into two steps: (1)
image transformation and (2) feature calculation[15]. For
image transformation, feature map was constructed nonli-
nearly from the original images, including wavelet, square
root, and logarithm. For feature calculation, the feature was
calculated on the original and transformed images, including
first-order statistics and gray level cooccurrence matrix.

The information gain was further introduced as a statisti-
cal standard to measure the correlation between radiomic
features and ACI, which was devoted to select significative
information from a great deal features of above [16–18]. Each
feature was calculated out a value in terms of information
gain for dichotomy, lesion, or normal regions, by the equa-
tion below:

H Xið Þ = 〠
x∈Xi

− p xð Þ log p xð Þ, ð1Þ

H Y ∣ Xið Þ = 〠
x∈Xi

p xð ÞH Y ∣ Xi = xð Þ, ð2Þ

IG Xi, Yð Þ =H Yð Þ −H Y ∣ Xið Þ, ð3Þ

where Xi represents the random variable of ith feature value,
x ∈ Xi denotes the possible value of random variable Xi, pðxÞ
represents the probability when the random variable Xi takes
the value x, and Y denotes the random variable of whether or
not a cerebral infarction. IGðXi, YÞ represents the informa-
tion gain which is used to measure the reduction of uncer-
tainty of event Y after X is known.

Theoretically, the feature was effective when the value
was greater than zero, but we chose 0.1 as the minimal
threshold to prevent calculating error and sampling error
[18]. That is, features below the threshold were considered
to be insignificant. The higher the information gain value of

features, the greater contribution to remove noise and retain
significant feature information.

2.5. Classifier Establishment. The classifier was established to
demonstrate the separability of ACI. Given a candidate
region, classifier automatically distinguished lesion or nor-
mal region in terms of the selected features. The classifiers
probably make mistakes, so a classification accuracy score
was calculated when all candidate regions were performed,
which represents the separability of ACI.

In the experiment, we obtained different classification
scores with different features, respectively, which was to con-
firm the effectiveness of features under different thresholds.
We chose 10 common classifiers to obtain a reliable result,
calculated the average classification accuracy, and selected
the best classification accuracy as the final result. Each classi-
fier experiment was repeated 100 times for average, and 4-
fold cross validation was operated to get stable result.

The separation analysis was operated on ACI regions and
their symmetrical regions in CT images. In addition, to
exclude the separability of the left and right sides of the nor-
mal brain, and to explain the separability of the lesion and
normal brain at same region, we performed the same exper-
iments on the normal brain and their symmetrical normal
regions, as well as normal brain and lesion regions.

3. Results

Demographic characteristics of all the patients in this study
were shown in Table 1. For each of the 38 patients, one slice
from CT was selected, which had a prominent lesion in MRI
correspondingly. A total of 38 slices, which are 38 ACI
regions and 38 symmetric noninfarct regions, were obtained.
We extracted 1301 radiomic features from the candidate
regions; meanwhile, the information gain was calculated to
extract key information from abundant features. As shown
in Table 2, there were 280 features with information gain
greater than 0.1, which were considered to be contributory
to classify candidate regions. There were 23 features with
information gain greater than 0.2, and 2 features with infor-
mation gain greater than 0.3, which showed potential

Table 1: Demographic characteristic and multivariate logistic regression results.

Characteristic Total (n = 56) Patients with ACI (n = 38) Patients with no ACI (n = 18) ORα# (OR 95% CI)

Age∗ 64:71 ± 12:92 34:17 ± 6:52 1.458 (1.086~1.957)
Sex(y)†

Woman 24 17 (44.74) 7 (38.89) 1.000

Man 32 21 (55.26) 11 (61.11) 2.748 (0.108~69.973)
Predict value

Negative 10 4 (10.53) 6 (33.33) 1.000

Positive 46 34 (89.47) 12 (66.67) 43.530 (0.640~2960.497)
MRI Diagnosed as ACI No positive finding

CT No positive finding No positive finding
#The value of OR was obtained from binary logistic regression by adjusting αin = 0:1, and αout = 0:15. Dependent is the true value, and covariates are sex, age,
and the predicted value. All the covariates were calculated by the enter method. ∗Data aremean ± standard deviation. †Data in parentheses are percentages. ACI
denotes acute cerebral infarction.
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capability for separating lesion regions and their symmetric
noninfarct regions. The related features were used to build
up 10 classifiers to verify the feature effectiveness in candidate
regions. The average classification accuracy was 0.6467, and
the best classification accuracy was 0.7748 (Table 3).

For each of the 18 patients with no positive finding in
either CT or MRI, three slices from CT were selected to aug-
ment data, which depicted by projecting the lesion labels
obtained from 38 aforementioned MRI. A total of 54 slices,
which are 54 normal brain tissue regions and 54 symmetrical
regions, were obtained. As shown in Table 2, there were only
176 features with information gain greater than 0.1, 1 feature
with information gain greater than 0.2, and no feature with
information gain greater than 0.3. Although the best classifi-
cation accuracy was 0.6782, from the overall classification
results, the classification results were generally low and the
average classification accuracy was only 0.5414 (Table 3).

For each of the 56 aforementioned patients, one slice
from CT were selected. A total of 56 slices, which are 38
lesion regions and 18 normal brain tissue regions, were
obtained. As shown in Table 2, there were 501 features with
information gain greater than 0.1, 126 features with informa-
tion gain greater than 0.2, 51 features with information gain
greater than 0.3, 18 features with information gain greater
than 0.4, and 1 feature with information gain greater than
0.5. The average classification accuracy was 0.7480, and the
best classification accuracy was as high as 0.8694 (Table 3).

Besides, feature map that features reflected on candidate
regions were shown to illustrate the effectiveness of feature

analysis (Figure 5). We visualized one of the first three fea-
tures ordered by information gain on the candidate region.
Among them, it is a clear distinction on lesion and its sym-
metrical region, which explains the separability of ACI. The
left and right sides of the normal region showed no obvious
difference, which confirmed the inseparability of the left
and right sides of the normal brain. The difference between
lesion and normal region was also prominent, which indi-
cated separability of lesion and normal region.

4. Discussion

Sensitively recognizing acute cerebral infarction is a valu-
able research for clinical treatment, within effective throm-
bolytic time. To the best of our knowledge, the finding of
analyzing the separability of acute cerebral infarction
lesions in CT based on image registration, precision posi-
tioning, radiomic feature extraction, and information gain
calculation has not previously been well established in
the literature. The overall concept of the algorithm was
to extract and analyze the feature of regions where there
is cerebral infarction, and more importantly, to separate
lesions from normal regions.

Accurately recognizing acute ischemic stroke by CT
remains challenging, due to the low accuracy of radiologist
diagnosis. A lot of studies focused on prior knowledge,
including decrease of CT attenuation, loss of gray-white mat-
ter differentiation, and sulcal effacement. However, 1/3 cases
were missed since the sensitivity and specificity were low [5].

Table 2: Feature number under different thresholds of information gain on candidate region.

Candidate region
Threshold

0.0 0.1 0.2 0.3 0.4 0.5

Feature number of lesions and their symmetrical regions 1292 280 23 2 0 0

Feature number of normal and their symmetrical regions 1279 176 1 0 0 0

Feature number of lesions and normal regions 1295 501 126 51 18 1

Table 3: The classification accuracy result with selected features under different thresholds of information gain on candidate region.

Classifier
Lesions and their symmetrical

regions threshold

Normal and their
symmetrical regions

threshold

Lesions and normal
regions threshold

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.0 0.1 0.2 0.3 0.4 0.5

Multilayer perceptron 0.4902 0.4974 0.5694 0.7269 0.5061 0.4983 0.4434 0.5476 0.5242 0.5291 0.5292 0.5125 0.7185

Decision tree 0.5980 0.6138 0.6603 0.6655 0.5941 0.6333 0.5841 0.7155 0.7423 0.7782 0.7742 0.7982 0.8230

Random forest 0.5897 0.6452 0.7036 0.7206 0.6055 0.6782 0.5775 0.7700 0.7932 0.8401 0.8260 0.8162 0.8360

Adaboost 0.5850 0.6263 0.6811 0.6818 0.5946 0.6651 0.6001 0.7071 0.7276 0.7671 0.7862 0.7748 0.8291

Gradient boosting 0.5977 0.6346 0.6838 0.7463 0.5931 0.6505 0.5950 0.7517 0.7564 0.7903 0.7978 0.8017 0.8694

Bagging 0.6217 0.6567 0.6973 0.7249 0.6065 0.6529 0.5745 0.7530 0.7767 0.8169 0.8282 0.8144 0.8307

Bernoulli naive Bayes 0.5100 0.6164 0.6724 0.7105 0.4413 0.5175 0.4318 0.6557 0.6748 0.7253 0.7594 0.7566 0.6785

Gaussian naive Bayes 0.4743 0.6203 0.6661 0.6984 0.4801 0.4574 0.4439 0.3737 0.3935 0.8098 0.7842 0.8323 0.8605

Support vector machine 0.4184 0.4223 0.6903 0.4211 0.4382 0.4299 0.4326 0.6785 0.6785 0.6650 0.8123 0.7942 0.6785

K-nearest neighbor 0.2686 0.4563 0.7188 0.7748 0.2690 0.3492 0.6137 0.5812 0.5585 0.6437 0.8153 0.8010 0.8673

Average
0.5789 0.6743 0.6870 0.5532 0.5296 0.6625 0.7365 0.7712 0.7701 0.7991

0.6467 0.5414 0.7480

5BioMed Research International



On the other hand, acute ischemic stroke is inconspicuous,
more complex features including texture, need to be intro-
duced [19, 20]. Later, Rajini [11] proposed a method to sep-
arate ischemic stroke regions from normal tissues in CT,
which used segmentation, midline offset, and image features.
Nevertheless, most of these studies involved acute lesions
that were already visible. Instead, Chawla [12] investigated
a two-stage classification system by comparing the image
intensity differences between the two hemispheres, which
can detect hemorrhagic and ischemic stroke. Recently, a pre-
dictive model based on Ranklet features to distinguish
strokes and normal tissues was proposed, which achieved sig-
nificantly high accuracy 81% [13]. Compared with MRI, it is
still a gap which is not sufficient for practice, and artificial
intelligence-assisted CT diagnosis needs more robust fea-
tures. As Petrou [21] suggested, a few features, which are
not sensitive to human vision and tend to be ignored, are
needed to be excavated. Therefore, it is potential for improv-
ing the accuracy of detection ACI by exploring other features
besides texture.

Lesion delineation is the primary premise in medical
image analysis. However, defining the entire lesion bound-
aries in CT might be complicated because of the invisible of
lesion. The next practical way is that ischemic tissues can
be highlighted by comparing the left and right sides, since
inherent anatomical structures in the human brain are sym-
metric [22, 23]. Nevertheless, it is unreliable by simply com-
paring both sides of the brain especially the lesion size was
small because of normal brain tissue overwhelming the char-
acteristic features from small lesion.

In order to solve the conundrum of candidate region
acquisition and feature quantity insufficiency, we matched
exact lesion regions from DWI to CT images. The exact
lesion regions and their symmetrical regions served as candi-
date regions for imaging feature extraction. Inspired by
Lambin et al. [14] who extracted a large number of radiomic
features from medical images and used statistical analysis to
identify features that could characterize disease, we extracted
1301 radiomic features through image transformation and
feature extraction. Note that we do not claim any novelty
in the extraction design. Instead, our contribution lies in
the essence of that constructing more complex feature is
necessary for selecting certain features which contribute to
classification in the next step. Since not all features were

effective, the information gain was further introduced as a
standard to measure the correlation between features and
ACI, which is according to the principle of feature distinction
and independence in mathematical description [16–18]. Fur-
thermore, machine learning is often used as a means to evalu-
ate radiomic analysis [24–26]. Hence, 10 classifiers were
established with selected features to verify the effectiveness.

The sufficient experimental data showed differences
between the cerebral infarction and their symmetrical non-
infarct regions, since the effective features extracted had
great potential in classify lesions and their symmetrical
regions. Simultaneously, to rule out these separable differ-
ences probably coming from the inherently separable
between the left and right sides of the normal brain, we oper-
ated on normal brain tissue and their symmetrical regions.
The results confirmed that the left and right sides of the nor-
mal brain tissues were inseparable. According to effective
features achieved astounding performance in classify lesion
regions and same position of another normal brain tissue,
the lesions which were separable from normal tissue in CT
were further confirmed. More importantly, the classification
results proved the necessity and effectiveness of feature
extraction and screening.

Some limitations are noteworthy in the current study.
We only included 18 patients performed head CT with no
positive finding. They were younger compared to 38 patients
performed with both CT and MRI and diagnosed as ACI by
DWI, since it is difficult to select normal brain tissue in the
elderly. Besides, the size of our population might be consid-
ered small; further studies that include a larger population
are needed to strengthen the statistical power of these
investigations.

5. Conclusion

This study analyzed the separability of acute cerebral
infarction lesions in CT, which facilitates CT diagnosis
directly. Furthermore, the results of the study established
a theoretical foundation for artificial intelligence-assisted
CT diagnosis, which will bring potential benefits for acute
cerebral infarction patients: shortening the waiting time of
thrombolysis, saving the cost of examination, and improv-
ing the prognosis.
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Figure 5: Feature map of (a) lesion region (left) and its symmetric region (right) showed separable by calculating short-run low gray-level
emphasis on the square transformed images, (b) normal region (left) and its symmetric region (right) showed inseparable by calculating
run entropy on the wavelet transformed images, and (c) lesion region (left) and same position of normal region (right) showed separable
by calculating 10th percentile on the wavelet transformed images.
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