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Abstract.—Rapidly evolving pathogens, such as viruses and bacteria, accumulate genetic change at a similar timescale
over which their epidemiological processes occur, such that, it is possible to make inferences about their infectious spread
using phylogenetic time-trees. For this purpose it is necessary to choose a phylodynamic model. However, the resulting
inferences are contingent on whether the model adequately describes key features of the data. Model adequacy methods
allow formal rejection of a model if it cannot generate the main features of the data. We present TreeModelAdequacy, a
package for the popular BEAST2 software that allows assessing the adequacy of phylodynamic models. We illustrate its
utility by analyzing phylogenetic trees from two viral outbreaks of Ebola and H1N1 influenza. The main features of the
Ebola data were adequately described by the coalescent exponential-growth model, whereas the H1N1 influenza data were
best described by the birth–death susceptible-infected-recovered model. [Bayesian phylogenetics; BEAST2; model adequacy;
phylodynamics; posterior predictive simulation; viral evolution.]

Phylogenetic trees depict the evolutionary
relationships between groups of organisms. In the
context of infectious diseases, pathogen genetic data can
be used to infer such trees. By assuming a substitution
model and including independent information about
time, one can calibrate the molecular clock to obtain
time-trees, where the branch lengths correspond to
units of time, and internal nodes of the tree represent
the timing of divergence events. For rapidly evolving
viruses and bacteria it is possible to use the sampling
times as time-calibrations (Drummond et al. 2003;
Rieux and Balloux 2016). In these organisms, genetic
change and epidemiological or ecological processes
occur over a similar timescale. Thus, time-trees can be
informative about epidemiological dynamics, a field of
research known as phylodynamics (Holmes et al. 1993;
Grenfell et al. 2004; Kühnert et al. 2011; Volz et al. 2013).

Phylodynamic models describe the distribution of
node times, branch lengths, and sampling times. In full
Bayesian phylogenetic analyses, the tree, parameters for
the molecular clock, the substitution model, and the
phylodynamic model can be estimated simultaneously
using molecular data. In this Bayesian framework,
the phylodynamic model is effectively a ‘tree prior’
(e.g., du Plessis and Stadler 2015). The simplest
phylodynamic models are the coalescent exponential-
growth (CE) and the coalescent constant-size (CC).
These two models have very different expectations about

the shape of phylogenetic trees, with exponentially
growing populations tending to produce trees with
longer external branches than those evolving under
constant population sizes (O’Meara 2012; Volz et al.
2013). Alternative phylodynamic models are the birth–
death (BD) models, which include a parameter to
describe the sampling rate, so they have an expectation
on the number of taxa and their distribution over time
(Stadler 2010; Stadler et al. 2012).

Choosing an appropriate model is important to draw
reliable inferences from parameters of interest. For
instance, the CE and the constant BD models can
estimate the basic reproductive number, R0 (Frost and
Volz 2010; Stadler et al. 2012; Volz et al. 2013), which is
defined as the average number of new cases that a single
case will generate over the course of its infection in a
fully susceptible population (Anderson and May 1979,
1992). Failing to account for complex epidemiological
dynamics can bias the estimate of this key parameter
(Stadler et al. 2014; Alkhamis et al. 2016; Ratmann et al.
2016). A Bayesian approach to selecting a phylodynamic
model is to estimate marginal likelihoods for a pool of
models and selecting that with the highest marginal
likelihood (Baele et al. 2012, 2016), but it is also possible to
obtain weighted averages of parameter estimates based
on the support for each model (e.g., Huelsenbeck et al.
2004; Li and Drummond 2012; Baele et al. 2013; Bouckaert
and Drummond 2017).

358



Copyedited by: TP MANUSCRIPT CATEGORY: Software for Systematics and Evolution

[12:50 25/1/2019 Sysbio-OP-SYSB180049.tex] Page: 359 358–364

2019 DUCHENE ET AL.—PHYLODYNAMIC MODEL ADEQUACY 359

MODEL ADEQUACY IN PHYLOGENETICS

Model selection methods only allow a relative
comparison of a set of models, but they cannot determine
whether any of the models in question could have
generated key features of the data at hand (i.e., absolute
model fit). Such information, however, is key to avoid
unreliable inferences from a model and to improve our
understanding of the biological processes that produced
the data. Absolute model fit can be assessed via
model adequacy methods, where a model is considered
“adequate” if it is capable of generating the main features
of the empirical data. Consequently, model adequacy
allows the user to formally reject a model or to identify
aspects of the data that are poorly described, instead of
ranking it with respect to other models, as is the case
with model testing (e.g., Goldman 1993; Bollback 2002;
Ripplinger and Sullivan 2010; Brown 2014b).

Model adequacy is typically conducted by fitting a
model to the empirical data, and generating synthetic
data from the model in question, a procedure that is
similar to a parametric bootstrap (Goldman 1993). The
adequacy of the model is determined depending on
whether the synthetic data are similar to the empirical
data, according to a descriptive test statistic (Gelman and
Shalizi 2013; Gelman et al. 2014). The test statistics should
summarize key aspects of the data or a combination
of the data and parameter estimates (Gelman et al.
1996). Examples of test statistics that have been used to
assess the substitution model include the multinomial
likelihood or a measure of compositional homogeneity
(Goldman 1993; Huelsenbeck et al. 2001; Foster 2004).
The joint clock model and tree prior key can be assessed
using the expected number of substitutions in individual
branch lengths of the tree as test statistics (Duchêne et
al. 2015). For DNA barcoding the number of OTUs and
multinomial likelihood have been shown to be effective
test statistics (Barley and Thomson 2016). Phylodynamic
and diversification models are fitted to phylogenetic
trees and their parameters depend on the distribution
of nodes, such that some useful test statistics include
the ratio of external to internal branch lengths, the tree
height, and measures of phylogenetic tree imbalance
(Revell et al. 2005, 2008; Drummond and Suchard 2008;
Höhna 2015). Clearly, designing test statistics is not
trivial, but they should attempt to explicitly test some
of the assumptions of the model. For example, the CE
and CC models have different expectations of the ratio
of external to internal branch lengths, such that this may
be a useful test statistic.

BAYESIAN MODEL ADEQUACY

Bayesian model adequacy consists of a posterior
predictive framework (Rubin 1981, 1984; Bollback 2002;
Brown 2014a, 2014b; Lewis et al. 2014; Höhna et
al. 2017). The posterior distribution of the model in
question is approximated given the empirical data, for
example using Markov chain Monte Carlo (MCMC).
Samples from the MCMC are drawn to simulate

data sets under the model used for the empirical
analysis. For example, the posterior distribution of the
growth rate and population size parameters of the CE
model can be sampled to simulate phylogenetic trees.
Such simulations are known as posterior predictive
simulations. Test statistics are then calculated for every
posterior predictive simulation (i.e., for every simulated
tree) to generate a distribution of values according to
the model. A posterior predictive probability, similar to
the frequentist P-value, can be calculated by determining
where the value of the test statistic for the empirical data
(i.e., the empirical phylogenetic tree) falls with respect
to the posterior predictive distribution (Gelman et al.
2014). Following Gelman et al. (2014), we refer to the
posterior predictive probability as PB to differentiate
it from the frequentist P-value. A useful guideline to
determine whether the model is adequate is to determine
whether a test statistic is within the 95% credible interval
(CI) (Bollback 2002; Brown 2014a). This approach is
sometimes conservative, particularly when test statistics
do not follow a Gaussian distribution, and other methods
of calculating posterior predictive probabilities are
also possible (Gelman et al. 2014; Höhna et al. 2017).
Combining multiple test statistics leads to multiple
testing, which can be addressed by using a multivariate
PB values (Drummond and Suchard 2008). However,
Gelman et al. (2014) suggest considering each test
statistically separately to assess individual aspects of the
model and the data, which is the approach taken here.

Bayesian model adequacy is similar to Approximate
Bayesian Computation (ABC) techniques in that both
methods use test statistics from simulated data. The aim
of ABC is to approximate the posterior by comparing
test statistics from simulations from the prior and
the empirical data (Csilléry et al. 2010; Ratmann et
al. 2012; Poon 2015), which sometimes leads to biases
for model testing (Robert et al. 2011). In contrast, in
model adequacy the simulations are generated from
the posterior distribution and they are not used to
approximate the posterior. In spite of these differences,
test statistics developed for ABC can be useful to assess
model adequacy.

“TREEMODELADEQUACY” PACKAGE IN BEAST2
We implemented a computational framework to assess

the adequacy of phylodynamic models as a package for
BEAST2 (Bouckaert et al. 2014). Analyses as outlined
in Figure 1 are easy to set up through BEAUti, the
graphical user interface for BEAST, to generate an xml
file with the tree, the model, and test statistics. Our
package, TreeModelAdequacy (TMA), takes a tree with
branch lengths proportional to time. The tree can be
a summary tree from BEAST2, or estimated using a
different method.

We fit phylodynamic models available in BEAST2
by approximating the posterior distribution of the
parameters of the model using MCMC. To generate
the posterior predictive simulations, we draw random
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FIGURE 1. Posterior predictive simulation framework implemented in the TreeModelAdequacy package. Step (1) consists in Bayesian analysis
in BEAST under model M to estimate the posterior distribution of parameters �, shown with the arrow and posterior density in orange. In step
(2), samples from the posterior are drawn to simulate phylogenetic trees, known as posterior predictive simulations, using MASTER as shown
by the green arrow. In step (3), the posterior predictive simulations are analyzed in TreeStat to generate the posterior predictive distribution of
test statistic Ta, shown by the blue arrow and probability density. Finally, Ta is also computed for the tree from the empirical data using TreeStat,
shown by the red arrow, to calculate a posterior predictive probability (PB). Test statistics and PB values can also be computed for trees generated
in other programs using TreeModelAdequacyAnalyser, given that the tree from the empirical data and the posterior predictive simulations are
provided.

samples from the posterior for the parameters from
the MCMC after removing the burn-in phase, and we
simulate phylogenetic trees using stochastic simulations
and master equations using MASTER (Vaughan and
Drummond 2013) or the coalescent simulator in BEAST2.
The last step consists in calculating test statistics for
the empirical data and for the posterior predictive
simulations, which depends on the TreeStat2 package
(available at http://github.com/alexeid/TreeStat2).
The user can select a large number of test statistics
(Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.65p331m). At the
end of the analysis, PB values and quantiles for
the posterior predictive distribution are shown, but
they can also be visualized in Tracer (available at:
http://beast.bio.ed.ac.uk/tracer) or using an R script
included in the package. At present, the range of
phylodynamic models that can be assessed includes
the CC and CE coalescent models, the constant BD
with serial sampling (Stadler et al. 2012), and the BD
susceptible-infected-recovered model (BDSIR; Kühnert
et al. 2014).

Our implementation allows parallelization of the tree
simulation step, which can increase computational
speed when the simulation conditions require
extensive calculations. This step can also be conducted
independently on a computer cluster. Our standalone
application TreeModelAdequacyAnalyser can also
compute test statistics and PB values, even for trees

generated in a different program than BEAST2, given
that the posterior predictive trees are provided. TMA is
open source and freely available under a LGPL license.
It can be downloaded from BEAUTi2 (part of BEAST2),
and the documentation and example files are available
at: http://github.com/sebastianduchene/tree_model_
adequacy.

To verify our implementation, we conducted a simple
simulation experiment. We simulated 100 trees under
each of the four phylodynamic models (CC, CE, BD, and
BDSIR) using BEAST2 and MASTER and analyzed them
with the matching model. We assessed their adequacy
according to nine test statistics (Supplementary Material
available on Dryad). The parameters for our simulations
were based on analyses of 72 whole genome sequences
of Ebola virus (Gire et al. 2014). We found that the PB
values for all test statistics were between 0.025 and 0.975
for about 95% of each set of simulations, indicating that
our implementation is correct (Supplementary Material
available on Dryad).

PHYLODYNAMIC MODEL ADEQUACY IN EMPIRICAL VIRUS

DATA

West African Ebola Virus
We obtained a phylogenetic tree inferred in a previous

study from 72 Ebola virus whole genome samples

http://github.com/alexeid/TreeStat2
http://dx.doi.org/10.5061/dryad.65p331m
http://beast.bio.ed.ac.uk/tracer
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collected during the 2013–2016 epidemic (Gire et al. 2014).
The samples were collected from May to July 2014 in
Sierra Leone. These data have been used in previous
studies to estimate epidemiological parameters, with
estimates of R0 ranging from 1.5 to 2.5, depending on the
phylodynamic model (Stadler et al. 2014; Volz and Pond
2014). An important consideration about our analysis is
that we assume that the tree topology and divergence
time estimates are sufficiently accurate, and that the data
are informative.

We inferred phylodynamic parameters for the Ebola
virus tree using four models; CC, CE, the BD, and
the BDSIR (Kühnert et al. 2014). The CE, BD, and
BDSIR models can estimate R0 if information about the
sampling process (for the BD models) or present number
of infected individuals (for the coalescent) is available.
In this case, we assumed that the sampling proportion
was 0.7 (Gire et al. 2014) by fixing this parameter in the
BD and BDSIR models. For the remaining parameters of
these two models, we used the same prior distributions
as in a previous analysis of these data (Stadler et al.
2014). For the CE model, we used a Laplace distribution
and a 1/x distribution as priors for the growth rate and
for the effective population size, respectively. We ran
an MCMC of 107 steps and generated 1000 posterior
predictive simulations, and we computed four test
statistics.

To compare the different models, we calculated PB
for four test statistics; the tree height, the slope ratio of
a lineages-through-time (LTT) plot, the ratio of external
to internal branch lengths, and the Colless index of
phylogenetic imbalance (Fig. 2; Supplementary Material
available on Dryad). Importantly, the slope ratio of the
LTT plot has been found to be informative for inferring
epidemiological parameters using ABC (Saulnier et al.
2017).

In the CC model, the PB <0.05 for all test statistics,
with the exception of the tree height at 0.06 (Fig. 2 and
Supplementary Fig. S1 available on Dryad). The CE and
BD models described these data better, with most PB
values between 0.11 and 0.56. The Pp value for the Colless
index in the CE model was the lowest for both of these
models, at 0.04. The BDSIR model had overall low PB
values, from to 0.01 to 0.18, with the lowest values found
for the ratio of external to internal branch lengths (0.03)
and for the slope ratio of the LTT plot (0.01). The fact that
most PB values for the CE and BD models frequently fall
near the center of the posterior predictive distributions
is consistent with the rapid spread that Ebola virus was
undergoing at the time the sequences were collected.

For the CE, BD, and BDISIR models we can estimate R
and the infectious period, 1/�. The R0 median estimates
were: 1.6 (95% CI: 1.12–2.2) for the BD, 1.21 (95% CI: 1.1–
1.5) for the CE, and 1.59 (95% CI: 1.22–1.94) for the BDSIR.
Estimates for the infectious period in calendar days were:
5.46 (95% CI: 4.14–7.24) for the BD, 2.90 (95% CI: 1.75–5.50)
for the CE, and 5.21 (95% CI: 4.24–7.02) for the BDSIR.
The estimates from these models were very similar and
overlapped with those from previous studies (Stadler et

al. 2014). Although the BDSIR did not capture some of
the main features of these data, this model is similar to
the BD when the number of susceptible individuals is
very large, which probably explains the overlap in R0
estimates between these models.

2009 H1N1 Influenza
We obtained a phylogenetic tree from a previous

study (Hedge et al. 2013), which was estimated from 328
whole genome samples from the 2009 H1N1 Influenza
pandemic. The samples were collected from April to
December 2009, such that they encompass a large portion
of the duration of the pandemic. We used a similar
method as for the Ebola virus phylogenetic tree to fit the
four phylodynamic models (CC, CE, BD, and BDSIR).
However, instead of fixing the sampling proportion we
used an informative prior distribution of the infectious
period via the becomeUnifectiousRate parameter, with a
normal distribution of mean 85 and standard deviation
of 15 (corresponding to an infectious period of about 4.45
days).

The CC and CE models had PB values of 0.00 for all
four test statistics, such that they did not adequately
describe any of these aspects of the tree. The BD model
had PB values of 0.53 and 0.09 for the tree height and
the slope ratio of the LTT plot, and of 0.00 for the
ratio of external to internal branch lengths (Fig. 2 and
Supplementary Fig. S2 available on Dryad). In contrast,
the BDSIR model overall described the H1N1 tree better
overall than the other three models, with PB values of
between 0.07 and 0.44. This result is consistent with the
sampling time of the data, which includes the start of the
pandemic and the decline in the number of infections
toward the end of the year. We calculated an R0 of
mean 3.01 (95% CI: 2.5–3.7) at the start of the pandemic
in January that declined to R0 <1 around June, when
infectious spread was lower. This estimate is similar to
those made in previous studies based on census data
(Forsberg White et al. 2009), but in the higher range of
those based on the CE model for samples collected in
early stages of the pandemic (e.g., Hedge et al. 2013). For
comparison, the R0 estimate from the BD model, which
appeared inadequate, was substantially lower, with a
mean of 1.02 (95% CI: 1.00–1.03).

CONCLUSION

Model adequacy methods are useful to understand
the biological processes that generate the data, such as
the evolutionary branching process. For example, our
approach reveals that in July of 2014 the West African
Ebola outbreak was still growing exponentially and that
the 2009 H1N1 influenza virus pandemic had evidence
of a depletion of susceptible individuals in December.
In some cases, identifying models that indadequately
describe key aspects of the data may improve estimates
of parameters of interest, such as R0 in our H1N1
influenza analyses. One consideration of our approach
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FIGURE 2. Model adequacy results for the two empirical data sets, West African Ebola, and 2009 H1N1 influenza. The histograms show the
distribution of two test statistics, the tree height and the slope ratio of the LTT plot, for the posterior predictive simulations. The black points also
show the distribution of the test statistics, and they have been jittered along the y-axis to improve visualization. The red lines denote the value
for the tree estimated from the empirical data. The posterior predictive P-value,PB, is shown for each test statistic. A feature of the empirical
phylogenetic tree described by a test statistic, such as the tree height, is considered adequately described by the model if the empirical value falls
within the 95% quantile range of the posterior predictive distribution, such that the PB>0.05. Two more test statistics were computed, the ratio
of external to internal branch lengths and the Colless index, which are shown in Supplementary Fig. S1 available on Dryad. Note that for the
H1N1 influenza analyses, the values are shown in a log10 scale.

is that it requires an accurate estimate of a single
phylogenetic tree. Clearly, the phylogenetic tree should
be inferred using informative sequence data and the
sensitivity to the prior should be carefully examined
(Ritchie et al. 2016; Boskova et al. 2018; Möller et al. 2018),
which is also the case for any Bayesian analysis. For
example, a tree estimated from uninformative sequence
data will be driven by the prior and will necessarily
appear to be adequately described by the matching
model, potentially leading to increased rates of Type
2 errors. A limitation of our method is that it does
not account for phylogenetic uncertainty, which can be
addressed by comparing sets of trees from the posterior
with those from the posterior predictive distribution.
However, this approach will require the development of
new test statistics and model assessment criteria. Model

adequacy in phylogenetics will benefit from further
development of methods to assess more sophisticated
phylodynamic models, such as those that account for
population structure (Kühnert et al. 2016; Müller et
al. 2017a,b; Volz and Siveroni 2018), and techniques to
improve the interpretation of PB values for test statistics
that are not normally distributed, such at the Colless
index. Model adequacy software, such as TMA, will be
key to address these questions.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.65p331m.

http://dx.doi.org/10.5061/dryad.65p331m
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